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Abstract: Information constraints, induced by a delayed communication between individual decision
makers (DMs) pose a significant challenge for the optimal control of physically interconnected systems,
as for example vehicle platoons. In this work, we address the problem of distributed state/input
power-constrained optimal control of a vehicle platoon under the assumption that neighboring vehicles
communicate to each other with one step delay. In order to account for sudden changes in the
environment such as different speed limits, or change of the desired relative distances between vehicles, a
model-predictive control (MPC) approach is adopted. Despite the information constraints and state/input
constraints we prove the optimality of linear control policy. To this end, we provide an optimal structure
of control law that is imposed into the MPC optimization problem, to account for information constraints
induced by one-step communication delay between neighboring vehicles. The efficacy of the approach
is illustrated in simulation.

Keywords: vehicle platooning, model-predictive control, communication delays, optimal control,
constrained control

1. INTRODUCTION

The developments in information technology are enabling the
possibility of automated control in smart buildings (Causevic
et al., 2018), transport industry etc. Of particular relevance
in the transport industry is the problem of governing vehicle
platoons with a large potential for improving overall traffic
flow (Ioannou and Chien, 1993). The distributed nature of these
systems and mobility aspect require wireless communication
between individual vehicles. Consequently, the complete state
information is not necessarily instantly accessible to each sub-
system (vehicle). This introduces constraints on the admissible
control actions for each vehicle, herein referred to as ”informa-
tion constraints”.
In general, the design of optimal control laws under infor-
mation constraints is a difficult problem. Depending on how
fast the decision makers (DMs) communicate with each other,
the optimal control problem might be convex or non-convex,
even in settings describing linear systems with a quadratic cost
function (Witsenhausen, 1968). A strong result characterizing
the biggest class of information constraints under which the
linear quadratic control problem can be cast as a convex prob-
lem is given in (Rotkowitz and Lall, 2006). Finally, the design
of quadratically invariant information structures for distributed
systems with intermittent observations is presented in (Abara
et al., 2018). On the other hand, a lot of focus has been given
to the design of optimal control laws for fixed information
structures that have the property of being partially nested (Ho
and Chu, 1972). Some of them include first explicit solutions to
linear Quadratic Gaussian team problems e.g. (Lamperski and
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Doyle, 2012) under the assumption that information between
individual decision makers is communicated at least as fast as it
travels through the plant. Although such results provide insight
into the structure of optimal control policy, under information
constraints, such control design is not suitable for a vehicle pla-
toon, where safety measures and limited actuation capabilities
have to be considered.
From a theoretical point of view, the first result addressing
linear quadratic Gaussian team problem under state/input con-
straints and subject to information constraints, is given in (Cau-
sevic et al., 2018). However, the latter methodology is not
suitable for the vehicle platooning problem addressed here due
to the following reasons. First, in (Causevic et al., 2018), the
assumption is that information is communicated at the exact
speed at which its propagates through the interconnected sys-
tem. This is not the case for vehicle platoon control as the
physical coupling is one-directional, while wireless broadcast
communication between neighboring vehicles results in bidi-
rectional information exchange. Second, the methodology is
not capable to dynamically adapt to sudden changes in the
environment which are highly present in vehicle platooning
control. In (Feyzmahdavian et al., 2012) an aproach is proposed
for optimal distributed control of platoon with delayed infor-
mation sharing. The method is applied to heavy duty vehicles.
However, the setting does not take into account state/input
power constraints which are of importance in vehicle platoon,
because of limited actuation power and/or safety measures, e.g.
constraint on the deviation of relative distances between vehi-
cles from desired values. Furthermore, the method can not deal
with sudden changes in desired reference velocities/distances
in a vehicle platoon. The optimal control design for a vehicle
platoon with delayed information sharing, subject to state/input
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power constraints and under sudden changes in the environ-
ment, e.g. different speed limits, is still a largely open problem.
The contribution of this paper is a control design approach
for a vehicle platoon under information constraints and sudden
changes in environment such as: change in target speeds, target
relative distances, change of safety constraints. The information
constraints are induced by the one-step delayed information
between neighboring vehicles. The framework guarantees the
satisfaction of so-called safety/actuation constraints expressed
as expectations of quadratic functions of state/input. To combat
the issue of changing state/input constraints and target state val-
ues of the system, imposed by a dynamic environment, Model
Predictive Control (MPC) is employed. Interestingly, we show
the partial nestedness of the arbitrary-size vehicle platoon un-
der one-step delayed information and further prove that linear
policies are optimal even under state/input power constraints.
The computation of such optimal distributed control policies is
validated via simulation.
The remainder of the paper is outlined as follows. We start
with problem setup in section 2. The methodology to compute
distributed control law for a vehicle platoon and apply it in
MPC fashion is presented in section 3. In section 4 we provide
illustration of methodology via simulation. Finally conclusions
are given in section 5.

Notation Vectors and matrices are denoted by bold symbols.
For a time-varying vector xxx(k) we denote by xxx(k1 : k2) stacked
vector xxx(k1 : k2)

> = [xxx>(k1),xxx>(k1 − 1), . . . ,xxx>(k2)], where
k1 < k2. The operator (·)> denotes the transpose. The expec-
tation operator is denoted by E [·] and the variance operator is
denoted by Var [·].

2. PROBLEM SETTING

2.1 Platoon model

We consider N > 1 vehicles moving longitudinally in a pla-
toon. As a simple model for the dynamics of such platoon, a
double integrator model is used. Each vehicle i ∈ {1, . . . ,N}
measures its absolute velocity vi ∈ R. Additionally, each ve-
hicle i ∈ {2, . . . ,N} also measures its relative distance to the
predecessor vehicle i− 1 denoted by di ∈ R. Note that since
defined distances are relative, the first vehicle will only have its
absolute velocity as a state variable. To this end, the state xxxi of
vehicle i at discrete time instants k is defined as

xxxi(k) :=


v1(k) ∈ R, i = 1[

di(k)
vi(k)

]
∈ R2, i = 2, . . . ,N

(1)

By choosing the individual accelerations ui(k), i = 1, . . . ,N as
control input signals, and given ∆t as the sampling interval
(time period between two discrete time instants) we next derive
the dynamics equations for the introduced state variables (1).
Assuming that within a sampling interval the accelerations of
vehicles are uniform, velocity x1 of the first vehicle evolves as

x1(k+1) = x1(k)+∆tu1(k)+w1(k) (2)

where w1(k) ∼N (0,Σw1), i.e. w1(k) is a zero-mean Gaussian
noise with finite covariance Σw1 . Similarly for vehicles i =
2, . . . ,N the relative distances to respective predecessors and
absolute velocities are written as

xxxi(k+1) =
[

di(k+1)
vi(k+1)

]
=[

di(k)+∆t(vi−1(k)− vi(k))+ 1
2 (ui−1(k)−ui(k))∆2

t +wi,d(k)
vi(k)+ui(k)∆t +wi,v(k)

]
= AAAiixxxi(k)+AAAi,i−1xxxi−1(k)+BBBiiui(k)+BBBi,i−1ui−1(k)+wwwi(k)

(3)
where the state space matrices are

AAAii =

[
1 −∆t
0 1

]
,AAAi,i−1 =


[

∆t
0

]
i = 2[

∆t 0
0 0

]
i = 3, . . . ,N

BBBi,i−1 =

[
1
2 ∆2

t
0

]
,BBBii =

[
− 1

2 ∆2
t

∆t

]
.

The process noises wwwi(k) = [wi,d(k)wi,v(k)]> ∈ R2, i > 1 are
zero mean i.i.d. Gaussian noises with covariance matrices ΣΣΣwi .
The initial state xxxi(0) is Gaussian distributed with mean µµµxxxi

and
finite covariance ΣΣΣxxxi . Moreover, xxxi(0) and wwwi(k) are assumed
pair-wise independent at each time instant k and for every i.
The system defined by equations (2), (3) is a dynamical sys-
tem composed of N physically-coupled linear time-invariant
subsystems. It can be described by a graph G P = (V ,E ).
We will refer to it as physical interconnection graph. Each
node i ∈ V corresponds to one of the subsystems (vehicles)
i ∈ {1, . . . ,N}. An edge ( j, i) ∈ E if dynamics of vehicle i is
directly affected by vehicle j, either through control input u j
or state xxx j. According to the definition of G P it can easily be
verified that it is a connected chain graph, with each edge being
directed. The set of physical neighbors of vehicle i is defined as
Ni = { j |( j, i)∈ E } and is equal to N1 = /0, Ni = {i−1}, i > 1.
For a more compact notation, equations (2), (3) are rewritten as

xxx(k+1) = AAAxxx(k)+BBBuuu(k)+www(k) (4)

where xxx(k) = (x>1 (k), . . . ,xxx
>
N (k))

> ∈ Rn, www(k) = (w>1 (k), . . . ,
www>N (k))

> ∈Rn, uuu(k) = (u>1 (k), . . . ,u
>
N (k))

> ∈Rm, with n = 1+
2(N−1),m = N and the matrices AAA,BBB are defined as

AAA =


1 0 0 . . . 0

AAA21 AAA22 0 . . . 0
0 AAA32 AAA33 . . . 0
...

...
. . . . . .

...
0 0 . . . AAAN,N−1 AAAN,N

 ,

BBB =


∆t 0 0 . . . 0

BBB21 BBB22 0 . . . 0
0 BBB32 BBB33 . . . 0
...

...
. . . . . .

...
0 0 . . . BBBN,N−1 BBBN,N

 .

(5)

Also we denote the variance of vector www(k) as ΣΣΣwww =Var[www(k)]
and mean and variance of xxx(0) as µµµxxx =E[xxx(0)], ΣΣΣxxx =Var[xxx(0)]
respectively. An example of graph G P for a platoon of four
vehicles is given in Figure 1.
Remark 1. The approach developed here is applied to the ve-
hicle platoon model described by equation (4) with values of
matrices AAAii,AAAi,i−1,BBBii,BBBi,i−1 defined through equations (2),(3).
However, the method also applies to more general linear time-
invariant dynamics where matrices AAAii,AAAi,i−1,BBBii,BBBi,i−1 can
take arbitrary values.

.
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V1 V2 V3 V41 1 1

Fig. 1. Example of physical interconnection graph for a platoon
consisting of four vehicles. Vehicles are denoted by Vi(i =
1,2,3,4). We can see that the first vehicle is not influenced
by the states or control inputs of any of the other vehicles,
while every other vehicle is influenced by its preceding
vehicle with propagation delay of 1 (by coupling terms
AAAi,i−1,BBBi,i−1).

2.2 Cost function and constraints

We assume that vehicle i communicates its measurements to
neighboring vehicles (vehicles i− 1, i+ 1 for i > 2, vehicle 2
for i = 1) with a one-step delay. Therefore, admissible control
policies γ i

k at time k are measurable functions of the information
available to each vehicle i (also referred to as DM i)

ui(k) = γ
i
k(I

i
k ) (6)

where I i
k , k = 0, . . . ,T −1, is defined as

I i
0 = {xi

0}
I i

k = {I i
k−1,x

i
k,u

i
k−1}

⋃
j∈N C

i

{I j
k−1}, k > 0, (7)

where N C
i = Ni ∪ {i + 1}, i.e. the information set of each

vehicle i is updated at time instant k by the current state
and the one-step delayed information from both: the direct
physical neighbor Ni and vehicle i+ 1. Consequently, unlike
the physical interconnection, the communication is assumed bi-
directional.
Remark 2. Note that (7) represents the information history that
is in principle available to each vehicle i and that increases with
time. For the ease of computation and memory optimization,
we later introduce sufficient statistics for control policy (6).

The goal is to control the longitudinal movement of N vehicles
in a way that keeps their velocity at target value vdes and
relative distances between vehicles at ddes. However, since
ddes and vdes might change due to sudden changes in the
environment, an MPC approach is employed. By iteratively
recomputing the optimal control inputs of the system with the
most current information present to each DM fast reactions to
changing requirements are possible (Mayne, 2014). Therefore,
the objective is to iteratively minimize the following global cost

JC (kcur) = E

[
kcur+H−1

∑
k=kcur

zzz(k)>QQQzzz(k)

]
+E

[
(xxx(kcur +H)− xxxdes)

>QQQH(x(kcur +H)− xdes)
]
(8)

where the vector xxxdes = xxxdes(kcur) represents the vector of de-
sired distances between vehicles as well as reference absolute
velocites at the current time step kcur = 0, . . . ,T − 1 and H de-
notes the prediction horizon. Matrix QQQ is partitioned according
to the vector zzz>(k) =

[
(xxx(k)− xxxdes)

>uuu(k)>
]

i.e.

QQQ =

[
QQQxx QQQxu
QQQux QQQuu

]
. (9)

The matrix QQQuu is assumed to be a positive-definite matrix,
while QQQ and QQQH are assumed to be semi-definite positive. The
cost (8) is to be minimized under the following state-input
power constraints

E
[
zzz(k)>WWW i zzz(k)

]
≤ pi

k, ∀i = 1, . . . ,M (10)

where k = kcur, . . . ,kcur +H − 1 and WWW i ∈ R(n+m)×(n+m), i =
1, . . . ,M, is a positive semi-definite weighting matrix. By an
appropriate choice of WWW i, the set of constraints in (10) captures
either constraints present in the actuation power of the platoon,
or safety constraints (limited deviation of actual platoon speed
and relative distances from desired values).
Example 1. An interesting example to illustrate the role of state
constraints is a platoon that suddenly increases its velocity due
to an increased speed limit on the road. It is crucial to limit
the deviation of distances from desired ones (as the failure of
one vehicle can have bigger consequences when the platoon is
moving at higher velocity).
Remark 3. Constraints (10) are defined in expectation i.e. we
require satisfaction of those constraints on average. This (later
proven) implies the optimality of linear control policies for the
problem addressed here. Furthermore, it allows to pose the con-
trol problem addressed here as a mean and covariance selection
problem, and efficiently compute optimal control inputs to the
vehicles using the properties of Gaussian-distributed variables.

Ultimately, the problem is formally stated as
min

γkcur:kcur+H−1
JC (11)

s.t. (4), (6), (10)

where k∈{kcur : kcur+H−1} and γk = [γ1
k , . . . ,γ

N
k ] is composed

of all players’ control policies. Before stating the main result of
this section we define the notion of partial nestedness.
Definition 1. The information structure Ik =

{
I 1

k , . . . ,I
N

k

}
and system (4) are partially nested if, for every admissible
policy (6), whenever ui(τ) affects I j

k , then I i
τ ⊂I j

k .
Lemma 1. (Partial nestedness). The information structure de-
fined by (7) and system (4) are partially nested.
Proof 1. Let d ji be the communication delay between vehicles
i and j. Since the neighboring vehicles communicate with one-
step delay, it holds that d ji = |i− j|. The proof is separated into
two parts: j < i and j > i.
Case j < i The information set I i

k contains xxxi(k) (as decision
maker i measures its state directly) as well as xxxn(k−dni),n 6= i.
The most recent control input of vehicle j that influences the
information set of vehicle i can be obtained from graph G P and
it is u j(k−d ji) due to the existence of term BBBi,i−1. Now what is
left to prove is that I j

k−d ji
⊂I i

k . To this end, information sets
of decision makers i and j are explicitly written as

I i
k =

⋃
n=1,...,N

{xxxn(0 : k−dni)} ,

I j
k−d ji

=
⋃

n=1,...,N

{
xxxn(0 : k−dn j−d ji)

}
,

which reduces the partial nestedness condition to the following
condition: dn j+d ji≥ dni which holds with equality sign if n 6= i.
If n = i, strict inequality holds. Therefore, the set I j

k−d ji
is a

proper subset of the set I i
k .

Case j > i The difference is that in this case the dynamics of
vehicle i is not influenced by u j as j > i. Indeed, the information
set I i

k is influenced by u j because it contains xxx j(k−d ji). This
means that unlike the case j < i, the most recent control input
that influences I i

k is u j(k−d ji−1). Now one has to proof that
I j

k−d ji−1⊂I i
k which is analogous to the previous case. 2
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Remark 4. Indeed, the partial nestedness of information struc-
ture is dictated by the communication delay between neigh-
boring vehicles. It can easily be verified that in the case of
communication delays larger than one step, the condition for
partial nestedness in Definition 1 does not hold anymore.
Remark 5. Lemma 1 verifies partial nestedness of information
structure (7) but it does not imply that optimal control inputs
for the problem (11) are linear in the associated information,
due to the presence of constraints (10). A proof for linearity of
optimal control policies is given in the next corollary.
Corollary 1. Considering problem (11), the optimal control
policies (6) are of the form

ui(k) = γ
i
k(I

i
k ), k = kcur, . . . ,kcur +H−1, i = 1, . . . ,N,

where γ i
k is a linear admissible map.

Proof 2. Let us define li(k) as

li(k) = E
[
zzz(k)>WWW izzz(k)

]
.

There exists a price λ ?
i (k) (Boyd and Faybusovich, 2006) such

that minimizing (8) subject to (10) is equivalent to minimizing

JP = JC +
kcur+H−1

∑
k=kcur

M

∑
i=1

λ
?
i (k)li(k).

Since JP is still quadratic and, from Lemma 1, the information
structure (7) is partially nested, we can conclude that the
optimal policies (6) to the problem (11) are linear in the
associated information (Ho and Chu, 1972). 2

3. STRUCTURE OF OPTIMAL CONTROL LAW

In this section we derive the structure of optimal control law for
problem (11). Although the method presented here is applicable
to a platoon of arbitrary size, under the assumption that each
vehicle communicates its state to the neighboring vehicles
with one step delay, for the sake of simplicity of derivation
we demonstrate the methodology on a two-vehicle platoon.
Without loss of generality, since the problem (11) has to be
iteratively solved, from now on we will refer to kcur = 0. The
difference in computation of optimal control inputs for kcur > 0
is given at the end of the section. Considering system (4) and
cost function (8) it is convenient to define the transformed state

x̃xx(k) = xxx(k)− xxxdes. (12)
Thus the dynamics of the new state vector x̃xx is written as

x̃xx(k+1) = xxx(k+1)− xxxdes

= AAAxxx(k)+BBBu(k)+www(k)− xxxdes

= AAA(xxx(k)− xxxdes)+BBBuuu(k)+AAAxxxdes− xxxdes +www(k)
= AAAx̃xx(k)+BBBuuu(k)+AAAxxxdes− xxxdes +www(k) (13)

Based on the cost function (8) it is desired that sequence of x̃xx(k)
tends to zero. Due to the linearity of optimal control policies as
proven in Corollary 1, and one-step communication delay, the
optimal control inputs u1(k),u2(k) are

u1(k) = f1(x̃xx2(0 : k−1), x̃xx1(0 : k−1), x̃1(k))
u2(k) = f2(x̃xx1(0 : k−1); x̃xx2(0 : k−1); x̃xx2(k))

where f1, f2 represent linear functions in respective arguments.
To this end we write

u1(k) = KKK11x̃xx1(0 : k−1)+KKK12x̃xx2(0 : k−1)+KKK1Lx̃1(k)
u2(k) = KKK21x̃xx1(0 : k−1)+KKK22x̃xx2(0 : k−1)+KKK2Lx̃xx2(k)

where KKK11,KKK21 ∈R1×k,KKK12,KKK22 ∈R1×2k,K1L ∈R,KKK2L ∈R1×2

represent the control gains. Note that K1L,KKK2L are gains for the

states x̃xx1(k), x̃xx2(k) which are available respectively to vehicles
1 and 2. Equivalently, the latter equations are written as

uuu(k) = KKKx̃xx(0 : k−1)+
[

K1Lx̃1(k)
KKK2Lx̃xx2(k)

]
(14)

where

KKK =

[
KKK11 KKK12
KKK21 KKK22

]
Theorem 1. The optimal control policy for problem (11), at
kcur = 0, has the following form

uuu(k) = φφφ(k)+
[

φ1(k)
φ2(k)

]
(15)

with the control components φφφ(k),φ1(k),φ2(k) that are mutu-
ally orthogonal and given by

φφφ(k) = KKKF x̂xx(k)
φ1(k) = K1Lω1(k) := K1Lw1(k−1)
φ2(k) = KKK2Lωωω2(k) := KKK2Lwww2(k−1)

where KKKF ,KKK1L,KKK2L are gains with fixed dimension and
x̂xx(k) = AAAx̃xx(k−1)+BBBuuu(k−1)+AAAxxxdes− xxxdes, k > 0. (16)

The estimator x̂xx(k) is initialized by x̂xx(0) = E[x̃xx(0)].
Proof 3. Notice that in expression (14) for the optimal control
law policy, the first part φφφ(k) := KKKx̃xx(0 : k− 1) is proportional
to the common measurement history of two vehicles, whose
dimension is increasing in time. Correspondingly, this means
that the dimensions of gain KKK would increase in time. However,
as control strategy (14) is linear, and the information structure
is partially nested, the computation of φφφ(k) can be done by
considering sufficient statistics for it (Mahajan and Nayyar,
2015)

φφφ(k) = KKKSE[x̃xx(k)|x̃xx(0 : k−1),uuu(0 : k−1)]

where the gain KKKS has fixed dimension and estimator x̂xx(k) =
E[x̃xx(k)|x̃xx(0 : k−1),uuu(0 : k−1)] is based on the one-step delayed
global state and input history. The computation of the estimator
results from (13) and is equal to

x̂xx(k) = AAAx̃xx(k−1)+BBBuuu(k−1)+AAAxxxdes− xxxdes

as the vehicles at time k know a one-step delayed information
from each other and noise w(k) is zero mean. Comparing the
latter expression and (13) it holds that

x̂xx(k) = x̃xx(k)−www(k−1) (17)
so we can write

uuu(k) = KKKSx̂xx(k)+
[

K1L 0
0 KKK2L

]
(x̂(k)+w(k−1))

Grouping the terms proportional to x̂xx(k) we get (15), where

KKKF = KKKS +

[
KKK1L 0

0 KKK2L

]
The orthogonality of φφφ(k),φ1(k),φ2(k) is implied by the or-
thogonality of x̂xx(k),ω1(k),ωωω2(k). Indeed, ω1(k) = w1(k −
1),ωωω2(k)=www2(k−1) are, by assumption, independent and zero
mean so ortoghonality is given. Since w1(k−1) and www2(k−1)
are independent from uuu(k− 1), x̃xx(k− 1) they are also indepen-
dent of x̂xx(k). Therefore,

E[x̂xx(k)www(k)>] = E[x̂xx(k)]E[www(k)>] = 0 (18)
holds which concludes the proof. 2

Remark 6. The optimal control policy (15) is a superposition
of two components. The component φφφ(k) is proportional to the
estimator x̂xx(k) of the global state xxx(k), conditioned on the com-
mon information between two vehicles, and thus is computed
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by both decision makers locally. This common information is
not the full information available in the two-vehicle platoon,
as each vehicle, at time instant k, also measures only locally
available state value. Thus, local corrections φi(k), i = 1,2 are
applied to compensate for the discrepancy of x̂xx(k) and actual
state xxx(k), due to the process noise.
Remark 7. Unlike the result in Theorem 1, optimal control
policies for problem (11) might be nonlinear in case of more
than one-step delay.
Remark 8. Even though optimal policy (15) is derived for two-
vehicle platoon, a generalization to more vehicles is straight-
forward based on the state decomposition method introduced
in (Lamperski and Doyle, 2012) that holds for arbitrary number
of DMs.

3.1 Computation of optimal control inputs

Since in problem (11) the state and input constraints are
quadratic, instead of optimizing directly over zzz(k) it is conve-
nient to pose the problem as a mean and covariance selection
problem. To this end, the mean and variance of zzz(k) are

mmm(k) = E[zzz(k)] = E
[

x̃xx(k)
uuu(k)

]
:=
[

mmmx̃xx(k)
mmmuuu(k)

]
VVV (k) = E[(zzz(k)−mmm(k))(zzz(k)−mmm(k))>] :=

[
VVV x̃xxx̃xx(k) VVV x̃xxuuu(k)
VVV uuux̃xx(k) VVV uuuuuu(k)

]
We now translate the constraints in (11) to the corresponding
constraints on mmm(k),VVV (k). We start with (4) which was written
in its equivalent form (13). Applying the mean and variance
operator to the equation (13), and taking into account that
x̃xx(k) = FFFzzz(k),FFF = [III 000] the system dynamics imposes the
following constraints on the evolution of mmm(k),VVV (k)

FFFmmm(k+1) = mmmx̃xx(k+1) = [AAA BBB]mmm(k)+(AAA−−− III)xxxdes

FFFVVV (k+1)FFF> =VVV x̃xxx̃xx(k+1) = [AAA BBB]VVV (k)[AAA BBB]>+ΣΣΣwww. (19)
As zzz(k) is a Gaussian distributed vector, constraints (10) yield

tr(WWW iVVV (k))+mmm(k)>WWW immm(k)≤ pi
k (20)

where we have used a property that for any d-dimensional
multivariate Gaussian distributed vector qqq ∼ N (mmmqqq,VVV qqq) and
any weighting matrix WWW ∈ Rd×d the following holds

E[qqq>WWWqqq] = tr(WWWVVV qqq)+mmm>qqq WWWmmmqqq (21)
The cost function (8) is rewritten, using the same property, as

J =
T−1

∑
k=0

[
tr(QQQVVV (k))+mmm(k)>QQQmmm(k)

]
+ tr(FFF>QQQHFFFV (T ))+mmm(T )>FFF>QQQHFmmm(T ) (22)

To account for information constaints (6), the derived optimal
control structure from Theorem 1 has to be accounted for. To
this end, instead of optimizing over zzz(k), we define

ẑzz(k) =
[

x̂xx(k)
φφφ(k)

]
∼N

(
m̂mm(k),V̂VV (k)

)
,

zzz1(k) =
[

ω1(k)
φ1(k)

]
∼N (mmm1(k),VVV 1(k)) ,

zzz2(k) =
[

ωωω2(k)
φ2(k)

]
∼N (mmm2(k),VVV 2(k))

where

m̂mm(k) =
[
E(x̂xx(k))
E(ûuu(k))

]
:=
[

mmmx̂xx(k)
mmmûuu(k)

]
,mmm1(k) =

[
000
0

]
,m2(k) =

[
0
0

]
(23)

and covariance matrices are

V̂VV (k) = E
[
(ẑzz(k)− m̂mm(k))(ẑzz(k)− m̂mm(k))>

]
=

[
VVV x̂xxx̂xx(k) VVV x̂xxφ̂φφ

(k)
VVV

φ̂φφ x̂xx(k) VVV
φ̂φφ φ̂φφ

(k)

]
,

VVV 1(k) = E

[[
ω1(k)
φ1(k)

][
ω1(k)
φ1(k)

]>]
=

[
Vω1ω1(k) Vω1φ1(k)
Vφ1ω1(k) Vφ1φ1(k)

]
,

VVV 2(k) = E

[[
ωωω2(k)
φ2(k)

][
ωωω2(k)
φ2(k)

]>]
=

[
VVV ωωω222ωωω222(k) VVV ωωω222φφφ222

(k)
VVV φφφ222ωωω222(k) Vφ2φ2(k)

]
.

Note that zzz1(k),zzz2(k) are zero-mean since by definition vari-
ables ω1(k),ωωω2(k) are zero-mean Gaussian noises, and control
inputs φ1(k),φ2(k) are directly proportional to ω1(k),ωωω2(k),
respectively. Finally, structural constraints on VVV 1(k) and VVV 2(k)
are imposed i.e.

Vω1ω1(k) = Σw1 ,VVV ωωω222ωωω222(k) = ΣΣΣwww2 . (24)

In order to formulate the problem in terms of m̂mm(k), V̂VV (k),
VVV 1(k),VVV 2(k) as decision variables, we first investigate how they
are related to mmm(k),VVV (k). From (17) and (15) it holds that

zzz(k)=
[

x̃xx(k)
uuu(k)

]
=

x̂xx(k)+
[

ω1(k)
ωωω2(k)

]
φφφ(k)+

[
φ1(k)
φ2(k)

]
= ẑzz(k)+FFF1zzz1(k)+FFF2zzz2(k)

(25)
where

FFF1 =

1 0
000 000
0 1
0 0

 , F2 =

000 0
1 000
000 0
000 1


Therefore, taking the expectation over (25) yields

mmm(k) = m̂mm(k)+FFF1mmm1(k)+FFF2mmm2(k) = m̂mm(k) (26)

due to mmm1(k),mmm2(k) being zero vectors as shown in (23).
Similarly, it holds

VVV (k) = E
[
(zzz(k)−mmm(k))(zzz(k)−mmm(k))>

]
= E

[
(zzz(k)− m̂mm(k))(zzz(k)− m̂mm(k))>

]
= V̂VV (k)+FFF1VVV 1(k)FFF>1 +FFF2VVV 2(k)FFF>2 (27)

Before stating the main result, we define suitable partitioning
of AAA,BBB,QQQ. Refering to (9), for a two-vehicle system with states
x1,xxx2 and inputs u1,u2 the matrix QQQ is partitioned as

QQQ =

Qx1x1 QQQx1xxx2
Qx1u1 Qx1u2

QQQxxx2x1
QQQxxx2xxx2

QQQxxx2u1
QQQxxx2u2

Qu1x1 QQQu1xxx2
Qu1u1 Qu1u2

Qu2x1 QQQu2xxx2
Qu2u1 Qu2u2


where we define

QQQ1 :=
[

Qx1x1 Qx1u1
Qu1x1 Qu1u1

]
,QQQ2 :=

[
QQQxxx2xxx2

QQQxxx2u2
QQQu2xxx2

Qu2u2

]
Recalling (5), AAA and BBB are partitioned as

AAA = [AAA1|AAA2] ,BBB = [BBB1|BBB2] ,

where

AAA1 =

[
1

AAA21

]
, AAA2 =

[
0

AAA22

]
, BBB1 =

[
∆t

BBB21

]
, BBB2 =

[
0

BBB22

]
.

Finally, we define the following
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[AAAiBBBi] :=


[AAA BBB], i = 0
[AAA1 BBB1], i = 1
[AAA2 BBB2], i = 2

,WWW i :=


WWW i, i = 0
FFF>1 WWW iFFF1, i = 1
FFF>2 WWW iFFF2, i = 2

(28)

QQQi :=


QQQ, i = 0
QQQ1, i = 1
QQQ2, i = 2

,QQQi
H :=


FFF>QQQHFFF , i = 0
FFF1QQQ0

HFFF1, i = 1
FFF2QQQ0

HFFF2, i = 2
(29)

mmm0 := m̂mm, VVV i :=


V̂VV , i = 0
VVV 1, i = 1
VVV 2, i = 2

(30)

Theorem 2. Problem (11), at kcur = 0 is equivalent to:
min

mmm0(k),VVV 0(k),VVV 1(k),VVV 2(k),k=0:H−1
Jc (31)

s.t. FFFmmm0(0) = µµµxxx− xxxdes (32)

FFFVVV 0(0)FFF> = 0 (33)

MMMiVVV i(0)MMM>i = ΣΣΣxi ,∀i = 1,2 (34)

MMMiVVV i(k)MMM>i = ΣΣΣwi ,∀i = 1,2 ∀k > 0 (35)

FFFmmm0(k+1) = [AAABBB]mmm0(k)+(AAA−−− III)xxxdes

FFFVVV 0(k+1)FFF> =
2

∑
j=0

[AAAi BBBi]VVV i(k)[AAAi BBBi]>

2

∑
j=0

tr(WWW jVVV j(k))+mmm0(k)>WWW 0mmm0(k)≤ pi
k

where MMM1 = [1 0],MMM2 = [III2x2 02x1] and

Jc = mmm0(H)>QQQ0
Hmmm0(H)+

2

∑
j=0

tr(QQQ j
HVVV j(H))

+
H−1

∑
k=0

(
mmm0(k)>QQQmmm0(k)+

2

∑
j=0

tr(QQQ jVVV j(k)

)
.

Proof 4. The first constraint is obtained by imposing the initial
condition of the estimator in Theorem 1, i.e. x̂xx(0) = E[x̃xx(0)] =
E[xxx(0)− xxxdes] = µµµxxx − xxxdes. Taking into account that x̂xx(0) is
deterministic it holds x̂xx(0) = E[x̂xx(0)] = FFFmmm0(0) and its vari-
ance is zero, which yields (33). Constraint (34) is obtained
starting from Var(xxx(0)) = Var(x̃xx(0)) = Var(x̂xx(0) + ωωω(0)) =
Var(ωωω(0)) = ΣΣΣxxx and by spliting the constraint into individual
constraints on variance of ω1(0) and ωωω2(0). Constraint (35)
follows directly from (24). The remaining constraints and ex-
pression for Jc are obtained by imposing expressions of decom-
position of mmm(k),VVV (k), i.e. (26), (27) into (19), (20), (22), taking
into account the notation defined by (28)-(30). 2

Remark 9. Theorem 2 provides the computation of optimal
covariances and mean values at kcur = 0. The computation at
kcur > 0 differs only in the initialization steps, i.e. instead of
constraints (32)-(34) the following constraints are used

FFFmmm0(kcur) = AAAxxx(kcur−1)+BBBuuu(kcur−1)+(AAA− III)xxxdes

FFFVVV 0(kcur)FFF> =
2

∑
j=0

[
AAAi BBBi]VVV i(kcur−1)[AAAi BBBi]>

MMMiVVV i(kcur)MMM>i = ΣΣΣwwwi (i = 1,2)

Furthermore, at kcur > 0 the values xxxdes and pi
k can be adjusted

according to the speed limits, safety constraints etc.

After computing the optimal mean values and covariances
according to Theorem 2 the result is a sequence of Gaussian
distributions that is optimal with regard to the cost function (8).

Since the vectors ẑzz(k), ẑzz1(k), ẑzz2(k) are multivariate Gaussian
distributed vectors, the optimal control inputs are found by
exploiting the formula for conditional mean, i.e.

φ̂φφ(k) = mmmûuu(k)+VVV x̂xxφ̂φφ
(k)VVV−1

x̂xxx̂xx (x̂xx(k)−mmmx̂xx(k))

φi(k) =VVV ωωω iφi(k)V
−1
ωωω iωωω i

(k)ωωω i(k) ∀i = 1,2
Remark 10. Interestingly the Theorem 2 shows that optimal
covariances and mean values to the problem (11) can be found
as a solution to the simple convex program, which is important
for the vehicle platooning problem as each vehicle has a lo-
cal controller with (potentially) limited computing capabilities.
Moreover simple structure of (11) is important for in-network
(Rueth et al., 2018) implementation of derived optimal con-
trol law where control functionalities are pushed as close as
possible to the controlled process exploiting the computational
power of active network components - even if limited.
Remark 11. Since the developed control scheme uses the MPC
framework, at time step kcur only the optimal control input
uuu(kcur) is applied to the system. After ∆t has elapsed, new
information is measured by/transmitted to the DMs and the op-
timization (31) is recomputed. By doing this iteratively power
constraints and target trajectories are adapted dynamically.

4. VEHICLE PLATOON SIMULATION

The goal of this simulation is to illustrate the proposed optimal
longitudinal control scheme on a platoon composed of two
vehicles. The desired distance between two vehicles is set to
ddes = 5m. As it is assumed that the vehicles encounter different
speed limits on the road, over the course of the simulation the
desired velocity increases from an initial vdes,1 = 20m/s to
vdes,2 = 25m/s at t = 7s and later decreases to vdes,3 = 17.5m/s
at t = 27s. Hereby, t denotes the time elapsed since the start of
the simulation and is calculated from the discrete time variable
k as t = ∆tk, where a sampling time of ∆t = 0.2s is used.
To make the transition between different speeds less abrupt,
velocity is gradually adjusted within a short time-period.

We define a constraint according to (10) to limit the power of
allowed deviation of the distance between vehicles from the
desired one. The matrix WWW and power pk are chosen as

WWW =

 0 0 0
0 1 0
0 0 0

0003×2

0002×3 0002×2

 , pk = 0.125m2.

This power constraint is only active during the time interval
12s < t ≤ 27s as in this interval target speed is increased.
Since the power constraints are defined in expectation, we
perform a Monte Carlo simulation with 100 runs to verify them.
For the MPC implementation of proposed control strategy, a
moving time horizon of 3 s is used resulting in H = 15 time
steps within this horizon. The initial state is sampled from a
normal distribution with mean mmmxxx = [20m/s,5.5m,20m/s]>

and covariance ΣΣΣxxx = 2× 10−2× III3×3 and the system noise is
drawn from a zero-mean normal distribution with a covariance
ΣΣΣwww = 2× 10−2× III3×3 at every time step. The cost function is
defined as in (8) using QQQ = III5×5 and QQQH = III3×3.

Figure 2 shows the mean and variance of the deviation from the
desired distance over time. During the time interval in which
the power constraint is active, i.e. 12s < t ≤ 27s, the mean
remains close to the desired value and the variance is noticeably
reduced. To validate the satisfaction of the power constraint,
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Fig. 2. Monte Carlo simulation showing mean and variance of
distance trajectory with time varying power constraint.
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Fig. 3. Validation of enforcement of power constraint using
Monte Carlo simulation.
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Fig. 4. Monte Carlo simulation showing mean (solid line) and
variance (shaded area) of velocity/control inputs. Due to
the higher importance of compensating the process noise
in this scenario, the variance increases during the time
interval in which the power constraint is active [12s:27s].

Figure 3 illustrates the averaged value of the squared difference
between distance and desired distance over time. The power of
the system stays close to the constraint boundary. It is expected
that it stays below boundary when the number of Monte Carlo
simulations is increased to n→ ∞. The controller reacts in this

period by changing the acceleration rapidly and increasing its
magnitude, as illustrated in Figure 4, in order to offset the
process noise, which threatens to push the trajectories out of
constraint boundaries. While this behavior is more expensive
with regard to the cost function defined earlier, the system is
able to attain a low variance on the deviation of distance.

5. CONCLUSION

We have presented an approach for vehicle platooning, under
a one-step delayed information sharing pattern between neigh-
boring vehicles, subject to state/input power constraints, that
is capable of adapting to sudden changes in the environment.
However, the approach can be applied to any physically in-
terconnected system, under the assumption of one-directional
coupling between neighboring subsystems and given a possi-
bility of bi-directional communication. To this end a different
(but quadratic) cost function can be considered depending on
the particular application.
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