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Abstract: Stabilization of a system of coupled PDEs of the fourth-order by means of boundary
control is investigated. The considered setup arises from the classical Euler-Bernoulli beam
model, and constitutes a generalization of flexible mechanical systems. A linear feedback
controller is proposed, and using an abstract formulation based on operator semigroup theory,
we are able to prove the well-posedness and the stability of the closed-loop system. The
performances of the proposed controller are illustrated by means of numerical simulations.
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1. INTRODUCTION

Mechanical systems with flexible components have re-
cently become an important and fertile research area, due
to their versatility, high speed response and low energy
consumption. Several examples of such systems may be
found in soft robotics, i.e. flexible manipulators [Liu and
He, 2018] or UAVs with flexible and articulated wings
[Paranjape et al., 2013]. The dynamics of this class of sys-
tems are typically governed by a combination of high-order
partial differential equations (PDEs), ordinary differential
equations (ODEs) and a set of static boundary conditions.
Coupled systems of first and second order PDEs with
ODEs have been largely investigated in the literature, and
tackled with different approaches, such as backstepping
[Coron et al., 2013, Hasan et al., 2016], Lyapunov meth-
ods [Trinh et al., 2017, Barreau et al., 2018] and matrix
inequalities [Castillo et al., 2013, Ferrante and Cristofaro,
2019]. However, the research on high order PDEs systems
is more fragmentary.

The work on control and stabilization of flexible mechan-
ical systems was initiated by [Chen, 1979] using a simple
model based on the wave equation, and then generalized
to Timoshenko beam [Kim and Renardy, 1987] and Euler-
Bernoulli beam models [Morgül, 1992]. More specifically,
boundary stabilization with a single input was proved by
[Chen et al., 1987] and then extended in [Conrad and
Morgül, 1998], while the simultaneous stabilization of ori-
entation and deflection was investigated in [Morgül, 1991].
Observer design was also considered by several authors,
see for instance [Wang and Vidyasagar, 1991], [Nguyen
and Egeland, 2008], [Jiang et al., 2017] and the references
therein.

The present paper takes inspiration from [Conrad and
Morgül, 1998], and extends the exponential stabilization
results to the case of a system of coupled PDEs. While

in the scalar case the proposed controller guarantees
stability for any possible choice of feedback gains, in
the multi-dimensional setting some non trivial problems
arise and, accordingly, some matrix inequalities have to
be met by the controller parameters in order to attain
stabilization. Related works are [Lagnese et al., 2012],
[Mercier and Régnier, 2014], where connected beams are
analyzed, and [Barreau et al., 2018], where string equations
are considered. Furthermore, an interesting approach base
on the Port Hamiltonian formulation has been recently
proposed in [Augner, 2019].

The paper is structured as follows. Section 2 provides
the considered model and basic setup for the stabiliza-
tion problem. The well-posedness and the stability of the
closed-loop system is addressed in Section 3, by means
of semigroup theory and matrix inequalities. Numerical
simulations are given in Section 4 to support and illustrate
the theoretical findings. Concluding remarks are finally
stated in Section 5.

2. MODEL AND SETUP

Given the bounded domain D = [0, L], with L = 1 for
the sake of simplicity and without loss of generality, we
consider the PDE system

utt = −Λuxxxx x ∈ (0, 1) (1)

with boundary conditions

Mutt(1, t) = Fuxxx(1, t) + w(t) (2)

u(0, t) = ux(0, t) = uxx(1, t) = 0 (3)

where u(·, ·) : [0, 1] × [0,∞) → Rn, n ≥ 1, and Λ,M, F ∈
Rn×n are system matrices. In particular, Λ = ΛT � 0 is
assumed to be diagonal, M = MT � 0, and F is required
to be invertible. The function w(·) ∈ Rn represents
a boundary control input. The uncontrolled system is
not asymptotically stable, and therefore the stabilization
problem is relevant. Following the approach of [Conrad
and Morgül, 1998] for the scalar case, the idea is to design
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the control input as a linear state feedback consisting of
a first order and a fourth order term. To this end, let us
consider two gains K,B, with det(B) 6= 0, and define the
state feedback

w(t) = −Kut(1, t) +B−1Fuxxxt(1, t) (4)

Applying this controller, and introducing the auxiliary
function

η(t) = −Fuxxx(1, t) +BMut(1, t),

the second-order boundary condition (2) becomes

B−1ηt(t) + η(t) + (K −BM)ut(1, t) = 0.

Furthermore, let us introduce the following functional
spaces 1 :

V :=
{
u : [0, 1]→ Rn : u ∈ H2((0, 1);Rn),

u(0) = ux(0) = 0
}

H :=
{

(u, v, η) : u ∈ V, v ∈ L2((0, 1);Rn), η ∈ Rn
}
,

and consider the unbounded operator A : D(A) ⊂ H → H
defined by

A

 uv
η

 =

 v

−Λuxxxx
−Bη −B(K −BM)v(1)

 (5)

whose domain is given by

D(A) :=
{

(u, v, η) : u ∈ H4((0, 1);Rn) ∩ V, v ∈ V, η ∈ Rn,

uxx(1) = 0, η = −Fuxxx(1) +BMv(1)
}
.

Accordingly, the original system can be rewritten in com-
pact form as the linear system

yt = Ay, y(0) ∈ H (6)

with y = (u, ut, η).

Remark 1. (Mechanical interpretation). In the scalar case
n = 1, the PDE model (1)-(3) represents the state of
deflection of a flexible beam carrying a tip mass with
negligible inertia, or a flexible robotic arm with a fixed
joint position. The generalization n ≥ 2 can be interpreted
as a flexible structure with multiple arms connected in
parallel and coupled at the boundary [Kater and Meurer,
2019], this having potential applications in robotics as, for
example, in the case of soft grasping [Shintake et al., 2018].

Remark 2. A simpler control input, consisting of a first
order linear feedback only, can also be considered

w(t) = −Kut(1, t) (7)

However it can be shown that, already in the scalar case
n = 1, such controller guarantees asymptotic stability
but not exponential stability. This is further illustrated
in Section 4.

3. EXPONENTIAL STABILIZATION

Given two positive definite diagonal matrices P =
PT , S = ST � 0, and setting y = (u, v, η), ỹ = (ũ, ṽ, η̃),
the following inner product is well defined in H

〈y, ỹ〉H =

∫ 1

0

(uTxxPũxx + vTPΛ−1ṽ)dx+ ηTSη.

1 We recall that L2[a, b] stands for the space of square integrable
functions over the interval [a, b], and H`[a, b] is the set of functions
whose derivatives, up to the `-th order, belong to L2[a, b]

Let us point out that the matrix PΛ−1 � 0 is symmetric
since both P and Λ are chosen to be diagonal. The
following claim will be proved next.

Claim 1. The operator A generates a semigroup of con-
tractions on the space H for some suitable selection of the
feedback gain matrices K and B−1.

The idea of the proof is to invoke Lumer-Phillips theorem
[Tucsnak and Weiss, 2009], and hinges on two technical
results.

Lemma 1. The operator A is dissipative if there exist
positive definite diagonal matrices P and S, and control
gains K and B such that the matrix inequality

Ω + ΩT � 0 (8)

is satisfied, where

Ω =

[
FTSBF −FTSBK

−P −MTBTSBF MTBTSBK

]
. (9)

Proof. Let us pick y = (u, v, η) ∈ D(A) and consider the
product

〈y,Ay〉H =

∫ 1

0

(uTxxPvxx − vTPuxxxx)dx

−ηTSB(η + (K −BM)v(1))

(10)

Integrating by parts twice the second term in the integral
one gets∫ 1

0

vTPuxxxxdx = vT (1)Puxxx(1)− vTx (1)Puxx(1)︸ ︷︷ ︸
=0

+ vTx (0)Puxx(0)︸ ︷︷ ︸
=0

+

∫ 1

0

vTxxPuxxdx

where the boundary conditions on u and v have been used.
By the latter identity, the integral terms in (10) cancel
out and, considering the explicit expression of η as in the
definition of D(A), one is left with the algebraic condition

〈y,Ay〉H = −[uTxxx(1) vT (1)]Ω

[
uxxx(1)

v(1)

]
where the matrix Ω is given by (9). In conclusion we
have 〈y,Ay〉H ≤ 0, and thus A is dissipative, as long as
He(Ω) = Ω + Ω � 0. ♦
Remark 3. It is worthwhile to observe that when the
control gains B and K are given, (8) is a linear matrix
inequality (LMI ) in the variables P and S. In this sense,
Lemma 1 recasts the dissipativity analysis of the operator
A into the feasibility problem of an LMI. The main
advantage is that checking the feasibility of an LMI is
a numerically tractable problem that can be efficiently
solved via available software [Boyd et al., 1997].

Lemma 2. The range of the operator

(λI −A) : D(A)→ H
is onto for some λ > 0.

Proof. Fix λ > 0. Let us show that, for any z =
(f, g, ϑ) ∈ H, there exists one y = (u, v, η) with

z = (λI −A)y,

that is
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λu− v = f

λv + Λuxxxx = g

(λI +B)η +B(K −BM)v(1) = h

By merging the first two equations and rearranging terms,
the surjectivity of (λI − A) is equivalent to the existence
of a solution to

λ2u+ Λuxxxx = f∗ x ∈ (0, 1)

−uxxx(1) +Gu(1) = h∗

u(0) = ux(0) = uxx(1) = 0

(11)

where
f∗ = λf + g,

h∗ = F−1(λI +B)−1(Bh+B(λM +K)f(1)),

G = λF−1(λI +B)−1(λM +K).

Let us denote by γλ,1, ..., γλ,n the positive entries of the
diagonal matrix λ2Λ−1 and by bλ,1, ..., bλ,n the components
of the vector Λ−1f∗. Let us focus then on the scalar
equations

u(j)
xxxx = −γλ,ju(j) + bλ,j

Denoting by %j = 4
√
|γλ,j |, the general solution of this

equation is given by

u(j)(x) = u
(j)
0 (x) +

∫ x

0

κλ,j(x− z)bλ,j(z)dz

u
(j)
0 (x) = e

√
2%j
2 x

(
Cj,1 cos

(√
2%j
2

x

)
+Cj,2 sin

(√
2%j
2

x

))

+e−
√

2%j
2 x

(
Cj,3 cos

(√
2%j
2

x

)
+Cj,4 sin

(√
2%j
2

x

))
with the convolution kernel κλ,j(x) = e>1 exp{Γλ,jx}e4

where e1 = (1, 0, 0, 0), e4 = (0, 0, 0, 1) and Γλ,j ∈ R4×4

is the matrix

Γλ,j =

[
03×1 I3×3

−γλ,j 01×3

]
Using the initial and final values, conditions on the con-
stants Cj,` can be found. In particular, denoting by C ∈
R4n the extended vector

C = [C1,1 C1,2 · · · Cn,3 Cn,4],

the existence of a solution to (11) is equivalent to the
existence of C such that

Ξ(λ)C = υ∗

where υ∗ is obtained by rearranging the terms in the right-
hand side of (11) and where Ξ(λ) ∈ R4n×4n is the matrix
of coefficients obtained imposing homogeneous conditions

u(0) = ux(0) = uxx(1) = uxxx(1)−Gu(1) = 0

in the expression for u
(j)
0 (x), j = 1, ..., n. A sufficient

condition for the surjectivity is therefore

det Ξ(λ) 6= 0. (12)

It can be noticed that, by standard results on ordinary
differential equations, for G ≡ 0 the above condition
is satisfied for any λ > 0. Since G → 0 as λ ↘ 0,
by continuity the condition still holds for G 6= 0 and
λ sufficiently small. On the other hand, det Ξ(λ) is an
analytic function and then, due to the isolated zeros
property [Rudin, 2006], condition (12) must hold true

for almost every λ > 0. In conclusion, the range of the
operator (λI −A) is onto for each λ > 0 such that (12) is
satisfied. ♦

Proof. of Claim 1 Thanks to Lemma 1 and Lemma 2,
the operator A satisfies the hypotheses of Lumer-Phillips
theorem and thus defines a semigroup of contractions
on H. ♦
Thanks to Claim 1 the formal linear system (6) is well
posed, and we can go ahead proving exponential stability.
In fact, the semigroup of contractions generated by A is
characterized by an exponential decay, as shown in the
next result.

Theorem 1. Assume that the conditions in Lemma 1 hold
and let T (t) be the semigroup of contractions generated
by the operator A on H. Then, there exist two positive
constants µ, δ > 0 such that

‖T (t)‖L(H) ≤ µe−δt t ≥ 0

where ‖ · ‖L(H) stands for the norm induced by the inner
product defined earlier.

Proof. Setting z(t) = (u(·, t), ut(·, t), η(t)), we define the
energy W (t) as

W (t)=
1

2
‖z(t)‖2H =

1

2
ηT (t)Sη(t)

+
1

2

∫ 1

0

(uTt (x, t)PΛ−1ut(x, t) + uTxx(t, x)Puxx(t, x))dx

where P, S satisfy the matrix inequality He(Ω) � 0 in (9).
Let z(0) ∈ D(A); then, by the semigroup property one has
z(t) = T (t)z(0) ∈ D(A) for any t ≥ 0 and

Ẇ (t) = 〈z(t),Az(t)〉H = −ζ(t)TΩζ(t) ≤ 0

with ζ(t) = (uxxx(1, t), ut(1, t)). Consider the Lyapunov-
like functional

V (t) = tW (t) +

∫ 1

0

xuTt (x, t)Qux(x, t)dx

with Q = QT � 0 to be selected later on. By Cauchy-
Schwarz and Poincaré inequalities [Brezis, 2010], the fol-
lowing estimates hold true

(t− c0)W (t) ≤ V (t) ≤ (t+ c0)W (t), t ≥ 0

for some c0 > 0. Differentiation of V (t) along the system
solutions yields

V̇ (t) = W (t) + tẆ (t) +

∫ 1

0

xuTxt(x, t)Qut(x, t)dx

−
∫ 1

0

xuTx (x, t)QΛuxxxx(x, t)dx.

Let us treat the two integral terms separately. By a simple
integration by parts, the first term reads as∫ 1

0

xuTxt(x, t)Qut(x, t)dx

=
1

2
uTt (1, t)Qut(1, t)−

1

2
uTt (0, t)Qut(0, t)︸ ︷︷ ︸

=0

− 1

2

∫ 1

0

uTt (x, t)Qut(x, t)dx.
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Integrating by parts repeatedly the second term, one gets∫ 1

0

xuTx (x, t)QΛuxxxx(x, t)dx

= uTx (1, t)QΛuxxx(1, t)− uTx (x, t)QΛuTxx(x, t)
∣∣∣1
0︸ ︷︷ ︸

=0

+

∫ 1

0

uTxx(x, t)QΛuxx(x, t)dx

− xuTxx(x, t)QΛuxx(x, t)

2

∣∣∣1
0︸ ︷︷ ︸

=0

+
1

2

∫ 1

0

uTxx(x, t)QΛuxx(x, t)dx

Recall the standard inequalities

u2
x(1, t) ≤

∫ 1

0

u2
xx(x, t)dx

as long as ux(0, t) = 0,

uTx (1, t)QΛuxxx(1, t)

≤ ‖QΛ‖
(
ε‖ux(1, t)‖2 +

1

ε
‖uxxx(1, t)‖2

)
and

ηT (t)Sη(t)

≤ 2‖S‖
(
‖F‖2‖uxxx(1, t)‖2 + ‖BM‖2‖ut(1, t)|2

)
where ε > 0 is arbitrary. Now select the matrix Q � 0 such
that

3

2
He(QΛ)− 1

2
P � αI (13)

Q− PΛ−1 � βI (14)

for some α, β > 0. Let us point out that these two
conditions are always simultaneously feasible. Putting all
pieces together, the following estimate on V̇ (t) is found

V̇ (t) ≤ −(α− ε‖QΛ‖)
∫ 1

0

uTxx(x, t)uxx(x, t)dx

−β
∫ 1

0

uTt (x, t)ut(x, t)dx− ζT (t)(tΩ−Ψ)ζ(t)

with

Ψ=


‖S‖‖F‖2 +

‖QΛ‖
ε

0

0 ‖S‖‖BM‖2 +
‖Q‖

2


It can be easily verified that, selecting ε < α

‖QΛ‖ , there

exists τ > 0 such that the right-hand side is nonpositive
for any t ≥ τ , i.e.

V̇ (t) ≤ 0 ∀t ≥ τ.
In turn this implies that

W (t) ≤ τ + c0
t− c0

W (0) t > max{c0, τ}

and thus from the identity

W (t) =
1

2
‖z(t)‖2H =

1

2
‖T (t)z(0)‖2H

it follows that ‖T (t)‖L(H) < 1 for t > max{c0, τ}, this
being equivalent to the claimed exponential decay due to
the semigroup property. In conclusion, we have proved that
the controller (4) provides exponential stabilization. ♦

4. NUMERICAL EXAMPLE

Let us consider a system in the form (1)-(3), described by
the matrices:

Λ =

[
15 0
0 10

]
, M =

[
0.1 0
0 0.3

]
, F =

[
2 0.4
−0.8 1

]
and initial condition

u(x, 0) =
[
0.03 sin

(πx
2

)
− 0.02 cos

(πx
2

)]T
.

In addition, we assume that the controller gains are
selected as follows:

K =

[
20 0
0 20

]
, B−1 =

[
0.01 0

0 0.02

]
. (15)

Solving (8) in MatlabR© using the YALMIP package [Lof-
berg, 2004] combined with the solver SDPT3, [Tütüncü
et al., 2003], one gets:

P =

[
0.954272 0

0 0.881155

]
, S =

[
0.00197144 0

0 0.0271201

]
The PDE system has been implemented using a 16-points
discretization of the space domain. Three cases have been
considered: a) uncontrolled system, i.e. w(t) ≡ 0; b) first
order controller w(t) given by (7); c) complete controller
given by (4). The state evolution for case a) is depicted
in Figures 1-2. It is clearly visible from the plots that
the initial condition is propagated and not attenuated
during the evolution, this showing that the uncontrolled
system is not asymptotically stable. The performances of
the first order controller (7) are illustrated in Figures 3-5.
The state of the equation slowly converges to zero with
some oscillations, this showing that asymptotical stability
is achieved. Finally, case c) is presented in Figures 6-8.
The improved performances with respect to case b), i.e.
exponential stability, can be appreciated in the pictures
6-7 that illustrate the fast converge of the states. On the
other hand it must be noticed that, due to the presence of
the higher order derivative in the controller structure (4),
an increased level of chattering appears in the control law
(see Figure 8).

5. CONCLUSIONS

A generalization of the stabilization problem of a flexible
beam with a tip mass is considered in this paper. In
particular, the exponential stabilization of a system of
n ≥ 2 coupled high order PDEs by means of boundary
control is addressed. The problem has been tackled using
operator semigroups theory, Lyapunov methods and ma-
trix inequalities. Unlike the scalar case, some non trivial
algebraic conditions arise in the case n ≥ 2, this making
the stability analysis and synthesis of controllers more
challenging and interesting. Future studies will be focused
on investigating efficient synthesis methods for the marix
inequalities providing the stabilizing feedback gains, as
well on the analysis of the model in the presence of in-
domain couplings.
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