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Abstract: The aim of this paper is to report analytical and individual-based methods for
antibiotic dose selection, that are based on tools from system and control theory. A brief
system analysis of standard population pharmacokinetic models proves that such models are
nonnegative and stable. Then, an input-output analysis leads to an open-loop control law which
yields a dosing for the “average” patient, based on the equilibrium trajectory of the system. This
approach is then incorporated into a “worst-case” analysis based on the monotony of the state
trajectories with respect to the clearance (model parameter). Finally, an heuristic method of
an estimated state feedback is presented. Thanks to numerical simulations, these methods were
successively illustrated on a model describing the pharmacokinetic of meropenem, an intravenous
antibiotic for treatment of severe sepsis.
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1. INTRODUCTION

Pharmacokinetics (PK) is a particular field of clinical
pharmacology that studies the link between the dose of a
drug administered to patients and the drug exposure (con-
centrations) over time. Thanks to mathematical modeling,
clinical pharmacology is an interesting and promising field
of application of systems and control theory (see e.g. Bailey
and Haddad (2005)). Examples reported in the literature
include the automated anesthesia (Bailey and Haddad
(2005)) and the artificial pancreas (Haidar (2016)). They
involve closed-loop control strategies that are based on
a control system which continuously adjusts the rate of
infusion of the drug.

This paper focuses on antibiotic (AB) treatments given by
constant intravenous (IV) infusion at regular dosing inter-
vals. The aim of this work is to provide model-informed
dosing guidance (decision-making aid) for patients, taking
into account their characteristics (covariates), as well as
clinical or practical constraints (e.g. target concentration
for drug efficacy, dosing interval, infusion duration, costs).
One important challenge is how to take into account the
random components included in population PK models to
describe the interindividual (or interoccasion) variability
in parameters and drug concentrations (see e.g. Mould and
Upton (2012)).

Dosing of antibiotics is frequently based on Monte Carlo
simulations from a mathematical pharmacokinetic model
to assess the probability of target attainment (PTA) at
a population level (see Musuamba et al. (2017)). These
probabilities are compared across alternative dosing regi-

mens to select the “optimal” one (see e.g. Li et al. (2006),
Jaruratanasirikul et al. (2015) and Mattioli et al. (2016)).

In the present work, alternative tools are presented, aiming
at improving dosing recommendations at individual level.
The pros and cons of these methods are discussed. An
input-output analysis leads to a formula which determines
the amount of drug to administer (dose), given the covari-
ates (patient level) and the practical/clinical constraints.
It can be seen as an open-loop control law. This input-
output formula is then used in combination with a “worst-
case” analysis to take into account the variability and the
unknown realization of the random variables included in
the model. The design of an (estimated) state feedback
is also considered. The dosing strategies (control laws) re-
ported in this paper are general methods applicable to any
PK system described by a linear time-invariant state-space
representation. The numerical results are reported for a
case study drug , viz. meropenem, a β-lactam antibiotic
used for treating severe infections (see e.g. Veiga and Paiva
(2018) and references therein).

2. POPULATION PHARMACOKINETIC MODEL

This section describes the state-space representation of a
general mammillary compartmental model and its inter-
pretation in terms of pharmacokinetic model. A numerical
example is given for meropenem.

2.1 State-space representation

A population pharmacokinetic (popPK) model describes
the PK of a drug of interest at population level, accounting
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Fig. 1. A general n-compartment mammillary model

for different sources of variability in drug concentrations.
A n-compartment popPK model (mammillary compart-
mental model, see Fig. 1) is described by

ẋ(t) = Ax(t) + bu(t), y(t) = Cx(t) (1)

where

A =
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
(2)

and

b = (1 0 · · · 0)
T
, C =

(
1/S1 0 0 · · · 0

0 1/S2 0 · · · 0

)
. (3)

where the parameters can include random components.
In the following deterministic analysis, unless otherwise
stated, the PK parameters are assumed to be fixed to their
nominal values.

This results in a transfer function of the form Ĝ(s) =(
Ĝ1(s) Ĝ2(s)

)T
. The parameters kij [h−1] represent rate

constants and are positive. The state vector x(t) =

(x1(t) x2(t) x3(t) · · · xn(t))
T

corresponds to the drug
amounts [g] in each compartment. Without lost of gen-
erality, x1 and x2 correspond to the plasma and the site
of infection, respectively. The input function u(t) is a
piecewise constant function that corresponds to the drug
infusion rate [g/h] into the central compartment (plasma).

The output vector y(t) = (y1(t) y2(t))
T

corresponds to
the drug concentrations [mg/L] in the plasma and at the
infection site. For all j ∈ {1, 2}, Sj is a scaling factor
used to convert an amount of drug [g] in concentration
in units that are consistent with the observed values (e.g.
[mg/L]). It is a scale volume of distribution Sj = Vj/usvj ,
where usv stands for “unitless scalar value”. The volume of
distibution [L] is a virtual physiological concept defined by
the volume in which the drug would be distributed if the
compartment drug concentration was equal to the plasma
concentration (i.e., for all i ∈ {1, . . . , n}, cp[g/L] = xi/Vi).
Note that the concentrations at the actual effect site are
not always described/predicted by the model: This de-
pends on the data available to adequately estimate the

values of the relevant parameters. In that case, the matrix
C becomes C = (1/S1 0 · · · 0).

The input function u(t) (see Fig. 2) considered here
depends on three parameters: the dose [g] denoted by D,
the duration of the infusion [h] denoted by ∆, and the time
between two doses (dosing interval) [h] denoted by T . For
all t ≥ 0,

u(t) [g/h] =

{
D/∆ if (t mod T ) < ∆

0 if (t mod T ) ≥ ∆
(4)

t

u(t)

∆

T

D/∆

Fig. 2. System input function: drug infusion rate vs. time

Observe that ∆ is necessarily smaller than T . This input
structure is consistent with the current mode of admin-
istration of meropenem (case study). Administration by
intravenous infusion of a fixed dose (called maintenance
dose) at regular intervals is recommended for meropenem
(see MHRA (2019)). Besides, continuous administration
for treating severe infection has been studied recently (see
e.g. Veiga and Paiva (2018) and Sjövall et al. (2018)).
The latter can be seen as a limit case of the mode of
administration considered here (∆ = T ).

2.2 System analysis

Clearly, the matrix A ∈ Rn×n is compartmental, i.e. A is
Metzler (all its off-diagonal elements are nonnegative) and∑n
i=1 aij ≤ 0 for all j ∈ {1, . . . , n} (Haddad et al., 2010,

Definition 2.10).

In what follows, for any vector v ∈ Rl, v � 0 (v � 0,
respectively) means that all components of v are positive
(negative, respectively).

As the state variables of (1) represent amounts of drug, it
is expected that the state trajectories stay in the nonneg-
ative orthant of Rn for all nonnegative initial conditions
and nonnegative admissible input functions. Since A is a
Metzler matrix and b is a nonnegative matrix, it is indeed
the case by (Haddad et al., 2010, Proposition 4.1).

Proposition 1. The popPK system given by (1)-(3) is
nonnegative.

Moreover, since the drug is eliminated by the organism,
the following result should also be expected.

Proposition 2. The popPK system given by (1)-(2) is
internally (exponentially) stable.

Proof. Any vector µ = (µ1 µ2 µ3 · · · µn)
T

such that
µ2 = µ3 = · · · = µn > 0 and kµ2 < µ1 < µ2, where

k :=
k12 + k13 + · · · k1n

k10 + k12 + k13 + · · · k1n
∈ (0, 1),
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is such that ATµ � 0. The conclusion follows by
(Chellaboina et al., 2009, Proposition 7). �

2.3 Model of meropenem

A data set of measured concentrations in the plasma and
at the site of infection (epithelial lining fluid (ELF)), from
patients with severe nosocomial pneumonia, was available
for model development (PROMESSE study, Frippiat et al.
(2015)). A two-compartment model provided an adequate
fit to the observed plasma concentrations. An additional
compartment was added to describe the (sparse) concen-
trations measured in the ELF.

ẋ1(t) = −k10x1(t)−k12x1(t)− k13x1(t)+

k21x2(t) + k31x3(t) + u(t)

ẋ2(t) = k12x1(t)− k21x2(t)

ẋ3(t) = k13x1(t)− k31x3(t)

This system is schematized in Fig. 3. In this representa-
tion, the physiological parametrization (based on the con-
cepts of volume of distribution and clearances) is prefered.
The (systemic) clearance (CL [L/h]) is defined by the
virtual volume of plasma cleared of drug per time unit,
so that CL = k10V1. Likewise, the intercompartmental
clearance (Q1i and Qi1, i ∈ {2, 3, . . . , n}, [L/h]) is defined
by the virtual volume of distribution cleared of drug, to
go into the linked compartment, per time unit, so that
Q1i = k1iV1 and Qi1 = ki1Vi. At distribution equilibrium,
the same amount of drug goes from the central to the
peripheral compartment and from the peripheral to the
central compartment, i.e. k1ix1 = ki1xi, or equivalently
Q1i = Qi1 =: Qi. To make notations more explicit, V1,
V2, V3, Q2 and Q3 are written Vc, VE , Vp, QE and Qp,
respectively (c for central, E for ELF and p for peripheral),
such that

CL = k10Vc, QE = k12Vc, QE = k21VE ,

Qp = k13Vc and Qp = k31Vp.

Qp

QE CL

x1 x3

x2

CENTRAL
Vc

PERIPHERAL
Vp

ELF
VE

DOSE

Fig. 3. PopPK model of meropenem describing plasma and
ELF concentrations

Known physiological relationships were incorporated into
the model. For example, the renal function influences the
total clearance, as shown below with an allometric model:

CLi = TV CL

(
GFRi
GFRmed

)θGFR

(5)

where CLi, which denotes the clearance value of the ith

individual (without interindividual variability (IIV)), is a
function of the typical parameter value in the population
(TV CL) and of the glomerular filtration rate (GFR) of
the individual i (GFRi), normalized by the median value
(GFRmed). These patient characteristics, which affect the
PK of a drug, are called covariates. IIV is described by

exponential models, meaning that parameters are assumed
to be log-normally distributed, as exemplified below for the
clearance:

CLIIVi = CLi · exp(ηi) (6)

where CLiIIV is the clearance value of the ith individual
(with IIV), CLi is the fixed effect (parameter nominal
value of the ith individual) and ηi is the individual realiza-
tion of the random variable η ∼ N (0, ω2) (random effect).
The median of this log-normal distribution is given by
CLi, which corresponds to the realization of the random
variable equal to zero.

Estimated model parameters are reported in Table 1. Two
covariates were included in the model: the weight (WT)
and the glomerular filtration rate (GFR), on the volumes
of distribution and the clearance, respectively.

Table 1. PopPK model parameter estimates

Param. Estimate %RSE

CL (L/h) 7.94 4.95

IVV (ω2(%CV)) 0.126 (35.5) 9.41

θGFR 0.722 8.81

Vc (L) 13.6 6.27

IVV (ω2(%CV)) 0.14 (37.4) 16.8

θWT 0.949 30.2

QE (L/h) 6.73 18.3

VE (L) 4.08 33.4

IVV (ω2(%CV)) 1.76 (133) 20.5

θWT 1.04 114

Qp (L/h) 8.22 18.2

IVV (ω2(%CV)) 0.187 (43.2) 28.1

Vp (L) 10.1 15.4

VE/S2 (usv2) 249 9.69

RSE: relative standard error

CV: coefficient of variation

3. INDIVIDUALISED DRUG DOSING

In the scientific literature, model-based antibiotic dosing
is mostly based on systemic concentrations, Monte Carlo
simulations at population level and empirical comparison
of successive dosing regimens through PTA analyses (see
e.g. Usman et al. (2017)). However, infection-site concen-
trations are reported to be better predictors of antibiotic
effect (see e.g. Lodise et al. (2011) and Veiga and Paiva
(2018)) and there has been an increasing interest in the
individualization of antibiotic dosing (see e.g. Sime et al.
(2015) and Cotta et al. (2015)). The advantages of the an-
alytical approaches presented below include the ability to
select a dose based on patient’s characteristics (covariates)
and on systemic or infection-site concentrations. These
methods were successfully applied to meropenem dosing
thanks to the numerical popPK model described above,
and compared to corresponding results of PTA analysis.

3.1 Input-output analysis

In the following, the state matrix A ∈ Rn×n in (1) is
assumed to have n distinct eigenvalues. Moreover, observe
that the entries of the matrix A correspond to the indi-
vidual patient, as the PK parameters are computed on
the basis of patient characteristics, consistenly with the
covariate-parameter models, e.g. as in (5).

Proposition 3. Consider the popPK system (1)-(3) with
an input function of the form (4). The zero-state system
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response y(t) is given as follows, where Nt denotes the
number of administrations already received at time t
(including the ongoing administration, if appropriate): for
all j ∈ {1, 2} and for all t ≥ 0,

• if (t mod T ) < ∆ (during infusion),

yj(t) =
D

∆


Nt−2∑
l=0

n∑
i=1

Fji
λi
eλi(t−lT )(1− e−λi∆)︸ ︷︷ ︸

previous administrations

+

n∑
i=1

Fji
λi

(eλi(t−(Nt−1)T ) − 1)︸ ︷︷ ︸
ongoing infusion


• if (t mod T ) ≥ ∆ (after infusion),

yj(t) =
D

∆

Nt−1∑
l=0

n∑
i=1

Fji
λi
eλi(t−lT )(1− e−λi∆).

Coefficients Fji and λi (i ∈ {1, 2, 3, . . . n}, j ∈ {1, 2})
are directly related to the model parameters: λi denote
the eigenvalues of the matrix A and Fji are the residuals

of the transfer function Ĝj(s) in the eigenvalues λi, i.e.

Fji = lim
s→λi

(
Ĝj(s) (s− λi)

)
.

Hint. Compute the inverse Laplace transform of ŷ(s) =

Ĝ(s)û(s). The jth component of the transfer function can
be written in partial fraction expansion as:

Ĝj(s) =

n∑
i=1

Fji
s− λi

.

To compute the Laplace transform û(s), the input function
should be considered as a superposition of functions of the
form

Ui(t) = K1[iT,iT+∆[(t), t ≥ 0

where i ∈ N and 1I is the characteristic function of the
subset I. �

Let us denote by yN (t̃) (t̃ ∈ [0, T [) the system response
on the N th dosing interval, i.e. y(t) = yN (t̃) where
t ∈ [(N − 1)T,NT [ and t̃ = t mod T . The new variable
t̃ indicates the position in the dosing interval after N
administrations. Due to system stability, the concentration
trajectory converges to an equilibrium trajectory, which
will be called steady output (known in the pharmacology
literature as the “steady-state” or “plateau”), i.e.

lim
N→∞

yN (t̃) = y∞(t̃)

Proposition 4. Consider the popPK system (1)-(3) with
an input function of the form (4). The output trajectory
converges to an equilibrium trajectory, i.e., for all t̃ ∈
[0, T [,

yN (t̃)− y∞(t̃)
N→∞−−−−→ 0

where the plateau y∞ is given, for all j ∈ {1, 2}, by

• if t̃ ∈ [0,∆],

y∞j (t̃) =
D

∆

[
n∑
i=1

Fji
λi

eλi t̃(1− e−λi∆)

e−λiT − 1
+

n∑
i=1

Fji
λi

(eλi t̃ − 1)

]

• if t̃ ∈ [∆, T [,

y∞j (t̃) =
D

∆

n∑
i=1

Fji
λi

eλi(t̃−T )(1− e−λi∆)

e−λiT − 1
.

It follows from Proposition 4 that the concentrations at
the end and at the beginning of the dosing interval are
equal: lim

t̃−→
>
T
y∞(t̃) = y∞(0), such that we can define

y∞(T ) := y∞(0).

The concentration y∞1 (T ) corresponds to the minimal
plasma concentration on the dosing interval (the lowest
concentration observed just before a new administration).
However, if there is a time disconnect between systemic
and infection-site concentrations (due to e.g. delayed tissue
penetration), y∞2 (T ) does not correspond to the minimal
concentration at the site of infection. In the following, y
and y∞ are denoted by y(D,∆, T ; t) and y∞(D,∆, T ; t̃),
respectively, in order to highlight the dependence with
respect to the input parameters. From now on, the infusion
duration ∆ [h] and the length of the dosing interval T [h]
are assumed to be fixed.

3.2 Input-output formula for drug dosing

A natural approach consists in solving the following equa-
tion with respect to D:

y∞j (D,∆, T ; t̃ = t∗) = α (7)

in order to compute the dose D [g] (maintenance dose)
required to reach, at steady-state, a target (systemic or
infection-site) concentration α [mg/L] at a given time
t∗ ∈ [0, T ]. This relevant time t∗ depends on the clinical
objective. If it is required to reach this target concentration
at the very first infusion, we should solve the following
equation with respect to D:

yj(D,∆, T ; t = t∗) = α.

This dose is called loading dose and is denoted by DL.
The loading dose is thus given at the first administration,
i.e., for all t ∈ [0,∆[, u(t) = DL/∆. The maintenance dose
is then given at the following administrations, i.e., for all
t ∈ [iT, iT + ∆[ (i ∈ N0), u(t) = D/∆.

Meropenem is a time-dependent AB, meaning that treat-
ment efficacy is measured in terms of percentage of time
between two doses during which the drug concentra-
tion exceeds the minimal inhibitory concentration (MIC)
(%T>MIC). In critically ill patients, it can be required to
achieve 100 %T>MIC to ensure optimal clinical outcome
(see e.g. Goncalves-Pereira et al. (2014) and Sime et al.
(2015)). Clinical breakpoints for MIC are computed from
in vitro experiments and provided by EUCAST (European
Committee on Antimicrobial Susceptibility testing). They
are also reported in different summaries of product charac-
teristics of medicinal products containing meropenem (e.g.
MHRA (2019)). Meropenem has a slight time disconnect
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between systemic and infection-site concentrations, such
that the time t∗ related to 100 %T>MIC at the site of
infection (ELF) is T . In this case, the analytical solution
to (7) is given in the proposition below.

Proposition 5. Consider the popPK system (1)-(3) with
an input function of the form (4). For any target concen-
tration α > 0 [mg/L], the maintenance dose [g] required
to maintain the steady output trajectory y∞j above the
lower bound α is given by

D =
α∆

n∑
i=1

Fji
λi

1− e−λi∆

e−λiT − 1

, (8)

where j denotes the desired output (j = 1 for plasma
concentration and j = 2 for infection-site concentration).
For all i ∈ {1, 2, 3, . . . n}, λi denote the eigenvalues of the
matrix A and Fji are the residuals of the transfer function

Ĝj(s) in λi.

This formula is called input-output (I/O) formula in what
follows.

The parameters Fij and λi are directly related to the PK
parameters and, consequently, to the covariate values and
the realization of the random variables. However, these
realizations are, a priori, unknown. A way to overcome this
difficulty is to incorporate the I/O formula into a worst-
case analysis.

3.3 “Worst-case” analysis

A sensitivity analysis was performed on the popPK model
described in Subsection 2.3 and revealed that, among all
the PK parameters, the clearance has the most important
influence on the model predictions. Therefore, we call
“worst-case” the case of a patient for which the clearance
value corresponds to the worst clearance regarding the
objective to be achieved. All the other PK parameters
are assumed to be fixed at their nominal/median value
(realizations of the related random variables are set to
zero).

Proposition 6. Consider the popPK system (1)-(2), where
b ∈ Rn×1 is any nonnegative matrix. The state trajectory
x(t;CL) is decreasing with respect to the clearance param-
eter, i.e. if 0 < CL1 ≤ CL2 and if x(0, CL1) ≥ x(0, CL2),
then, for all t ≥ 0, x(t;CL1) ≥ x(t;CL2).

Proof. Using the physiological parametrization, the state
matrix A reads as:

A =


−CL

V1
−

n∑
j=2

Qj
V1

Q2
V2

Q3
V3

· · ·

Q2
V1

−Q2
V2

0 · · ·
Q3
V1

0 −Q3
V3

0

.

.

.
.
.
. 0

. . .

 .

In the following, A is denoted ACL to highlight the
dependence with respect to the clearance parameter. The
state trajectories x(t;CL1) and x(t;CL2) (where CL1 ≤
CL2) are the solutions of the following Cauchy problems,
respectively:{

ẋ = ACL1x+ bu, x(0) = x0

˙̃x = ACL2
x̃+ bu, x̃(0) = x̃0

where 0 ≤ x̃0 ≤ x0. The state matrix ACL2
can be written

as

ACL2
= ACL1

+

−ε 0 · · ·
0 0 · · ·
...

...
. . .

 ,

where ε = CL2−CL1

V1
. The dynamics of x − x̃ is described

by the following differential equation:

d

dt
(x− x̃) =ACL1(x− x̃) + (ACL1 −ACL2)x̃,

which obviously describes a nonnegative system. Conse-
quently, x(t;CL1) ≥ x(t;CL2) for all t ≥ 0. �

Therefore, this result holds also for the equilibrium tra-
jectory, i.e. whenever 0 < CL1 ≤ CL2, for all t̃ ∈ [0, T ],
y∞(t̃;CL1) ≥ y∞(t̃;CL2). Thanks to this result and given
that the objective to be achieved is to maintain the steady
output above a fixed level (MIC) for 100 % of the time of
the dosing interval, the worst clearance corresponds to its
highest value. However, according to identity (6), i.e.

CLIIVi
= CLi · exp(ηi),

we define the “worst-case” realization at p · 100 %,
where 0 < p < 1 and p = k/q, as the kth q-quantile. For
example, the “worst-case” realization at 90 % (p = 0.9) is
the 9th deciles: η∗ = 1.28 · ω.

Proposition 7. Consider the popPK system (1)-(3) with an
input function of the form (4). Assume that the clearance
parameter is set to its “worst-case” value at p · 100 %.
Then, for any target concentration level α > 0 [mg/L],
the maintenance dose [g] computed according to the I/O
formula (8) enables to maintain the steady output trajec-
tory y∞j above the threshold α for p·100 % of the simulated
individuals, provided that all their PK parameters, except
the clearance, are fixed to their nominal value.

3.4 PTA analysis

The methods, described in Subsections 3.2 and 3.3, to com-
pute an individualized dose were applied to the developed
model of meropenem (see Section 2.3). Figure 4 represents
a simulated pharmacokinetic profile y∞j (here, j = 2) using
this model and an arbitrary dose. If we consider a high
number of simulations denoted by nsim, the probability of
reaching 100 %T>MIC is estimated by:

#{y∞j | y∞j (T ) > MIC}
nsim

.

0 t
1

t
2

T

MIC

Fig. 4. Simulated PK profile

For each simulated PK profile, t1 and t2 denote the
time points such that t1 < t2, y∞j (t1) = MIC and
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y∞j (t2) = MIC. The probability of reaching 50 %T>MIC
is estimated by:

#{y∞j | t2 − t1 ≥ T/2}
nsim

.

An analysis of the probabilities of target attainment (PTA)
can be used to compare different dosing regimens. Two
doses were computed by the I/O formula (α = 2 mg/L,
j = 2, T = 8 h and ∆ = 0.5 h), in the nominal
case and in the “worst-case” at 90 % (see Propositions
5 and 7, respectively). The respective dosing regimens
(1.52g/8h - 30’-infusion and 4.34g/8h - 30’-infusion) were
simulated using 1000 virtual patients with a body weight
of 75 kg and a level of glomerular filtration rate of 65
mL/min (Monte Carlo simulations). Figure 5 represents,
for each dosing regimen, the percentage of simulated sub-
jects which reached the PK/PD targets (100 %T>MIC or
50 %T>MIC) for different MIC in ELF (site of infection).
They are compared with the dose recommended by the
provider for adult patients with pneumonia: 1g by IV
infusion over 30-minutes every 8 hours (MHRA (2019)).
The MIC 2 mg/L is the EUCAST MIC breakpoint for
susceptible strains.
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Fig. 5. PTA in ELF based on model predictions (nsim =
1000), blue line with squares, red line with stars
and black line with circles correspond to the dosing
regimens associated to the nominal case, the “worst-
case” and the provider recommendation, respectively

The dose associated to the “worst-case” provides a proba-
bility of success of about 90 % for a minimal inhibitory con-
centration of 2 mg/L, which was the target concentration
used in the I/O formula. This conservative dose (4.34g) is
obviously higher than the first one (1.52g). However, this
dosing strategy enables to ensure that a larger proportion
of the patients will reach the PK/PD target (Figure 5).
That leaves open the question of a trade-off between the
dose (in terms of risk of toxicity (Beumier et al. (2015)),
cost, etc.) and the high probability to achieve the target.

3.5 Drawbacks and advantages of the I/O approach

The main drawbacks are related to its open-loop nature
and the determistic approach of a problem including vari-
ability. However, this method leads to a feedback control
law that is developed in the following section. An addi-
tional weakness is the determination of the relevant time
t∗ (see equation (7)) in the case of AB with important

time disconnect between systemic and local concentra-
tions. Besides, this I/O formula for dose selection has
several clinical advantages:

(1) It is an analytical method, in contrast to the em-
pirical (simulation-based) PTA approach. In case
of meropenem, the PK/PD target is 40 % to 100
%T>MIC (see e.g. Frippiat et al. (2015) or Usman
et al. (2017)).

(2) Provided that the model describes the local concen-
trations, the I/O formula can be used with a target
concentration at the site of effect/infection (j = 2).

(3) The covariates are properly taken into consideration
to compute an individualized drug dosing (modulo
the realization of the random variables), unlike the
standard PTA method which is most commonly per-
formed at a population level.

4. STATE ESTIMATION AND FEEDBACK
CONTROL LAW

In this section, the output matrix is given by

C = (1/S1 0 0 · · · 0)

in order to correspond to the output measured at regu-
lar interval for the state estimation, namely the plasma
concentration. Recall that

C =

(
1/S1 0 0 · · · 0

0 1/S2 0 · · · 0

)
.

is the one included in the transfer function, considered in
the I/O formula (8) in Proposition 5, to convert amounts
of drug in concentrations in both plasma and infection site.

In order to develop a state estimator, we consider the
dynamical system (1)-(3) in a discrete-time setting. Let us
denote by N1 and N2 the numbers of sampling intervals
on any interval of the form [iT, iT + ∆[ and [iT + ∆, (i+
1)T [, respectively (i ∈ N). The parameters N1 and N2 are
chosen to be the smallest integer such that T

∆ = 1 + N2

N1

(i.e. same discretization steps). In the following, we will
use the notations h := ∆/N1 and N := N1 + N2 to
denote the discretization step and the total number of
sampling intervals on any interval of the form [iT, (i +
1)T [, respectively (Nh = T ). The recurrence equation
describing the state dynamics in discrete-time is given, for
all k ∈ N, by

x[k + 1] = Ãx[k] + b̃u[k], y[k] = Cx[k] (9)

where Ã = eAh, b̃ =
∫ h

0
eA(h−t)b dt and

u[k] =

{
Di/∆ if (k mod N) < N1 (i = bk/Nc)
0 if (k mod N) ≥ N1,

where Di denotes the dose administered on the (i + 1)th

dosing interval and the symbol b·c denotes the integer part
of a real number.

The discrete-time dynamical system above is obtained by
discretizing the integral form of the state trajectory of (1):

x(t) = eAtx0 +

∫ t

0

eA(t−τ)bu(τ)dτ

where the control input u(t) is assumed constant on the
sampling intervals. Moreover, since u(t) is assumed to be
piecewise constant on the dosing intervals, for the same
initial condition (x[0] = x(0)), the solution of (9) is
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equal to the solution of the continuous-time model at the
sampling times, i.e. for all k ∈ N, x[k] = x(kh).

The nonnegativity and the internal stability of the
discrete-time model (Haddad et al., 2010, Chapter 2) are
directly derived from the nonnegativity and the internal
stability of the continuous-time system.

The time scale of the state estimator is larger than the
one of the dynamics (9) because we assume that the
plasma concentration is measured only before each new
administration, i.e. at time iT for all i ∈ N0. The state
estimator is described, for all i ∈ N, by{
x̃[i+ 1] = Ax̃[i] + Bu[i] + L(ỹ[i]− y[iN ]), x̃[0] = 0

ỹ[i] = Cx̃[i]

where, A = ÃN , B =
∑N−1
l=N2

Ãlb̃. For all i ∈ N, x̃[i] is

the estimated state of x[iN ] and, therefore, of x(iT ). The
output injection matrix L has to be designed such that
A + LC is stable, i.e., for all λ ∈ σ(A + LC), |λ| < 1.
Standard methods, such as pole placement or Kalman
filter, can be used to determine L.

The estimated state feedback described below is an heuris-
tic method which is reported as an algorithm. It is based
on the superposition principle: for any doses D1, D2 > 0,
y∞(D1 +D2,∆, T ; t̃) = y∞(D1,∆, T ; t̃) + y∞(D2,∆, T ; t̃).
In this approach, we assume that empirical Bayes esti-
mations (EBEs) are performed at a certain moment to
recalculate the individual’s PK parameter after appropri-
ate measures of concentrations, as implemented in different
software and website (see e.g. Wicha (2018)). The updated
model describes then how the drug is behaving in that
particular patient (Vinks (2002)). The Bayesian estima-
tions of the random parameters are the most likely val-
ues given the observations and the population model, i.e.
η∗i = argmaxP (ηi|yi, A, b, C) (see e.g. Mould and Upton
(2013) and Nguyen et al. (2017)).

Algorithm 1. (Estimated state feedback).

Data: The typical parameter values of the model and the
covariates of a virtual patient are known. The realizations
of the random variables are unknown. The desired con-
centration level required in the jth compartment is still
denoted by α.

Initial step: The system [A, b, C] is the nominal model.
The first dose D0 is computed thanks to the I/O formula
(8). The output injection matrix L and the discrete-time
state estimator are determined. For all i ∈ {0, . . . , i0 − 1},
Di = D0. At time i0T , we define GAP := α − x̃j [i0]/Sj .
Replacing α by GAP in Formula (8) yields the following
estimated state feedback law for dose adjustment:

D̃ =
GAP ·∆

n∑
i=1

Fji
λi

1− e−λi∆

e−λiT − 1

, (10)

The dose is updated following Di0 = D0 + D̃.

Intermediate step: The model is updated after EBEs.
From now, [A, b, C] corresponds to the PK parameters of
the virtual patient. The output injection matrix L and the
discrete-time state estimator are also updated, as well as
the time between two adjustments of the dose (discussed
in the remark below).

Recurrence step: For all n ∈ N0 and for all i ∈
{in−1, . . . , in − 1}, Di = Din−1 . At time inT , we define
GAP := α − x̃j [in]/Sj . The dose is updated following

Din = Din−1
+ D̃, where D̃ is given by (10).

Remark. The dose adjustement (state feedback) should be
performed at steady-state. The steady-state is assumed to
be reached after 5 time constants τ related to the dominant
mode (τ := |1/λF |, where λF is the Frobenius eigenvalue
(Horn and Johnson (1985))). The dominant mode has then
reached a value less than 1 % of its initial value. The
concept of time constant is close to the PK concept of
half-life (see e.g. Toutain and Bousquet-Mélou (2004)).
Eventually, the relevant dosing intervals to update the dose
are given by:{

i0 = b5τ0/T c+ 1

in = in−1 + b5τ/T c , ∀n ∈ N0

where τ0 is the time constant of the nominal model (i.e.
before the EBEs) and τ the time constant of the updated
model (i.e. after the EBEs).

Let us consider a virtual patient with a body weight of 75
kg and a level of glomerular filtration rate of 65 mL/min.
Figures 6(a) and 6(b) show the input function and the PK
profile attributable to this feedback control law. The initial
AB treatment was ∼1.1 g over 3 hours every 8 hours. The
Bayesian estimations to recalculate the model parameters
were performed at the end of the third dosing interval
(i0 = 3). The time constant was then re-evaluated for the
updated model. The successive doses were 1.09 g, 0.914 g
and 0.704 g. In this simulation, the control law was based
on the estimated state at the infection site x̃2[in] (j = 2),
while the measures were plasma samples.
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Fig. 6. Illustration of the estimated state feedback algo-
rithm, blue points correspond to the estimated state
corrected by the scaling factor

5. CONCLUSION

Systems and control theory provides tools to address issues
in clinical pharmacology, including dosing for clinical care
of (critically ill) patients. In this paper, related to time-
dependent antibiotics, we have described approaches to
compute and update the dose/infusion rate of each ad-
ministration, assuming that the infusion duration and the
length of the dosing interval are fixed (previous clinician’s
decision).

Currently, the published model-based methods for AB
dosing are mostly based on Monte Carlo simulations and
related (systemic) PTA, such that they provide dosing
recommendations at a population level. In the input-
output approach presented here, it is no longer required
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to compare different dose levels by numerical simulations.
We have derived a formula in order to express the dose
with respect to the infusion duration ∆ and the dosing
interval T , allowing to reach a predifined concentration
(in the plasma or at the infection site) for each patient of
interest, given their relevant characteristics (covariates).
This input-output formula can then be incorporated into a
worst-case analysis (which computes a conservative value,
but takes into account the variability in drug concentra-
tions), or can be used to design an estimated state feedback
that is based on measurements of plasma concentration
equally spaced in time. The drug dosing strategies derived
here should be interpreted as decision-making aids provid-
ing guidelines to physicians. Meropenem was presented as
a case study. Through numerical simulations, the methods
were successfully applied with acceptable robustness and
reliable results.

Except for the system analysis (Section 2.2) which is
specific to compartmental popPK models, all the results
can be applied e.g. to PBPK models. Such models are
good candidates as they are more robust to predict con-
centrations in different populations and settings: the model
structure and parameters are less dependent on the avail-
able data because they are based on pathophysiology
considerations and drug’s pharmacological properties (see
Thémans et al. (2019) and references therein).
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