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Abstract: Multi-robot systems are becoming widely popular in applications where a rapid
response is required or where various different robotic capabilities are required. Applications
such as surveillance, or search and rescue, would require an efficient team that can be deployed
and optimally dispersed over the environment. This is known as the coverage control problem.
The solution to this research optimization problem is affected by several external aspects, such
as characteristics of the environment as well as factors that pertain to the robotic team. This
work proposes a novel solution to the complete coverage problem where the team of robots
is restricted with energy limitations, and must cover an environment that has time-varying
regions of importance. Our results show that in a realistic scenario, where the robots have
limited energy for the task in question, the proposed solution performs significantly better than
a typical coverage algorithm which disregards the energy considerations of the robotic team.

Keywords: Coverage control, multi-robot systems, guidance navigation and control,
time-varying systems, control algorithms, centroidal Voronoi tessellations.

1. INTRODUCTION

For several years, practical robotic applications have been
pushing the boundary of multi-robot systems research.
Particularly, applications that require the coordination of
a team of robots or sensors in order to perform surveillance
of a known environment, are posing new challenges in this
research area. Robot cooperation and coordination have
been widely studied over the years. Researchers have de-
veloped several frameworks in an attempt to have a generic
structure that can be applied to any heterogeneous team of
robots that is employed to perform some cooperative task,
as can be seen in the works by Parker (1998); Botelho and
Alami (1999); Gerkey and Mataric (2002). However, there
are some applications, such as monitoring and surveillance
of enclosed and known areas, which may be solved opti-
mally by mathematical tools such as Voronoi diagrams.
Voronoi diagrams are computed by clustering points in
the environment according to their vicinity to generator
point sites. This means that a border will form along
points which are equidistant between two neighbouring
generating points, as explained by Cortes et al. (2002).
Segmenting the environment as such is an optimal way
of assigning regions in the environment to the robots or
sensors in that environment. This is one of the potential
solutions of the coverage control problem, where we would
like to disperse a number of mobile robots or a number
of static sensors optimally, to maximise coverage of some
environment.

The coverage control problem is widely studied in liter-
ature. Different aspects in the environment or character-
istics of the robotic team may affect the complexity and
solution of this problem. For instance, some environments

may have areas or regions which have higher importance
and should therefore be covered better than those with
lower importance. Furthermore, such higher importance
areas may also move with time, and hence, the coverage
problem becomes more complex since the team must dis-
perse over the environment, and at the same time track
some time-varying importance function. Additionally, each
of the robots in the team often has its own constraints,
such as energy and sensor limitations, which all affect the
end optimal solution. In this light, most works in this
research field focus on solving the coverage control problem
when there is only one aspect affecting the solution. For
example, in the work proposed by Lee and Egerstedt
(2013), the authors only take into account the fact that an
environment may have time-varying importance regions,
without taking into consideration the fact that in reality
the team of robots is also subject to energy limitations.
Conversely, Kwok and Mart́ınez (2007) account for the
fact that robots have limited energy levels, but neglect
the potential time variations in the environment.

In contrast, we propose a novel scheme that addresses
these two important aspects at the same time. Together
these aspects render the coverage control problem more
realistic. Basically, the proposed algorithm attempts to
find an optimal segmentation of the environment with
a finite number of robots, each with its own energy
constraints, that shall be tracking an important area which
is moving with time in the environment. At the same time,
the algorithm attempts to conserve as much of the energies
of the robots as possible. This is expected to yield better
coverage in typical realistic scenarios where robots have
limited energy for the task in question.
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The rest of the paper is organised as follows. In Section 2
we review existing works and the techniques that are often
used to solve coverage control problems. In Section 3 we
describe the novel coverage control scheme proposed in
this paper. The proposed scheme is tested, evaluated and
compared using realistic Monte Carlo simulations, which
are presented and explained in Section 4. More specifically,
we perform 100 Monte Carlo simulations to validate and
compare the proposed novel algorithm against a typical
non-energy aware coverage algorithm with a time-varying
density function. Statistical hypothesis testing is then used
to analyse the Monte Carlo results. Our results show that
in a realistic scenario, the proposed energy aware coverage
control algorithm performs better than the algorithms
that have been proposed in literature thus far. Finally, in
Section 5 we present our conclusions as well as a number
of ideas for future work.

2. LITERATURE REVIEW

The idea behind coverage control is: to be able to disperse
a number of robots, n, across some environment, Q, such
that with their sensing capabilities, these robots are able to
cover as much of the environment as possible. The position
of the ith robot in the environment is represented by pi.
This problem is synonymous to the facility localization
problem, where user facilities must be placed optimally
in a given environment. Cortés et al. (2004) describe this
problem as a spatial resource-allocation problem. Loca-
tional optimization problems require a team of robots to
be strategically placed over the environment, such that
the algorithm optimizes coverage of the important areas
in the environment as well as the sensing performance
of the robots (Miah and Knoll (2018)). For more detail
the reader is referred to Okabe and Suzuki (1997). Cortés
et al. (2004) show that, given an environment Q that is
a convex polytope in RN , Voronoi partitions are able to
solve the facility localization problem. This means that
when an environment is partitioned using the definition
of Voronoi tessellations in (1), the cost function in (2) is
being minimized,

V (pi) = {q ∈ R|f (‖ q − pi ‖) ≤ f (‖ q − pj ‖) ,∀j 6= i}
(1)

H (P, V ) =

n∑
i=1

∫
Vi

f (‖ q − pi ‖)φ(q)dq, (2)

where P is the set of robot poses {p1, p2...pi}, V is
the set of Voronoi regions that together make up the
environment Q, q is an arbitrary point in Q, φ(q) is the
density function that reflects the probability of some event
occuring at point q, and f(‖ q − pi ‖) is the performance
function which provides a quantitative assessment of how
well the environment is being covered. For an optimal
solution where the cost H is minimized, Lloyd’s Algorithm
must be executed, (Lloyd (1982)). In this algorithm, the
Voronoi diagram is computed according to the current
robot positions, pi, which act as the generator point sites.
The centroid CVi of each Voronoi cell Vi, is calculated
and the robots are then driven to these centroids. By
repeatedly computing the Voronoi diagram, followed by
the computation of CVi and moving the robots towards
the new centroids, we can achieve a Centroidal Voronoi
Tessellation (CVT) — which is an optimal segmentation

of the environment — where the positions of the robots,
pi, coincide with the new centroids of the Voronoi cells.

The work carried out by Cortés et al. (2004) focuses on
an environment that is represented by a convex polytope
in RN and which has a region of interest represented by
a probability density function φ(q). In this work, Cortés
et al. (2004) assume that the robots behave according to
the holonomic model given by

ṗi = ui, (3)

where ṗi is the speed of the robot and ui is the control
input. Furthermore, in the work by Cortés et al. (2004),
it is assumed that the robots have unlimited energy.
However, in a more realistic scenario the algorithm must
be able to take into consideration the finite energy level
of each robot when segmenting the environment. This
means that high energy robots are assigned areas with
a higher probability importance while low energy robots
are assigned areas with a lower probability importance.
Kwok and Mart́ınez (2007) achieve a solution to the
energy constrained coverage problem by using weighted
Voronoi diagrams called power diagrams. Power diagrams
are computed in a slightly different way than the usual
Voronoi diagrams. The mathematical definition of a power
diagram is given by

Vw(pi) = {q ∈ R|dwi(q, pi) ≤ dwj (q, pj),∀j 6= i}. (4)

In this case, the performance function,

dwi(q, pi) =‖ q − pi ‖2 −w,

is a power metric that includes some weight w, in the
computation of the Voronoi diagram. This means that
when computing a Voronoi cell, if a point q is equidistant
from the generator neighbouring points pi and pj , then q
shall be assigned to the region of the generator point that
has the larger weight. For more detail on power diagrams,
the reader is referred to Okabe et al. (2000); Kwok and
Mart́ınez (2007); Pavone et al. (2009).

For the energy aware algorithm proposed by Kwok and
Mart́ınez (2007), the weight used to compute the weighted
Voronoi cell of each robot, ei, is the remaining energy of
the ith robot: ei = E−Ei, where E is the maximum energy
that the ith robot can have, and Ei is its current energy
level. The rate at which energy is consumed is modelled
according to

Ėi =

{
−miu

2
i , if Ei ≥ 0,

0, if Ei = 0,
. (5)

where mi represents the mass of the ith robot. In this case,
the Voronoi cell is computed such that points which are
equidistant between two robot locations, pi and pj shall
fall in the region of the robot that has the higher energy
reserve. In this case, the cost function that is minimized in
the work proposed by Kwok and Mart́ınez (2007) is given
by He as follows;

He =

n∑
i=1

∫
V e
i

(
‖ q − pi ‖2 +(E − Ei)

)
φ(q)dq, (6)

where V e
i is the Voronoi cell of the ith robot when the

energy levels are considered. Similarly, Pavone et al. (2009)
propose a coverage control law that allows the robots to
have equal workload in their Voronoi partition. Hence, the
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workload in any region would be equal for all the robots
in the team. Similarly, Pierson et al. (2017) use the same
weighted Voronoi diagrams to segment the environment
according to the actuation capabilities of the different
robots. A similar approach is also adopted by Marier et al.
(2013) to model different sensor health.

In the algorithms discussed so far in this paper, a static
environment has been considered, in that the probability
density function that represents some important feature
or event happening in a particular location φ(q), is not
a function of time. To address this issue Cortes et al.
(2002) propose the feedback plus feedforward control law
Equation 7, which allows the robots to track a time-
varying density function, φ(q, t). Note that (7) is the
control law that governs the ith robot, k is some positive
constant, ĊVi describes how the centroids of the Voronoi
cells are changing with time, MVi is the mass of each

Voronoi region and ṀVi describes how the masses of the
Voronoi cells are changing with time.

ui = ĊVi −

(
k +

ṀVi

MVi

)
(pi − CVi) (7)

One must note that the work proposed by Cortes et al.
(2002) does not account for energy limitations in the
robotic team. In addition, Lee and Egerstedt (2013) argue
that Cortes et al. (2002) make restrictive assumptions
about φ and hence, the control law that they propose
cannot hold in general. This is because it cannot be
known how φ̇ would behave in general, and hence Lee
and Egerstedt (2013) propose their own general control
law which is shown to provide a slight improvement on
that proposed by Cortes et al. (2002). Lee and Egerstedt
(2013) start from the notion that at any time t > t0, where
t0 is the initial time, the position pi must be equal to the
centroid CVi such that the controlled variable pi tracks the
target CVi . Lee and Egerstedt (2013) assume a holonomic
robot and hence they derive a control law for which the
condition,

‖ pi(t)− CVi(pi(t), t) ‖= 0

holds for ∀t ≥ t0.

3. THE PROPOSED COVERAGE CONTROL
SCHEME

In a practical application, one must consider several as-
pects when designing a coverage control algorithm. For
instance, the environment in question might have time-
varying areas of importance which the robots would need
to track and cover. Moreover, real robots have limited
energy, and this too must be taken into account by the
coverage algorithm to enhance optimality. Additionally,
a heterogeneous team would also have different sensing
capabilities which the algorithm would need to exploit
optimally. One should note that there are only few works
in literature that address coverage control in the presence
of time-varying density functions. Moreover, to the best
of the authors’ knowledge, there are no works that con-
sider energy restrictions in a coverage control algorithm
with time-varying density functions. For this reason, this
work aims to address this open problem by considering
an environment, Q, where the density function denoting

the importance regions is time-varying φ(q, t), and the
robots have limited energy. To achieve this aim, one should
note that this is not possible simply by combining the two
schemes proposed in previous works that address the two
issues independently since this requires a new cost function
and a control law that minimizes this cost function which
is both time varying and energy aware.

Therefore, we propose a new cost function He,t, as follows

He,t =

n∑
i=1

∫
V e
i

(
‖ q − pi ‖2 +(E − Ei)

)
φ(q, t)dq (8)

Inspired by the work of Kwok and Mart́ınez (2007), to ob-
tain the optimal segmentation of an environment that has
areas of higher importance than others (denoted through
φ(q, t)), power diagrams (introduced and previously de-
scribed briefly in Section 2) are used with weights related
to the energy levels of the robots Ei. This introduces the
energy weights in our cost function as ei = Ei − E. In
addition, to manoeuvre the robots to the Voronoi cen-
troids, after each power diagram computation, we propose
a novel energy dependent tracking control law which in
form resembles that in (5), originally proposed by Cortes
et al., but with the difference that the design parameter k
is now adjusted in real time according to the energy of the
respective robot, as follows

ui = ĊV e
i
−

(
Ei

E
+
ṀV e

i

MV e
i

)(
pi − CV e

i

)
, (9)

where V e
i is the ith robot energy constrained Voronoi

cell. This shall make our coverage control scheme energy
conscious on two counts. Firstly, energy awareness is
included in the segmentation of the environment by using
power diagrams, and secondly, the speed of the robots
ṗi is restricted by the current energy levels of the robots
themselves. Therefore, if the robots are low on energy, they
are assigned smaller areas and they conserve energy by
driving slower towards the target centroids.

The concept behind this work is that in an environment
where the important features are varying their position
with time, we need to exploit the energy capabilities of
the robots, but at the same time conserve it as much as
possible in order to complete the task successfully and
efficiently. This means that high energy robots should
be covering high importance areas, as indicated by the
probability in φ(q, t). As time passes, the energy of these
robots starts to dissipate, to a point where some robots
might end up with no energy. More specifically, when the
energy of a robot reaches a preset minimum threshold, the
particular robot is withdrawn from the team (considered
completely inactive) and the environment needs to be
covered by the rest of the team from that point in time
onwards.

4. MONTE CARLO SIMULATIONS AND RESULTS

In this section we are presenting the algorithm of our
scheme. In our simulation study, we evaluate the proposed
novel energy aware coverage control scheme and compare it
to the published algorithm by Cortes et al. (2002). In this
simulation, we assume that our robots behave according to
the holonomic model given in Equation 3 and we consider
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the energy dynamics shown in Equation 5. The time-
varying probability density function used in this study is
defined in Equation 10, where qx and qy represent the (x, y)
coordinate of an arbitrary point q in space, t is the time
variable and τ is the time constant of the sinusoid. This
probability density function is a Gaussian function that
moves across the environment in a cyclic manner. This is
also reflected in the cost values as they vary with time,
where the profile of the cost over time also has a cyclic
nature.

φ(q, t) = e−(qx−2 sin t
τ )

2−q2y (10)

The proposed energy aware algorithm with a time-varying
density function is outlined and simulated in Algorithm 1.
To render the simulation study more powerful and realis-
tic, we run it several times, each time varying a number
of system parameters randomly. More specifically, we set
the initial energy of the robots with random values. For
each trial run, the masses of the robots themselves are also
varied in order to observe how different teams of robots
would fare in the same environment. Furthermore, the
movement of the robots to the target locations, CV e

i
, as

well as the energy dissipation of the robots are simulated
by solving the differential equations in Equations 3 and 5
using an ODE solver. If after this movement, the robots
still have enough energy above the minimum threshold,
they will form part of the team in the next time step.
Otherwise, they would no longer be considered part of the
team, and are left out of the optimization problem from
that point in time onwards. This algorithm is repeated for
a preset amount of time.

In our comparative Monte Carlo study, we compare the
cost in Equation 8 for the proposed algorithm, which
has a time-varying density function, φ(q, t) and which is
energy aware, with a time-varying algorithm that does not
account for the limited energy of the robots, namely the
algorithm proposed by Cortes et al. (2002). The algorithm
proposed by Cortes et al. (2002) represents a class of
coverage algorithms which have a time-varying density
function but are not aware of the energy limitations of the
robots. To do this, we consider different, random initial
energy levels of the robots and different, random robot
masses in each trial. This allows us to analyse different
scenarios and to show that the proposed energy aware
coverage algorithm with a time-varying density function
repeatedly yields a lower cost than an algorithm which is
not energy aware. In each trial, the initial conditions and
the robot masses are the same for the two algorithms, such
that a fair comparison is made.

The first part of our results section shall consider a typical
single trial. For this trial, we plot the instantaneous cost
against time for the two algorithms under test, as shown
in Figure 1. It is expected that the cost, He,t, would be
higher for the algorithm that is not energy aware, than
that of the algorithm that is energy aware. This is because
in the cost function in Equation 8, we aim to minimize
the energy cost together with the cost of coverage. Since
we expect the non-energy aware algorithm to use up more
energy of the robots, then the energy cost across all the
team is expected to be higher. In fact, Figure 1 shows that
the combined instantaneous cost over time, is generally
higher for the non-energy aware algorithm than for the

Algorithm 1 Single trial simulation of the proposed
energy aware coverage control scheme.

1: procedure (pi, Q)
2: n = 5 % Number of robots
3: Emax = 2
4: Emin = 0.1
5: Ei = (Emax − Emin) · rand(N, 1) + Emin

6: weights = Ei − Emax

7: mass+max = 5
8: massmin = 1
9: mi = (massmax−massmin)rand(N, 1) +massmin

10: tfinal = 125
11: kprop = 0.3
12:

13: for t = 0 : 0.5 : tfinal do
14: Compute values for φ for time t
15: [v, r] = PowerDiagram(pi, Q) % Computes en-

ergy constrained power diagram
16: for i = 1 : N do
17: CV e

i
= PolyCentroid(v(ri), Q, φ(q))

18: % Simulate movement of robots and update the system
states

19: ṗi = ĊV e
i
−
(

Ei
E +

ṀV e
i

MV e
i

)(
pi − CV e

i

)
20: Ėi = −

(
ĊV e

i
−
(

Ei
E +

ṀV e
i

MV e
i

)(
pi − CV e

i

))2

21:

22: pinew = ODEsolver (ṗi, pi)

23: Einew = ODEsolver (Ėi, Ei)
24: if Ei ≥ Emin then
25: update pi = pinew
26: update Ei = Einew
27: update weighti = Ei − Emax

28: else
29: % Stop movement of the robot
30: ṗi = 0
31: Ėi = 0
32: end if
33: end for
34: end for
35: return pi, Ei

36: end procedure

energy aware algorithm. The RMS value of the combined
cost of the non-energy aware algorithm over the whole trial
duration is 12.55 while that of the energy aware algorithm
is 8.9, which further shows that an energy aware algorithm
performs better than the non-energy aware algorithm, in a
realistic scenario where energy conservation is important.
In an algorithm that is not energy aware, we expect the
energy cost (Equation 11) to be greater than that of an
algorithm which is energy aware.

Henergy =

n∑
i=1

∫
V e
i

(E − Ei)φ(q, t)dq (11)

This is because the non-energy aware algorithm is not
concerned with how the energy of the team is spent, but
rather, the aim is focused on dispersing the robots as
much as possible over the environment. Although it might
be obvious that an energy-aware algorithm will always
outperform a non-energy aware one, this can actually
depend on the chosen scenario. If the maximum energy of
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each robot, Emax, is very high for the given environment,
the non-energy aware algorithm can have an advantage
since it can be more greedy in its energy consumption,
achieve better coverage than the energy-aware algorithm
and still leave the robots with ample energy to continue
their task. For this reason, in our simulations we set Emax

to a fair and realistic value. In our single trial experiment,
we can see this from the RMS value of the energy cost
presented in Table 1. The RMS value of the energy cost of
the energy aware algorithm is lower than that of the non-
energy aware algorithm. It then follows that since the non-
energy aware algorithm attempts to maximise coverage at
the expense of energy, then we expect the coverage cost
(Equation 12) of such an algorithm to be somewhat lower
than that of an energy-aware algorithm.

Hc =

n∑
i=1

∫
V e
i

(
‖ q − pi ‖2

)
φ(q, t)dq (12)

This is because an energy aware algorithm would be more
reluctant to allow robots to spend their energies freely.
Rather, it would attempt to strike a balance between
energy expenditure and maximising coverage of the envi-
ronment. This can be seen from the RMS values in Table
1, where the RMS value of the coverage cost of the energy
aware algorithm is larger than that of the non-energy
aware algorithm. It should also be emphasized that in a
realistic scenario, where the robots’ energies are limited,
the proposed scheme might even lead to lower coverage
cost than its competition in a longer trial period. This is
because its energy conserving nature allows the robots to
operate for a longer period of time and hence, continue
to contribute to the team to lower the coverage cost. In
contrast, in the non-energy aware algorithm, the robots
will be depleted of their energy and stopping earlier, thus
sacrificing coverage from that point onwards. This argu-
ment stems from the fact that perfect coverage (zero cost)
may be obtained with an infinite number of robots. Hence,
decreasing the size of the team (due to robots stopping
without energy), increases the overall cost. Moreover, there
is a higher likelihood that the size of the team diminishes
quickly with non-energy aware algorithms than with the
proposed energy aware algorithm.

To further show that the hypothesis that an energy aware
algorithm performs better than a non-energy aware al-
gorithm in a typical scenario where the robots’ ener-

Fig. 1. Plot of the instantaneous cost He,t.

gies are limited, 100 Monte-Carlo simulations were con-
ducted where, for each trial the RMS value of the cost in
Equation 8, He,t, is recorded for both algorithms. For this
purpose, the initial energy level as well as the mass of each
robot were randomly generated for each trial. The mass of
each robot affects the rate of energy consumption so this
also makes our simulation more realistic. For each trial, the
initial energy levels and the robot masses were the same for
both algorithms. All other parameters were left constant
across the different trials and across the two algorithms.
Furthermore, the density function φ(q, t) could have an
affect on the rate of energy consumption depending on
the value of τ . This is because the smaller the value of
τ , the faster the movement of the environment and hence
the higher the speed of the robots. Since speed directly
effects the rate of energy consumption, then one would
expect this rate to be higher for smaller values of τ . In the
current study, τ was not varied.

The average RMS value of the cost He,t for the energy
aware algorithm is 5.03, while that of the non-energy aware
algorithm is 5.46. The mean and variance of the two data
sets are tabulated in Table 2.

One can already see that there is a considerable difference
among the mean cost of these two algorithms, however, a
statistical test can show whether this difference is statisti-
cally significant or not. The RMS values data set of the two
algorithms, were tested for normality. This revealed that
the collected data in both data sets is normally distributed.
This can further be seen in a boxplot of the two data sets,
as shown in Figure 2. To confirm that there is a statistical
difference between the two sample means, a two-sample
t-test is used to test the null hypothesis that the difference
between the mean cost of the two algorithms is due to
chance and not due to the intrinsic differences between the
algorithms themselves. The alternative hypothesis would
be that the difference between the means of the two al-
gorithms is statistically significant and not due to chance.
The result of the statistical t-test strongly rejected the null
hypothesis, with a level of significance of 0.05 and hence,
shows that the difference between the performance of the
two algorithms is statistically significant, meaning that the
proposed scheme truly leads to lower overall costs.

5. CONCLUSIONS AND FURTHER WORK

Although the works presented in literature propose several
solutions for coverage control using Voronoi diagrams,
to date these works have been mostly limited to those
that account only for one constraining element at a time,

Table 1. Table of RMS Values for Total cost
(He,t), Energy Cost(He), Coverage Cost (Hc)

and

Algorithm RMS(He,t) RMS(Henergy) RMS(Hc)

Not Energy aware 12.55 12.57 1.06
Energy aware 8.93 6.92 2.02

Table 2. Table of Mean and Variance of the
two cost data sets

Algorithm Mean Cost Variance of Cost

Not Energy aware 5.46 0.65
Energy aware 5.03 0.72
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Fig. 2. Boxplot of the datasets of our proposed algorithm
and the non-energy aware algorithm

such as robot energy constraints, sensor capabilities, time
variations in the environment and so on. Our work pro-
poses a solution that considers multiple elements in the
optimization problem, particularly having a time-varying
probability density function in the environment and also
taking into account robot energy constraints. In our novel
coverage control scheme, energy is conserved by segment-
ing the environment in a way such that low energy robots
are given smaller coverage areas, as well as not allowing
the speed of low energy robots to increase significantly,
through the time-varying parameter Ei

E in the control law.
To show that an energy aware algorithm performs better
than an algorithm which is not energy aware, even in an
environment that has a time-varying density function, we
simulate the two algorithms under the same conditions
and compare their energy aware costs with time. For a
single trial, it could already be seen that the energy aware
algorithm performs better than the non-energy aware al-
gorithm. However, to further show that this is not the
case for some singular particular conditions, we perform
100 Monte Carlo simulations, each time-varying the initial
energy levels of the robots and the masses of the robots
themselves. Across these 100 trials, we show that there is
a statistical difference between the mean RMS values of
the costs of the two algorithms. This shows that we can
confidently say that the energy aware algorithm, generally
performs better than that which is not energy aware, when
the environment has a time-varying density function and
the robots have limited energies, as is the case in typical
practical applications.

In the future we aim to implement and demonstrate
this algorithm on a real life system including different
robots and once again analyse the results. Furthermore,
we believe that this work may be expanded to include
other criteria in the cost function, such as criteria related
to sensors. This problem has been studied in isolation as
shown in the work by Li and Liu (2017); Papatheodorou
et al. (2016). However, it would be beneficial in a practical
application if these sensor limitations are also included in
the coverage algorithm. In our future work, we intend on
investigating the inclusion of such elements, among other
issues, in our existing novel algorithm.
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