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Abstract: Zero-sum game is a class of game where one player’s gain is equivalent to another’s
loss, which can be used in competitive situation. But pure Nash equilibrium maybe not exist in
general zero-sum games. Potential games have nice properties, such as existence of pure Nash
equilibrium. To combine advantages of zero-sum games and potential games, zero-sum potential
game is proposed in this paper. Verification for a finite non-cooperative game being a zero-
sum potential game is considered. Conversely, how to design a zero-sum potential game is also
studied when the potential function is given. We show that verification and design of zero-sum
potential game can be realized by solving linear equations. Furthermore, we find that if any
two players play the zero-sum potential game in a network, then the networked game is also a
zero-sum potential game.
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1. INTRODUCTION

Zero-sum games and potential games maybe two well-
known class of games in game theory (Washburn (1995),
Monderer (1996)). They are widely studied by researcher-
s from different fields. Examples of zero-sum games in-
clude gambling games, card games, sports games (Mor-
row (1994), Giuseppe (2018)), and generative adversari-
al network (GAN) (Goodfellow (2014)). Applications of
potential game include: (i) consensus/synchronization of
multi-agent systems (Marden (2009)); (ii) distributed op-
timization (Li (2013); Yang (2010)); (iii) control in wireless
networks (Candogan (2010)), just to name a few.

Zero-sum game is a class of game where one player’s
gain is equivalent to another’s loss, which can be used in
competitive situation. But there maybe no pure Nash equi-
librium in general zero-sum games. Potential games have
nice properties, such as the finite improvement property
and the existence of pure Nash equilibrium (Rosenthal
(1973)). To combine advantages of zero-sum games and
potential games, zero-sum potential game is proposed in
this paper. Zero-sum potential game can be used in com-
petitive situation and existence of pure Nash equilibrium
is also guaranteed. Two-player zero-sum potential game
was studied by Branzei (2003), which showed that two-
person zero-sum potential games can be transformed into
supermodular games. Hwang (2016) proposed a similar
concept, named zero-sum equivalent potential game.
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Recently, game-theoretical control has drawn consider-
able attention due to its widespread applications (Marden
(2009), Li (2013)). Addressing control related problems
via game theory needs two steps: (i) viewing interacting
agents as intelligent rational decision-makers of a game
by defining a set of available strategies and incentives for
each agent, (ii) specifying a learning rule for the game so
that agents can converge to a desirable situation. Com-
pared with traditional methods, the advantage of game-
theoretical control is that a modularized design architec-
ture is provided, which is shown in Fig. 1. Gopalakrishnan
(2011) described the modularized design architecture as
an hourglass architecture.

Potential Game

Utility Design

Learning Design

Fig. 1: Hourglass architecture of game-theoretical control

According to the hourglass architecture of game-theoretical
control, the first step is to design utility for each agent
to make sure that the designed game falls under some
special category games, such as potential games. Several
researchers have studied potential game design in dis-
tributed control, such as Marden (2009), Li (2013), and
Liu (2019). Different with existing works, we consider
design method for zero-sum potential games, which can be
used in competitive case. In fact, verification and design
of zero-sum potential game are interdependent. Because
only when one know how to check a given game is a zero-
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sum potential game, can one design a zero-sum potential
game. Therefore, verification and design of finite zero-sum
potential games are the research emphases of this paper.

The contributions of this manuscript are threefold: (i) A
necessary and sufficient condition for a finite game being
zero-sum potential game is obtained, which is equivalent
to existence of solutions for a linear equation. (ii) An
approach for designing finite zero-sum potential game is
presented when the potential function is given. (iii) We
prove that if the edge-related game (fundamental network
game) is a zero-sum potential game, then the networked
evolutionary game is also a zero-sum potential game.

The rest of this paper is organized as follows: Section 2
is some preliminaries, including game theory, semi-tensor
product (STP) of matrices, and problem description. Sec-
tion 3 considers verification of finite zero-sum potential
games. Section 4 investigates design of finite zero-sum
potential games. Section 5 studies zero-sum potential net-
worked evolutionary games. A brief conclusion is given in
Section 6.

Notations: Rn is the Euclidean space of all n-dimensional
vectors. Mm×n is the set of m × n real matrices. 1n is a
n-dimensional vector with all elements being 1. Im is the
m×m-dimensional identity matrix. δin is the i-th column of
the identity matrix In. Dk := {1, 2, · · · , k} , k ≥ 2. Col(M)
is the set of columns of matrix M . The transposition of
matrix M ∈Mm×n is denoted by MT ∈Mn×m. Span(M)
is the subspace spanned by all columns of matrix M .

2. PRELIMINARIES

2.1 Potential Games

The research object in this paper is finite non-cooperative
games. A finite non-cooperative game is a triple

G = {N, {Si}i∈N , {ci}i∈N} ,
where N = {1, 2, · · · , n} is the set of players, Si =
{1, 2, · · · , ki} is the set of strategies of player i ∈ N ,
and ci : S → R is the utility function of player i, with
S := ×ni=1Si being the strategy profile of the game.

The concept of potential game was firstly proposed by
Rosenthal (1973), whose definition is as follows:

Definition 1. A finite non-cooperative game G is a poten-
tial game if there exists a function P : S → R, such that
for every player i ∈ N and ∀s−i ∈ S−i,∀xi, yi ∈ Si

ci(xi, s−i)− ci(yi, s−i) = P (xi, s−i)− P (yi, s−i),

where P is called the potential function of G, and S−i :=
×j 6=iSj is the set of partial strategy profiles other than
player i.

The following Lemma is obvious according to Definition 1.

Lemma 2. A finite game G ∈ G[n;k1,··· ,kn] is potential if
and only if there exist functions di : S−i → R, i ∈ N such
that for every x ∈ S

P (s) = ci(s)− di(s−i), ∀i ∈ N, (1)

where P (s) is the potential function, and s−i ∈ S−i.

Zero-sum game is a class of game which describes situation
in which one player’s gain is equivalent to another’s loss.

A finite non-cooperative game G ∈ G[n;k1,··· ,kn] is a zero
sum game if and only if

n∑
i=1

ci(s) = 0, ∀s ∈ S.

Combining potential game and zero sum game, we obtain
a new class of games, called zero-sum potential game.

Definition 3. A finite non-cooperative game G is called
zero-sum potential if and only if G is a potential game
and a zero-sum game simultaneously.

2.2 Semi-tensor Product of Matrices

The technical tool used in this paper is semi-tensor prod-
uct of matrices. Here is a brief introduction on STP of
matrices. Please refer to Cheng (2012) for more details.

Definition 4. Suppose A ∈ Mm×n, B ∈ Mp×q, and l be
the least common multiple of n and p. The STP of A and
B is defined by

AnB :=
(
A⊗ Il/n

) (
B ⊗ Il/p

)
∈Mml/n×ql/p,

where ⊗ is the Kronecker product.

Assume i ∈ Dk. By identifying i ∼ δik we call δik the vector
form of integer i. A function f : ×ni=1Dki → R is called a
mix-valued pseudo-logical function.

Definition 5. Let f : ×ni=1Dki → R be a mix-valued
pseudo-logical function. Then there exists a unique row
vector Mf ∈ Rk, such that

f(x1, · · · , xn) = Mf nni=1 xi.

Mf is called the structure vector of f , and k = ×ni=1ki.

Using the vector expression of strategies, the utility func-
tion ci(x) of a finite game can be expressed as

ci(x) = Vi nnj=1 xj ,

where xi ∈ Si, and Vi ∈ Rk is called the structure vector
of ci, k = ×ni=1ki. Denote by VG = [V1, · · · , Vn], which is
called the utility vector of game G.

2.3 Problem Description

This paper aims at providing a systematic approach for
verification and design a zero-sum potential game. Veri-
fication tries to answer the question of how to identify a
game is a zero-sum potential game. Furthermore, if the
game is a zero-sum potential game, then the potential
function should be provided, which can be described as
follows.

ci(x), i = 1, 2, · · · , n.⇒ P (x).

Design of zero-sum potential games is an inverse procedure
of verification. Design of zero-sum potential games studies
how to design a zero-sum potential game according to a
given potential function, which can be described as follows.

P (x)⇒ ci(x), i = 1, 2, · · · , n.

3. VERIFICATION OF ZERO-SUM POTENTIAL
GAMES

Denote G[n;k1,··· ,kn] by set of finite games with |N | = n,
|Si| = ki, i = 1, · · · , n. In this section we consider how to
verify a given finite non-cooperative game G ∈ G[n;k1,··· ,kn]
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is a zero-sum potential game. According to the definition
of zero-sum potential game, we know that a finite non-
cooperative game G is a zero-sum potential game if and
only if

n∑
i=1

ci(s) = 0, ∀s ∈ S. (2)

ci(s) = P (s) + di(s−i), ∀i ∈ N, ∀s ∈ S. (3)

Let

Ei := Ik[1,i�1] ⊗ 1ki ⊗ Ik[i+1,n] , i = 1, · · · , n,
where

k[p,q] :=

{
×qj=pkj , q ≥ p
1, q < p.

The following theorem reveals the discriminate criterion
for zero-sum potential game.

Theorem 6. A given finite non-cooperative game G ∈
G[n;k1,··· ,kn] is a zero-sum potential game, if and only if,
the following linear equation

Zξ = nV TG , (4)

has a solution ξ, where VG is the utility vector of G, and

Z =


(n− 1)E1 −E2 · · · −En
−E1 (n− 1)E2 · · · −En

...
...

. . .
...

−E1 −E2 · · · (n− 1)En

 . (5)

Moreover, if the solution ξ exists, then the potential
function vector VP is

VP = V1 − ξ1ET1
where ξ1 is the sub-vector of the first ×nj=2kj elements of
ξ.

Proof. Using the vector expression of strategies, equation
(2) and (3) have the following form

n∑
i=1

Vi nnj=1 sj = 0, ∀s ∈ S.

VP nnj=1 sj = Vi nnj=1 sj − V di nnj 6=i sj ,
= Vi nnj=1 sj − V di ETi nnj 6=i sj , ∀s ∈ S,

where VP and V di are the structure vectors of P (x) and
di(s−i), respectively.

Since s ∈ S are arbitrary, we have
n∑
i=1

Vi = 0. (6)

VP = Vi − V di ETi . (7)

Let VG be the utility vector of G. Combing (6) and (7),
we have

n∑
i=1

(
(VP )T + Ei(V

d
i )T

)
= 0. (8)

Equation (8) implies that

n(VP )T = −
n∑
i=1

Ei(V
d
i )T . (9)

Substituting (9) into (7), we have

Zξ = n(VG)T , (10)

where ξ = [V d1 , . . . , V
d
n ]T .

Equation (10) implies that a given finite non-cooperative
game G ∈ G[n;k1,··· ,kn] is a zero-sum potential game if and
only if it has a solution, which completes the proof.

2

Based on the proof, we know that zero-sum potential
games is a subspace of finite games G[n;k1,··· ,kn]. Denote
by Z[n;k1,··· ,kn] the subspace of zero-sum potential games

By calculation, we know

Z · 1τ = 0,

where τ =
n∑
i=1

k
ki

. It is easy to verify that

rank(Z) =

n∑
i=1

k

ki
− 1.

which means that deleting any one column of Z the
remaining columns form a basis of Z[n;k1,··· ,kn]. Delete the
last column of Z and denote the remaining part of Z by
Z0. Then we have

Theorem 7. The subspace of zero-sum potential games
Z[n;k1,··· ,kn] is

Z[n;k1,··· ,kn] = Span(Z0),

which has Col(Z0) as its basis. And the dimension of
Z[n;k1,··· ,kn] is

dim(Z[n;k1,··· ,kn]) =

n∑
i=1

k

ki
− 1.

Remark 8. For general zero-sum game, the existence of
pure Nash equilibrium cannot be guaranteed. But each
zero-sum potential game has at least one pure Nash
equilibrium.

Example 9. Consider a two-player three-strategies game
G ∈ G[2;3,3]. The payoff matrix of G is[

(2,−2) (14,−14) (−6, 6)
(10,−10) (22,−22) (2,−2)
(−14, 14) (−2, 2) (−22, 22)

]
.

Using the vector expression of strategies, we obtain the
utility vector of G as follows

VG = [2, 14,−6, 10, 22, 2,−14,−2,−22,
−2,−14, 6,−10,−22,−2, 14, 2, 22].

According to equation (5) in Theorem 6, we can construct
matrix Z as follows

Z =



1 0 0 −1 0 0
1 0 0 0 −1 0
1 0 0 0 0 −1
0 1 0 −1 0 0
...
0 −1 0 0 1 0
0 −1 0 0 0 1
0 0 −1 1 0 0
0 0 −1 0 1 0
0 0 −1 0 0 1


.

By theorem 6, we have the solution of equation (4),
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ξ = [6, 14,−10, 4,−8, 12].

Therefore, the potential function vector of G is

VP = V1 − ξ1ET1
= [−5, 1,−9,−9,−3,−13, 3, 9,−1].

4. DESIGN OF ZERO-SUM POTENTIAL GAMES

In this section we consider when a potential function
P (s) is given, how to design the utility function for
each player to make it a zero-sum potential game with
potential function P (s). The following theorem answers
this question.

Theorem 10. Consider a utility-adjustable game G ∈
G[n;k1,··· ,kn] with objective function P (s)

P (s) = VP nnj=1 sj .

Then utility function can be designed as a zero-sum
potential game if and only if the following n+ 1 equations{

Tζ1 = 0,

Tiζi = (VP )T , i ∈ N, (11)

have a solution, where T = 1n ⊗ Ik, Ti = [Ik, Ei],
ζi = [(ζ1i )T , (ζ2i )T ]T , ζ1i ∈ Rk, ζ2i ∈ R−k, ζ1 =
[(ζ11 )T , · · · , (ζ1n)T ], k = ×nj=1kj , k−i = ×j 6=ikj .
Moreover if the solution ζi, ∀i ∈ N exists, the local
information based utility function of player i is

ci(s) = (ζ1i )T nnj=1 sj ,∀i ∈ N. (12)

Proof. (Necessary:) According to equation (6) and equa-
tion (7), we have

n∑
i=1

Vi = 0,

VP = Vi − V di ETi , i ∈ N,
(13)

which are equivalent to the following form{
TV TG = 0,

Ti[V
T
i , (V

d
i )T ]T = (VP )T , i ∈ N, (14)

where T = 1n ⊗ Ik, Ti = [Ik, Ei]. Equation (10) implies
equation (11).

(Sufficiency:) If the equation (11) has a solution, then
conditions in (13) are satisfied. Furthermore, the utility
vector of player i is

Vi = (ζ1i )T , ∀i ∈ N.
2

Example 11. Consider the subspace of two-player zero-
sum potential games Z[2;k1,k2]. Matrix E has the following
form

Z =

[
E1 −E2

−E1 E2

]
=

[
1k1 ⊗ Ik2 −Ik1 ⊗ 1k2
−1k1 ⊗ Ik2 Ik1 ⊗ 1k2

]
Observing the form of matrix Z, it is easy to find that the
utility function of player 1 for any two-player zero-sum
potential game satisfies

c1(s1, s2) = f(s1)− g(s2), (15)

for some function f : S1 → R, and g : S2 → R.

Conversely, if the utility functions of a two-player game G
have the following form{

c1(s1, s2) = f(s1)− g(s2),

c2(s1, s2) = g(s2)− f(s1).
(16)

for some function f : S1 → R and g : S2 → R. Then
G ∈ E[2;k1,k2] is a zero-sum potential game with potential
function

P (s1, s2) = f(s1) + g(s2).

The proof is very easy. For any s1, ŝ1 ∈ S1 and any
s2, ŝ2 ∈ S2,

c1(s1, s2)− c1(ŝ1, s2)
= [f(s1)− g(s2)]− [f(ŝ1)− g(s2)]
= [f(s1) + g(s2)]− [f(ŝ1) + g(s2)]
= P (s1, s2)− P (ŝ1, s2),

c2(s1, s2)− c2(s1, ŝ2)
= [g(s2)− f(s1)]− [g(ŝ2)− f(s1)]
= [g(s2) + f(s1)]− [g(ŝ2) + f(s1)]
= P (s1, s2)− P (s1, ŝ2).

Conditions (16) are called separation property of two-
player game in Branzei (2003).

Now we consider the design of two-player zero-sum poten-
tial games when the potential function P (s1, s2) is given.
Using separation property of two-player game, the utility
functions of player 1 can be designed as follows

c1(s1, s2) = f(s1)− g(s2)
= f(s1)− [P (s1, s2)− f(s1)]
= 2f(s1)− P (s1, s2),

where f : S1 → R is an arbitrary function. The utility
functions of player 2 can be designed as

c2(s1, s2) = −c1(s1, s2).

5. ZERO-SUM POTENTIAL NETWORKED
EVOLUTIONARY GAMES

Assume a non-cooperative finite game is repeated infinite-
ly. Then each player can update his strategy by using the
game historical knowledge, which is called strategy updat-
ing rule (SUR). The repeated game along with strategy
updating rule is called evolutionary game.

If the evolutionary game is played on network, then
it is networked evolutionary game (NEG). Networked
evolutionary game exists extensively in the real world. In
the networked evolutionary game, there is a network graph
which describes the game relationship. Player set is the
node set of the network graph. If player i and player j
play a game G, then (i, j) is an edge of the network graph.
The game G is called fundamental network game (FNG)
of the NEG. The definition of NEG is as follows.

Definition 12. (Cheng (2015)) A networked evolutionary
game, denoted by G = ((N,E), G,Π), consists of three
parts:

(i) a network graph (N,E), where N is the node set
(player set) of NEG, E is the edge set;

(ii) a fundamental network game G. Players i and j play
game G if (i, j) ∈ E.

(iii) a local information based strategy updating rule Π =
{Πi, i ∈ N}, where Πi is the SUR for player i.
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Denote by Ni = {j ∈ N |(i, j) ∈ E} the neighbours of
player i. The utility of player i in the NEG is

ci(s) =
∑
j∈Ni

ci,j(si, sj),

where ci,j(si, sj) is the payoff of player i when he plays
the FNG with player j using strategy si to compete with
strategy sj .

We are interested in the properties of NEG when its FNG
is a zero-sum potential game.

Theorem 13. Consider a networked evolutionary game
G = ((N,E), G,Π). If the fundamental network game G
is zero-sum potential, then the networked evolutionary
game G is also a zero-sum potential game. Moreover, if
the potential function of the game between player i and j
is P(i,j), then the overall network potential is:

PG =
∑

(i,j)∈E

P(i,j). (17)

Proof. Consider the networked evolutionary game G =
((N,E), G,Π). First, we prove that if the fundamental
network game G is zero-sum game, then the NEG is also
a zero-sum game.

n∑
i=1

ci(s1, · · · , sn)

=

n∑
i=1

∑
j∈Ni

ci,j(si, sj)

=
∑

(i,j)∈E

[ci,j(si, sj) + cj,i(si, sj)]

= 0.

(18)

The last equation comes from the fact that each funda-
mental network game is a zero-sum game.

Cheng (2014) proved that if the fundamental network
game is potential game, then the NEG is also a potential
game. Moreover, if the potential function of the game
between player i and j is P(i,j), then the overall network
potential is:

PG =
∑

(i,j)∈E

P(i,j). (19)

Combining (18) and (19), we can obtain Theorem 13.

2

To explain the results of Theorem 13, we present an
example.

Example 14. Consider a networked evolutionary game
G = ((N,E), G,Π), where (i) the network graph is shown
in Fig. 2; (ii) G is a two-player two-strategy symmetric
game. whose payoff bi-matrix is shown in Table 1; (iii) the
SUR Π in this problem is ignored.

s1\s2 1 2
1 0, 0 3,−3
2 −3, 3 0, 0

Table 1: Payoff bi-matrix

We use two ways to prove that G is a zero-sum potential
game.

1
2 3

4

Fig. 2: Network graph of Example 14

(1) Global Verification (Consider the NEG as an integrat-
ed game and use Theorem 6 to verify.)

First, it is easy to calculate the payoff structure
vector of the overall game, which is shown as follows

VG = [0, 3, 3, 6, 3, 6, 6, 9,−9,−6,−6,−3,−6,−3,−3,
0, 0, 0, 0, 0,−3,−3,−3,−3, 3, 3, 3, 3, 0, 0, 0, 0,
0, 0,−3,−3, 0, 0,−3,−3, 3, 3, 0, 0, 3, 3, 0, 0, 0,
−3, 0,−3, 0,−3, 0,−3, 3, 0, 3, 0, 3, 0, 3, 0] ∈ R64.

According to Theorem 6, equation (4) has a solu-
tion ξ

ξ = [−3, 3, 3, 9, 3, 9, 9, 15,−3, 0, 0, 3, 9, 12, 12, 15,−3,
0, 0, 3, 9, 12, 12, 15,−3, 0, 0, 3, 9, 12, 12, 15] ∈ R32.

Then the structure vector VP of potential function
P (s) is

VP = V1 − ξ1ET1
= [3, 0, 0,−3, 0,−3,−3,−6,−6,−9,
−9,−12,−9,−12,−12,−15].

where ξ1 is the sub-vector of the first 8 elements of ξ.
Therefore, G is a zero-sum potential game.

(2) Edge by Edge Verification (Verification by Theorem
13)

According to the payoff bi-matrix in Table 1, we
know that the FNG G is a symmetric zero-sum po-
tential game (Duersch (2012)). The potential function
of G is

V GP = [4, 1, 1− 2].

Therefore, the NEG G is a zero-sum potential game.
Using (17), we can obtain the global potential

function P̃ (s) of G, whose potential function vector
is

VP̃ = [12, 9, 9, 6, 9, 6, 6, 3, 3, 0, 0,−3, 0,−3,−3,−6].

Comparing with the global verification, we have

P̃ (s) = P (s) + 9, ∀s ∈ S.
Therefore, the global verification is consistent with
edge by edge verification.

6. CONCLUSION

The concept of zero-sum potential games is proposed to
combine the advantages of zero-sum games and potential
games. Verification and design of zero-sum potential games
are studied, which can be realized by solving correspond-
ing linear equations. We proved that if the fundamental
network game is a zero-sum potential game, then the
networked evolutionary game is also a zero-sum potential
game.

Open and interesting questions for further investigations
include: (i) design learning rules for zero-sum potential
games which can converge to its Nash equilibrium; (ii)
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applications of zero-sum potential games on engineering
related problems.
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