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Abstract: Switched reluctance motors (SRM) are an inherent part in robotics and automation
systems where energy and cost efficiency is required. This motor type has no windings and
permanent magnets on the rotor which results in a simple and robust structure. However,
SRMs require a complex electronic control system to generate a specified number of voltage
pulses for each motor phase. This paper presents the signal generation of multiple phases
using only one current sensor in an asymmetric half bridge (AHB). In addition to maintain the
predetermined phase voltages, sufficient current measurement windows and a minimal current
ripple for the individual phases are further optimization criteria for signal generation. The
generation of a state vector which controls the individual semiconductor for each motor phase
to achieve a required phase voltage and simultaneously fulfill the multi-objective optimization
criteria is challenging. Due to the vast number of possible solutions, a genetic algorithm (GA)
was used to find state combinations that are suitable for the formulated optimization criteria.
The results were discussed and recommendations about the genotype representation and the
used genetic operators were given. Interested readers will find detailed information about the
software technical implementation using the Global Optimization Toolbox from MATLAB.

Keywords: Genetic algorithms, Parallel programs, Switched reluctance motors, Measuring
span, Multi-objective optimization

1. INTRODUCTION

The working principle of switched reluctance motors
(SRMs) has been known for more than 100 years. However,
research on the topic has increased only during the past
three decades. Due to its simple and low cost construction
without permanent magnets, SRMs are highly reliable and
can reach mechanical velocities of up to more than 100×103

min-1. This motor type can also be used for position
control and since it does not require brushes, this motor
can be used in hazardous and explosive environments.
Many researchers have tried to find optimal design pa-
rameters with the help of techniques inspired by natural
evolution such as Shaked and Rabinovici (2006); Sihem
et al. (2012); Prabhu et al. (2015). These results are the
motivation for this paper to focus on the optimization of
switching signals for semiconductors. For cost reduction,
integration density improvement and redundancy, several
position sensorless algorithms have been developed. Using
one current sensor for multiple measurements nearly si-
multaneously is another concept discussed in this paper.
The focus here is on an asymmetric half bridge converter
topology with one current sensor for two phases, based on
Kjaer and Gallegos-Lopez (1997) and Chen and Lu (2013).
Fig. 1 a) shows the asymmetric half bridge for a two phases
with possible current sensor locations. Fig. 1 b) shows a
variant, where only one current sensor is used to sense all
phase currents. This requires a single current path through

the sensor for an unambiguous measurement of each phase
current. Thus, the objectives of this paper are: (i) to
present a circuit state-based way of looking at switched
reluctance motor control and (ii) to propose methods to
generate a control sequence using genetic algorithms (GA)
with multi-objective fitness functions.
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Fig. 1. AHB with a) different current sensor placements
and b) a single sensor. The lines show current paths
for a valid (green) and an invalid (red) measurement.
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2. GENETIC ALGORITHM

2.1 Representation

Fig. 1 shows an asymmetric half bridge with two switches
ns = 2 for each of the two phases np = 2. This results in 16
possible states zi in one time step Ti. A control sequence
for the SRM with nst time steps can be described easily
with a state vector Z̄ consisting of nst states. This state
vector, which can be called phenotype in this form, has
to be transformed into a suitable genotype representation
to be operated by the genetic algorithm. First of all, one
individual can be understood as an array containing the
switching states ss p of each semiconductor. This way
a binary string represents the genetic information for a
specific individual which is shown in Fig. 2.
The decimal value hst of an asymmetric half bridge with
ns switches for each of the np phases is defined using

hst =
np−1∑
j=0

ns−1∑
i=0

(si j2
nsnp−jns−i−1) (1)

which is used as the state number for the practical imple-
mentation.

The switching state of every semiconductor can be consid-
ered as a single gene with two alleles. The first allele stands
for a conducting switch (=1) and the second allele stands
for non-conducting switch (=0). More detailed information
about the state vector concept can be found in Purfürst
(2019).

The following three different types of genotype represen-
tation are discussed in this paper:

Binary-representation
Every bit of the whole stream can be manipulated indepen-
dently. The genetic algorithm only operates at the binary
level.

Grouped-binary-representation
The genetic algorithm is not allowed to apply the crossover
mechanism to each bit of the stream. Only specific points
between binary groups of nsnp bits are possible breakages.
Instead, the mutation operator can be used on every bit.

Integer-representation
The whole bit stream is interpreted as a number of binary
groups represented by their integer value hst . Genetic
operators only work at this level.
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Fig. 2. Population of bit string individuals for a SRM with
ns = 2 and np = 2 according Fig. 1

2.2 Fitness function formulation

The use of a state vector for control of an asymmetric
half bridge will have some effects on the electrical, and
furthermore, the magnetic and mechanical behavior of the
motor. The resulting CPU requirements also have to be
taken into account. The following list contains possible
properties:

• average phase voltages
• current ripples
• current measurement windows
• capacitors balancing
• switching frequency
• switching equality between high-side and low-side

switches
• necessary memory space
• efficiency

In this paper, the first three requirements will be consid-
ered.

To define a fitness function that evaluates the fitness
of each individual corresponding to the phase voltage
achievement, an error needs to be defined that repre-
sents the deviation between a number of specified refer-
ence phase voltages vpre f and the actual average voltages

vpact (Z̄) forced by the state vector for each phase. The fit-
ness value f itvoltage can be calculated using the Euclidean
distance from the error vector |e| as follows:

f itvoltage = |e| =

√√√√
(v0re f − v0act (Z̄))

2 + ...+

(vnp−1re f
− vnp−1act

(Z̄))2
(2)

For the provision of current measurement windows, the ge-
netic algorithm is used to minimize the difference between
the desired number of measurement windows npm des

and
the actual number of measurement windows npm act for a
specified phase current ip in phase p. The corresponding
fitness function f itwindowp is therefore

f itwindowp = max(npm des
− npm act ,0) (3)

The max operator allows the user to set the lower bound of
the fitness value to zero, because additional measurement
windows are not necessary after achieving the desired
number npm des

.

The ripple which represents the difference between the
maximum current max(ip(Z̄)) and the minimum current
min(ip(Z̄)) of a phase controlled by the state vector is the
third optimization criterion for this paper which can be
calculated as

f itripplep = max(ip(Z̄)) − min(ip(Z̄)) (4)

To merge all fitness functions described above, a weighting
function needs to be defined. This over-all fitness function
allows to weight each optimization criterion using the
weighting factors wvoltage, wripplep and wwindowp , that is,

f itΣ =wvoltage f itvoltage+
wripple0 f itripple0 + ..+
wripplenp−1

f itripplenp−1
+

wwindow0
f itwindow0

+ ..+

wwindownp−1
f itwindownp−1

(5)
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3. PRACTICAL IMPLEMENTATION

For the practical implementation a set of properties for
all possible states needs to be defined. The system to be
implemented is represented by 2nsnp = 16 states which
is shown in Table 1. Each of these states forces a phase
voltage vp which results in a current ip. To be able to
measure the phase currents with a reduced number of
phase current sensors, every state includes information
about the measurability of the necessary phase currents
(green marked fields in Table 1). Each state is accessed
by a decimal number index hst from (1) represented by a
binary code that includes information about the switching
state ss p of each semiconductor.

Table 1. State properties

State Number Binary Voltage Voltage Meas. Meas.
hst Code v0 v1 p = 0 p = 1

0 0000 -12 V -12 V 0 0
1 0001 -12 V 0 V 0 0
2 0010 -12 V 0 V 0 1
3 0011 -12 V +12 V 0 1
4 0100 0 V -12 V 0 0
5 0101 0 V 0 V 0 0
6 0110 0 V 0 V 0 1
7 0111 0 V +12 V 0 1
8 1000 0 V -12 V 1 0
9 1001 0 V 0 V 1 0
10 1010 0 V 0 V 0 0
11 1011 0 V +12 V 0 0
12 1100 +12 V -12 V 1 0
13 1101 +12 V 0 V 1 0
14 1110 +12 V 0 V 0 0
15 1111 +12 V +12 V 0 0

3.1 Program details

For the implementation of the genetic algorithms, MATLAB
and Simulink were used. The Global Optimization Toolbox
(MathWorks (2020a)) from MathWorks provides methods
to solve problems with multiple optima. It includes genetic
algorithms which have a wide range of standard mecha-
nisms. The toolbox allows the creation of a custom genetic
algorithm by modifying the functions for population ini-
tialization, fitness scaling, parent selection, crossover, and
mutation. The multi-objective genetic algorithm can also
solve multiple-objective optimization problems by identi-
fying the Pareto front. The possible simultaneous calcu-
lation of the fitness function for the several individuals
enables parallelization using of the Parallel Computing
Toolbox (MathWorks (2020b)). This gives a rapid speedup
during the optimization of the GA in case of a computa-
tionally intensive fitness function. For a realistic and fast
simulation of the electrical behaviour of the asymmetric
half bridge within a Simulink environment, the PLECS
Blockset (Plexim (2020)) was used. Fig. 3 shows the result-
ing Simulink-system with the integrated PLECS Circuit
block.
The GA in MATLAB uses the standard interface for op-
timization routines, and therefore, allows easy access. A
good example for the usage of a binary genetic algorithm in
MATLAB is described in (Babatunde (2020); Babatunde
et al. (2014)). Listing 1 shows a possible implementation
using a grouped-binary-representation.
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Fig. 3. Simulink system of the two simultaneously excited
asymmetric half bridges using the PLECS Blockset

Listing 1. MATLAB code example
% Def ine the GA parameters
opt ions = gaopt imset (
’PopulationSize ’ , 2 0 0 , . . .
’Generations ’ , 1 5 0 , . . .
’SelectionFcn ’ ,{ @ s e l e c t i o n r o u l e t t e } , . . .
’CrossoverFraction ’ , 0 . 7 , . . .
’FitnessScalingFcn ’ ,{ @ f i t s c a l i n g r a n k } , . . .
’EliteCount ’ , 4 , . . .
’StallGenLimit ’ , 1 0 0 , . . .
’PlotFcns ’ ,{ @gaplotbes t f } , . . .
’Display ’ , ’iter’ , . . .
’CreationFcn ’ ,{ @gacreat ionuni form } , . . .
’PopulationType ’ , ’bitstring ’ , . . .
’MutationFcn ’ ,{@mutationuniform , 0 . 0 2 } , . . .
’CrossoverFcn ’ ,{ @crossovertwopointByte } , . . .
’UseParallel ’ , t rue ) ;
% Def ine the q u a l i t y requ i rements
weightVec =
[ wVoltage wWindow0 wWindow1 wRipple0 wRipple1 ] ;
re fVol tageVec = [10 1 0 ] ;
measurementWindowVec = [ 5 5 ] ;
% Def ine the f i t n e s s func t i on handle
f i t n e s s F c n = {@fitnessFcnSRM , refVoltageVec ,
measurementWindowVec , weightVec } ;
% Star t the GA
[ bestChromosome , bestQ , ˜ , ˜ , populat ion , s c o r e s ] =
ga ( f i tne s sFcn , nVars , opt ions ) ;

4. RESULTS

The results presented in this section are based on the
GA parameter settings in Table 2. The basics section in
the upper part of the table includes parameters that are
used in each representation (see section 2.1). A weighted
fitness function according to (5) was used for the require-
ments evaluation of the several individuals. All weighting
factors for the used requirements (wvoltage, wripplep and

wwindowp ) were set to 1.0. This pragmatic weighting factor
combination leads to desired results. The settings in the
following table are dependent on the individual represen-
tations. The parameter mutation fraction was adapted to
achieve a maximum convergence rate for the several rep-
resentations. For most functions in the GA’s, the standard
MATLAB procedures are used. However, for the crossover
function in the grouped-binary-representation and the cre-
ation and mutation function of the integer-representation,
custom functions had to be designed.
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Table 2. GA parameters

GA parameter value

Population size 200
Number of generations 150
Crossover fraction 0.7
Fitness function Rank based fitness scaling
Elite count 4
Mutation fraction 0.005 (Bin.), 0.02 (Group.), 0.04 (Int.)
Binary and grouped-binary-representation
Creation function Uniform
Population type Bitstring
Mutation function Uniform
Binary and integer-representation
Crossover Two point crossover
Grouped-binary-representation
Crossover Two point crossover (custom function)
Integer-representation
Creation function Uniform integer (custom function)
Population type Double vector
Mutation function Uniform integer (custom function)

4.1 Convergence behavior

The three representations presented in Section 2.1 were
used for convergence analysis. Each phase should have an
average voltage value of about 10 V. As can be seen in
Fig. 4 b), the best individual is not changed anymore
after generation 54. Fig. 4 a) and 4 c) will need more
generations to get the solution. The reason for the worse
convergence of the binary-representation in comparison to
the grouped-binary-representation is due to “additional
mutations” when a crossover is carried out as a result
of the arbitrary choice of breakages. This often leads to
new states if the break position is not an integer multi-
ply of ns × np. The reason for the poorer convergence of
the integer-representation in comparison to the grouped-
binary-representation needs to be searched for in their mu-
tation algorithm. In the first step, the mutation algorithm
selects several states in the state vector of an individual.
Secondly, the algorithm replaces these state elements with
a uniformly distributed random number between 0 and 15
(2nsnp−1). For comparison, the mutation algorithm used in
the binary- or grouped-binary-representation changes only
by single bits in the bit string. This leads to mutated states
which only differ in one bit from the original state. This
optimal mutation behavior cannot be reproduced by the
integer mutation algorithm. Furthermore, the mutation
fraction parameter of the integer-representation, where the
genotype length corresponds to the state vector length of
50, needs to be increased with regards to the grouped-
binary-representation. For these reasons, the grouped-
binary-representation is favored and will be used for the
following optimizations.

Fig. 5 shows the convergence of the GA. Each row contains
the states of the best state vector found in each generation.
The color indicates the state number which is generated
by the switching states of each semiconductor as a binary
string converted into its decimal representation. It shows
that the evolutionary convergence is very fast until gener-
ation 60. After that, only small changes can be observed
until the algorithm finds the optimum at generation 120.
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4.2 Optimized PWM pattern

The optimization result has to be translated back into a
usable PWM pattern to be applied to each of the four
switches. Fig. 6 shows the generated pattern within a time
interval of 50 µs for a voltage of about 10 V per phase and
a number of phase current measurement windows of about
5 windows. Fifty states were optimized to reach an average
reference voltage, a given number of current measurement
windows and minimal current ripple for each phase. The
state number is shown for every state upper the time axis
in the upper plot of Fig. 6.

4.3 Multi-objective optimization

In previous tests, a weighted fitness function was used.
This requires a suitable choice of the weighting factors to
achieve the qualitatively desired result. This often is a trial
and error process which results in many test runs. The
Global Optimization Toolbox from MathWorks provides
a genetic algorithm named gamultiobj to solve multi-
objective optimization problems by finding an evenly
distributed set of points on the Pareto front. This ap-
proach also allows the optimization of nonsmooth prob-
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Fig. 6. PWM pattern after optimization

lems (MathWorks (2020a)). For the test, the grouped-
binary-representation with the main part of the previous
settings was chosen. The required phase voltages are 10
V for each phase and the number of phase current mea-
surement windows should be 5. To achieve a good conver-
gence, the number of generations had to be increased to
400. The selection function had to be changed to tour-
nament selection, which is the only supported function
in the gamultiobj algorithm. Two additional parame-
ters - the Pareto fraction (0.5) and migration fraction
(0.35) - were defined. Fig. 7 shows the Pareto front. It is
characterized by three two-dimensional tradeoff curves for
the discrete measurement window fitness values f itwindow

of 0, 1 and 2. Most individuals of the Pareto set lie
on the inner curve where f itwindow = 0. The red star
marks the chosen optimal individual with the fitness val-
ues f itvoltage=0.179, f itwindow=0 and f itripple=0.915. In
comparison to the results of the previous tests where a
weighted fitness function was used, all fitness values are
equal to or smaller than those (for comparison grouped-
binary-representation: f itvoltage=0.179, f itwindow=0 and
f itripple=1.026). This shows the efficiency of the multi-
objective optimization and its application where a large
number of requirements needs to be fulfilled (see list in
section 2.2). The disadvantage of this approach is the
increased computing time in comparison to a GA using
a weighted fitness function. A possible combination of the
two approaches is to use the found Pareto set to detect
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Fig. 7. Pareto front

suitable weighting factors for a classical GA. The design
idea is to find a weighting factor set which leads to the
smallest fitness value f itΣ for the chosen optimal individual
in comparison to all other individuals of the Pareto set.

4.4 Parallelization

To analyze the benefit of parallelization, the GA algorithm
was run on a Windows 64-bit operating system using
MATLAB 2016b on a Dell Precision T5600 Workstation
with two Intel Xeon E5-2665 processors. This allows the
usage of 16 processor cores. For the tests, the grouped-
binary-representation with the Simulink system in Fig. 3
was used. All tests ran three times with a high priority set
for the MATLAB process. Fig. 8 shows the computing time
with different worker threads nw. The ideal and the real
speedup as well as modeled speedup curves S(nw) using
Amdahl’s law (adapted for GA)

S(nw) =
Ts + npTe

Ts + Te
np

nw

(6)

and a developed speedup equation for GA

S(nw) =
Ts + npTe

Ts + nwTc + Tep

⌈
np

nw

⌉ (7)

which combines the speedup equations of Cantú-Paz
(2000) and Trobec (2009) are shown in Fig. 9. This equa-
tion considered all the observed effects by the parallel
GA computation and allows a better modeling of the real
speedup in comparison to Amdahl’s Law. The usage of
two individual values for the single fitness calculation time
(serial execution: Te, parallel execution: Tep) allows the
modeling of the superlinear speedup for a low number
of workers (nw < 6) as a result of a more efficient us-
age of resources using the Parallel Computing Toolbox
(Te > Tep). These two values also acknowledge the fact that
the fitness calculation time is dependent on the simulation
time of the Simulink system which can vary. According
to Trobec (2009), the value of Tep describes the time for
the concurrent execution of nw fitness evaluations in a
group and, hence, it corresponds to the longest period
of the several fitness evaluations in the group. The serial
start of all worker processes as well as the communication
time between the GA (master) and the fitness evaluations
(slaves) are considered by the product of nwTc according
to Cantú-Paz (2000). The ceiling function (de) in the

calculation of the split groups
⌈
np

nw

⌉
considers the fact

that the last group with fewer fitness evaluation calls as
available worker threads needs the same time as the other
groups. The parameters in (6) and (7) are calculated from
regression using the measured computing times. Table 3
includes the parameter descriptions and the calculated
values. The analysis of (7) shows that with the increasing
number of workers, the computation time for all fitness
evaluations decreases while the communication time in-
creases. The number of workers needed to approach the

minimal execution time can be solved using ∂S(nw )
∂nw

= 0.

For these tests, the optimal number nw is 29, where a
maximum speedup S(nw) of 14.75 will be achieved. An
estimation of the necessary workers for an efficient work
can be determined using the parallel efficiency
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Table 3. Speedup equation parameters

Parameter value

Population size np 200
Number of generations 150
Amdahl’s Law (6)
Single generation time without fitness calculations Ts 0.487 s
Single fitness evaluation time Te 0.230 s
Equation for GA (7)
Single generation time without fitness calculations Ts 0.132 s
Single fitness evaluation time (serial execution) Te 0.236 s
Communication time Tc 0.053 s
Single fitness evaluation times (parallel execution) Tep 0.222 s

E(nw) =
S(nw)

nw
(8)

Using an efficiency E of 0.8, which corresponds to an
80% performance of the parallel GA algorithm of its ideal
potential, results in a number of workers nw = 15.6 or
rather 15. This means the usage of more than 15 workers
does not lead to any significant computing speedup effects.
The equations presented above and the relationships allow
a rough estimation of the necessary hardware to solve GA
algorithms efficiency in terms of time and cost.
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Fig. 8. Computing time using several worker threads
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Fig. 9. Ideal, real and modeled speedup curves

5. CONCLUSION

This paper presented a concept to generate control se-
quences for a SRM with a reduced amount of current
sensors using GA. Different genotype representations were
tested for increasing the convergence rate. To fulfill all
requirements, a weighted multi-objective fitness function
as well as a Pareto front solution were used successfully.
An approach to determine the number of cores to solve
GA algorithms efficiently was presented. The software
implementation based on MATLAB is discussed in detail.
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