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Abstract: This paper proposes a cloud-based mission control framework for a fleet of
unmanned vehicles. The framework enables easy remote access to fleet operations regardless of
operator location. By leveraging cloud-based technologies the framework accomplishes scalable
monitoring, remote control, data acquisition and sharing. While the front-end is applicable
across mobile robotic systems, the back-end presented in this paper provides integration with
the Robot Operating System (ROS); thus, enabling integration of various marine robotic agents
based on the same robot framework. The proposed framework operation is demonstrated on the
H2OmniX unmanned surface vehicles during trials in Biograd na Moru, Croatia.
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1. INTRODUCTION

With increasing focus on the exploration and exploitation
of ocean resources in recent decades, the marine commu-
nity has witnessed remarkable growth and development in
marine robotics. Unmanned surface vehicles (USV) have
become common in marine robotics, executing missions
such as source seeking (Junnan Song et al. (2013)), en-
vironmental monitoring and ocean sampling (Vasilijević
et al. (2017)) in a coordinated way with multi-vehicles
(Zhang et al. (2013), Wang and Han (2016)). With the lim-
ited range of commonly used communication technologies
(WiFi and/or UHF), traditional monitoring and control
platforms for marine robots are often co-located with the
deployed robotic systems. Assuming constant monitoring
is desired, this heavily reduces the operating area of the
vehicles. From another perspective, if one of the vehicles is
lost, the operator will be unable to recover data from the
lost vehicle. Similarly, if the control platform is corrupted
the fleet operation will be compromised. With improved
connectivity and cellular networks providing bandwidths
similar to WiFi, the current technological trend, as seen in
Lorencik and Sincak (2013); Saha and Dasgupta (2018), is
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towards off-loading processing from local platforms onto
the cloud.

In this article, the cloud-robotics framework leverages
cloud technologies such as cloud computing, cloud stor-
age and cloud visualization to better distribute moni-
toring and control tasks, thereby removing the bottle-
neck encountered in traditional approaches. The cloud-
computing benefits (high processing capabilities, robust
data storage and server distribution/redundancy) allow
control commands and data to be transmitted and pro-
cessed without limitation of distance or demanding hard-
ware requirements (Zhang et al. (2017), Hu et al. (2012)).
Once vehicles are equipped with mobile communication
hardware and a CPU running the cloud client interface, the
proposed distributed cloud architecture can be provided
as a common solution for mobile robots. Similar cloud-
robotics efforts have been widely applied to unmanned
ground vehicles and unmanned aerial vehicles such as
DronTrack (Koubaa and Qureshi (2018)), RoboEarth (Ri-
azuelo et al. (2015)) and Rapyuta platform (Mohanara-
jah et al. (2015a), Mohanarajah et al. (2015b)).In ma-
rine robotics applications focus on ships (McGillivary and
Zykov (2016); Kaliski (2008)) or shipping related data
processing (Yicheng Zheng et al. (2014)). However, when
considering coordinated mission control for unmanned sur-
face vehicle fleets applications are scarce.

While the front-end is applicable across heterogeneous
vehicle types, the back-end client interface is implemented
within the Robot Operating System (ROS) framework
(Quigley et al. (2009)). The framework is already well-
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established in land robotics and continuously gaining pop-
ularity in the marine sector. Therefore, this implementa-
tion selection enables the use of the proposed cloud-based
framework with many different types of robots, among
which are the H2OmniX vehicles used for field demon-
strations in this paper.

The paper will introduce the applied cloud-based fleet
control architecture in Section 2. Components involved in
the system are described in Section 3 while the simulation
and pool experiment results are presented in Section
4. Finally, the paper is concluded with the recap of
main concepts and planned future work for extending the
proposed cloud-based control framework.

2. SYSTEM ARCHITECTURE

The architecture is designed around the usual client/server
backbone. The minimum system consists of a cloud
server and two clients. One remote client bridges the
users/researchers with the vehicle via the cloud-server,
while the other interface client ensures direct communi-
cation of the server with the vehicles. This way the vehicle
and user network are clearly separated. The cloud-server,
as the main data handler, implements the web interface
for data sending and receiving. Considering that data has
to be stored and indexed, a dedicated database is man-
aged by the cloud-server. The remote client, in addition
to providing the control interface for users, contains the
web modules required to establish communication with the
cloud server.

Fig. 1. Centralized client interface architecture: the cen-
tralized local interface and vehicles are separated. The
centralized interface routes data to the cloud.

Fig. 2. Local client interface architecture: the client inter-
face is localized on the vehicle and a direct connection
to the cloud is possible.

There are two ways the vehicles can connect to the cloud.
The first layout, shown in Fig. 1, provides a centralized
interface and a star-like topology with the vehicles. In

this layout, the control commands for all vehicles are
concatenated into a single message to be sent to the cloud
server. Similarly, the collected vehicle data and parameters
are concatenated into a single message. With this central-
ized interface, serialized data is transmitted between the
vehicles and the remote client. This serialized transmission
allows easy data synchronization from multiple sources
and is well suited for scenarios where such synchronization
is necessary. Since it does not require hardware or software
modifications on the vehicles, it is also the first step when
introducing cloud-based extensions into a classical central-
ized mission control system.

The second layout, shown in Fig. 2, entails a local interface
on the vehicles. Vehicles establish individual communi-
cation links with the cloud. This decentralized architec-
ture does not provide centralized synchronisation, but it
reduces the communication load between the interface
and the cloud-server, especially with increasing number
of vehicles. Decentralization also improves the flexibility
concerning the used network layer without affecting the
vehicle interface design. This allows for a more hetero-
geneous approach, as now vehicles with access to mobile
or Iridium communication can connect to the cloud from
larger distances directly, while other, more localized vehi-
cles, can still utilize a wireless connection with an Internet
gateway towards the cloud. Due to apparent benefits and
the readiness of the used equipment, this layout was used
for the experiments presented in this paper.

3. SYSTEM COMPONENTS

The proposed demonstration system consists of: a) cloud
server, b) remote user client software, c) local vehicle
interface, d) controlled vehicle.

3.1 Cloud server

Fig. 3. The cloud-server back-end layout: implementation
of the model matching and messaging.

The control system is designed in client/server architec-
ture. Therefore, the cloud-server back-end provides the
corresponding HTTP backbone enabling the connection be-
tween the remote client and the local vehicle interfaces.
The cloud-server is accessed through an API providing
a set of HTTP applications or methods in form of URIs.
The vehicle subset contains methods for (de)registering
new instances and methods for publishing data and sub-
scribing to commands. The remote client subset supports
monitoring functions such as retrieval of interfaces and
vehicle data. Additionally, control functions are available
in the subset for publishing desired commands and control
modes to individual vehicle instances.

The cloud-server back-end layout is shown in Fig. 3. The
back-end is divided into three parts containing four mod-
ules: communication module, control command processing
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module, interface manager and data sharing module. The
communication module exposes the HTTP methods through
the uniform resource identifier (URI). The cotrol command
preprocessing module is responsible for marshalling of re-
ceived data and control commands. The provided control
missions and attached data are matched with the vehi-
cles through their instance ID in the global management
module. Once the received data is analyzed, parsed and
matched, the data storage layer stores the information into
the data storage module. Finally, the data sharing module
provides the methods for remote users and vehicles to
extract required data from the storage module for visual-
ization and other purposes.The definition and description
of necessary interfaces for remote client and local vehicles
are shown in Tab 1

Table 1. Definition of services necessary to
interface remote clients and vehicles.

Application URI Introduction

/client/connect_instance Connect the instance

/client/get_param Get parameter from server

/client/submit_control Send control command

/client/get_fbmessage Get instance control mode

/upper/start_instance Create a new instance

/upper/finish_instance Remove created instance

/upper/update_param Set parameter on server

/upper/get_control Get control command

/upper/update_fbmessage Switch the control mode

3.2 Remote Client

The remote client encompassed the graphical user interface
with the corresponding back-end model. It includes five
fundamental modules as shown in the diagram on Fig. 4.
The modules establish communication with the cloud-
server, send mission commands to vehicles and monitor
the vehicle status through the operations panel.

Fig. 4. The tree-like structure of the remote client showing
the five fundamental modules and their corresponding
submodules.

The parameter visualization module implements visualiza-
tion extensions for supported navigation and status data
objects received from the vehicles. Deserialized vehicle
attributes are shown in textual form on the client’s user

interface. Position and trajectory updates are provided on
the map widget through vehicle markers. Based on the
vehicle model provided from the cloud-server, the data
storage module of the remote client splits the bundled
vehicle data into separate parameters and stores them in
the local database. This process is similar to the processing
done on the cloud-server back-end and provides an addi-
tional storage redundancy. This feature is also required if
local data availability for offline post-processing is required
by the users. Mission commands are defined in the mission
control module, these include typical commands such as
stop, point follow, keep station and path follow. These
commands can be applied to one or more vehicles in par-
allel. The modular design of the mission control modules
allows easy addition of new commands and mission modes.
The user control module provides user interface elements
for handling arbitration and allowing remote control on
vehicles. The module also allows for the existence of a
local manager, i.e. vehicle manager in the field. In such
cases, remote users can control the vehicles only when the
local manager grants permission. This avoids accidents or
conflicting commands in cases where the remote user lacks
complete situational awareness.

3.3 Local Vehicle Interface

The remote client commands are received on the local vehi-
cle interface through the cloud-server. The interface main-
tains server communication through a heart-beat mecha-
nism. Even when contact is lost, the vehicle instance on the
cloud-server is reserved until connection is reestablished.

The layout of the vehicle interface is shown in in Fig. 5.
The interface is divided into four modules. Mission, net
manager and user control modules are conceptually similar
to the ones in the remote client. The user module manages
permissions, the mission module translates generic mission
commands into vehicle specific calls and the net manager
handles communication and data exchange with the cloud-
server. The shared modules are designed in a fashion to be
independent of the underlying vehicle architecture. While
the mission module has some conceptual knowledge of
the vehicle capabilities, it does not handle communication
with the vehicle implementation directly. For this purpose,
a ROS components module was developed as an inter-
mediary to handle ROS framework peculiarities thereby
providing dependency isolation for rest of the modules.

The ROS runtime "graph", running on the vehicle, is a
peer-to-peer network of processes that are loosely coupled
using the ROS communication infrastructure. A ROS topic
implements the concept of asynchronous data streaming,
and the ROS service implements the concept of syn-
chronous communication in style of remote procedure calls
as detailed in Woodall et al. (2014). The vehicle status and
sensor data are received from customized topics through
the ROS subscriber submodule. Command execution is
implemented through the ROS publisher submodule.

3.4 H2OmniX

Experiments used the H2OmniX unmanned surface ve-
hicles, shown in Fig. 6. The H2OmniX is a versatile
omni-directional vehicle designed for operation in shal-
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Fig. 5. The tree-like structure of the local vehicle interface
showing the four fundamental modules and their
corresponding submodules.

low, crowded and/or confined environments where ma-
neuverability is of essence. It supports a wide range of
payloads for acoustic localization, underwater monitor-
ing, bathymetry and sensors for environmental data sam-
pling. Due to their versatility, the vehicles have been used
in number of different applications from diving support
(Miskovic et al. (2015)), oil-spill detection (Vasilijević et al.
(2017)) to archaeology (Vasilijević et al. (2015)).

Fig. 6. The H2OmniX unmanned surface vehicle.

H2OmniX was developed by the Laboratory for Under-
water Systems and Technologies at University of Zagreb
Faculty of Electrical Engineering and Computing in Croa-
tia. It is currently produced by H2O-Robotics 1 . H2OmniX
is over-actuated which enables horizontal motion in any
direction and orientation. It has a diagonal length of 1m
with 0.35m in height, and it weighs in at 20 − 30 kg,
depending on battery type and payload configuration. It
is equipped with state of the art 9-axis inertial navigation
system and RTK capable GNSS. The main navigation,
guidance and control software is operating on the ROS
framework and the vehicle is equipped with GSM and
WiFi allowing the integration of the proposed cloud-based
framework.

4. EXPERIMENTS AND RESULTS

4.1 Simulation

Before real experiments, simulations were performed to
validate whether the H2OmniX can execute the proposed
missions through the cloud infrastructure. For simulation

1 h2o-robotics.com

and pool experiments the provided cloud server was lo-
cated in Frankfurt, Germany, while the pool experiments
were planned for Biograd na Moru, Croatia.

Table 2. Average communication delay of a
subset of available HTTP methods

HTTP method Average Delay (ms)

connect_instance 37

get_param 104

submit_control 31

update_param 127

get_control 29

First the expected server-client communication delay has
been measured. The delay was tested for a subset of HTTP
methods and the average delays are shown in Table 2.
The average delay is low across all of the methods. The
get_param and set_param commands have a higher delay
due to larger payload. However, the command setting
method delay (e.g. submit_command) is small. Since only
high-level commands are used, with low-level control loops
closed locally on the vehicle, the measured communica-
tion delays have minimum impact on control performance.
From the perspective of data collection and online pro-
cessing the delays are still within margins to allow near
real-time mission (re)planning.

Secondly, the demonstration missions, including point fol-
lowing and path following, were tested with the simulator.
The vehicle simulator is provided in the form of Docker
Docker 2 container. Vehicle kinetics, kinematics and sen-
sors are simulated while all other software components,
including navigation and control, are identical to those
located on the vehicle. The guidance API can be accessed
directly from ROS or via rosbridge 3 .

Fig. 7. Waypoint guidance simulation: marked target
points are sent sequentially to the vehicle during op-
eration.

For simulation, the waypoints are selected by the user
through the map widget in the remote client. In addition to
single waypoints, the users can provide a set of waypoints
and the integrated path-planning module will provide
the vehicle with desired path. Single waypoint and path-
following simulation results are shown as Fig. 7 and Fig. 8,
2 www.docker.com
3 robotwebtools.org
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Fig. 8. Path following simulation: the blue line shows
the remainder of the planned path generated with a
modified A* algorithm (Wang and Xiang (2018)).

respectively. The markers (shown as red icons) represent
the selected target points the vehicle should visit. Figure 8
shows a planned path based on a set of waypoints with
completed section shown in red and remaining path section
shown in blue.

These simulations focused on demonstrate functionality
rather than tracking performance. Although the example
simulation scenario is shown for a single vehicle, the
simulations can be easily scaled to multiple vehicles to
demonstrate fleet operation.

4.2 Pool experiments

The real-life experiments were performed at Biograd na
Moru, in the controlled pool environment. Experiments
included line following, station keeping and path following
controllers available on the two vehicles and described in
Vasilijević et al. (2017) and Miskovic et al. (2015). During
the experiments, the vehicle velocity limit was 0.5m/s.
Disturbances in the pool are negligible but the control
algorithms can compensate disturbances expected in the
open-sea.

Figures show the display of the remote client (on the
left) and corresponding frames extracted from the video
recording (on the right). Depending on mission type, either
both vehicles were operated or one of them was used as an
obstacle for the path-planning algorithm. In case of the
path-following experiment, shown in Fig. 9, the desired
path around the obstacle is shown in blue. It can be noted
that the path passes next to the obstacle, i.e. the drifting
second vehicle.

During waypoint guidance, shown in Fig. 10, two diagonal
points, relative to current vehicle positions, were selected
as target points. All vehicle information, including position
estimates, is stored in the cloud and can be easily retrieved.
This feature was used to review the trajectories generated
during this experiment by both vehicles. The retrieved
latitude and longitude coordinates, seen in Fig. 11, are
replayed in the map module directly from the cloud after
the experiment.

The vehicle information is stored in MongoDB 4 and is
extracted through Robo3T 5 , a data visualization tool
4 mongodb.com
5 robomongo.org

for MongoDB. In addition to position estimates, the in-
formation stored in the database includes vehicle model
parameters, sensor measurements and other navigation,
guidance and control signals. These can easily be accessed
by any user with corresponding credentials.

Fig. 9. Path following test: (left) the remote client display,
(right) frames from scene recording.

Fig. 10. Waypoint guidance test: (left) the remote client
display, (right) frames from scene recording.

5. CONCLUSIONS

The paper presented a cloud-based framework for mission
planning and control of unmanned surface vehicles. The
selected system architecture was presented with individual
component details. The preliminary results show that the
proposed system is feasible for coordinated control of
multiple H2OmniX vehicle or, generally, any unmanned
surface vehicle satisfying the current software/hardware
requirements for the framework.
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Fig. 11. The replayed trajectories of the two vehicles as
shown in the map widget of the remote client.

However, for long term sea-trials there are still technical
concerns that need addressing. Firstly, in the proposed
framework, the control is sensitive to the communica-
tion delay between vehicles and the cloud-server. During
measurements the communication delay was shown to be
tolerable, but these expected values are still limited to
the same region, i.e. to Europe since both the server and
clients where within 1200 km. The measurements were
also performed for a cloud-server in Wuhan, China with
resulting delays increasing close to 1 second. These delays
could still be considered tolerable in guidance commands,
but can easily become problematic in critical situation or
at higher vehicle speeds. Therefore, limitations are to be
expected when crossing regional boundaries in which case
only supervision level commands can be provided rather
than sending direct guidance commands.

Secondly, the experiments were carried out in controlled
conditions with only two vehicles. This was already ex-
panded to three vehicles and operations outside of the pool
but due to space limitations there results are left for future
publications. However, next steps would need to include
more vehicles and cloud-based formation management.
Additionally, mission complexity should be increased with
specific application, e.g. towards distributed environmen-
tal monitoring. These next steps also need to expand
towards a more heterogeneous setup by including different
vehicles, and combining them with different vehicle types
(e.g. unmanned aerial vehicles).
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