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Abstract: We propose a framework for modeling structured nonlinear systems using nonpara-
metric Gaussian processes. In particular, we introduce a two-layer stochastic model of latent
interconnected Gaussian processes suitable for modeling Hammerstein-Wiener and Wiener-
Hammerstein cascades. The posterior distribution of the latent processes is intractable because
of the nonlinear interactions in the model; hence, we propose a Markov Chain Monte Carlo
method consisting of a Gibbs sampler where each step is implemented using elliptical-slice
sampling. We present the results on two example nonlinear systems showing that they can
effectively be modeled and identified using the proposed nonparametric modeling approach.
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1. INTRODUCTION

In the identification of nonlinear dynamical systems, block-
oriented approaches are often used for their ability to
capture complex nonlinear relationships without sacrificing
mathematical tractability (Giri and Bai, 2010).

Among the block-oriented models, three-block cascades
offer great modelig flexibility and have been used with
success in many applications.

For instance, the Wiener-Hammerstein cascade consists of
a static nonlinear function sandwiched between two linear
dynamical systems that has been used in the modeling of
skeletal muscles (Bai et al., 2009; Dewhirst et al., 2010),
power electronics (Oliver et al., 2009), heat exchangers and
superheaters (Haryanto and Hong, 2013), and in model-
predictive control applications ( Lawryńczuk, 2016), among
others.

The methods for Wiener-Hammerstein identification avail-
able in the literature follow four main directions: iterative
nonlinear optimization methods (Marconato et al., 2012;
Paduart et al., 2012; Tan et al., 2012), stochastic meth-
ods (Bershad et al., 2001; Pillonetto and Chiuso, 2009),
frequency-domain methods (Westwick and Schoukens, 2012;
Schoukens and Tiels, 2017), and two-stage methods (Van-
beylen, 2014; Schoukens et al., 2014; Giordano et al., 2018)

The Hammerstein-Wiener cascade, on the contrary, is a
three-block cascade consisiting of a linear dynamical system
sandwiched between two static nonlinear functions. These
structures have been used to model radio frequency trans-
mitters and power amplifiers (Taringou et al., 2010), the
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Fig. 1. Bayesian network of the two-layer stochastic model.
Empty nodes indicate latent variables; shaded nodes
indicate observed variables; edges indicate conditional
dependencies.

magnetosphere and ionosphere (Palanthandalam-Madapusi
et al., 2005), the decomposition of stored crops (Nadimi
et al., 2012), turbofan engines (Wang et al., 2017), and
geothermal borefields (Atam et al., 2018). To estimate
Hammerstein-Wiener models, various techniques have been
proposed (see, for instance, Zhu, 2002; Hasiewicz and Mzyk,
2004; Ni et al., 2013).

Differently from the previously mentioned works, in this
paper we formulate a unified nonparametric framework for
modeling of three-block cascades. Modeling the impulse
responses of the linear blocks and the characteristics of
the nonlinear blocks using appropriate Gaussian-process
models, we show that the Hammerstein-Wiener and Wiener-
Hammerstein cascades can both be formulated as two-layer
stochastic models such as the one presented in Fig. 1.
The model consists of a set of a-priori independent latent
variables obeserved through some nonlinear likelihood
functions. We propose a sampling method to approximate
the posterior distribution of the latent variables using a
Markov-chain Monte Carlo algorithm. The method consists
of a Gibbs sampler where each step is implemented using
an elliptical-slice sampler targeting the full conditional
distribution of one of the latent variables.
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The rest of the paper is organized as follows: in Sec. 2,
we propose the general two-layer stochastic model; in
Sec. 3, we propose the sampling approach targeting the
posterior distribution of the latent variables of the model;
in Sec. 4, we show applications to Hammerstein-Wiener and
Wiener-Hammerstein cascades with general noninvertible
nonlinearities.

2. TWO-LAYER STOCHASTIC MODEL

We consider a stochastic model with p independent latent
variables z1, . . . , zp. Each latent variable zi represents an
unknown quantity in the model and is the realization of
a zero-mean Gaussian process observed at some known
input locations xi1, . . . , x

i
n (which may represent external

excitation signals, reference values, or time, among others).
Hence, from the Gaussian-process model, each latent
variable has a multivariate normal distribution,

zi ∼ N (0,Kzi
), (1)

where the covariance matrix Kzi
is determined by the

covariance function (the kernel) of the Gaussian process,[
Kzi

]
j,k

= Ki(x
i
j , x

i
k; ζi),

where ζi is a set of prior hyperparameters that determine
the shape of the kernel. In this work, we assume that the
hyperparameters are given, or determined with some exter-
nal procedure (e.g., cross validation or marginal likelihood
maximization). Approaches to efficiently estimate these
hyperparameters from data are still object of research.

We suppose that we have available m independent vectors
of observations y1, . . . ,ym, that depend on the latent
variables according to some joint likelihood function

p(Y | Z;λ) = p(yi | Z;λi) · · · p(ym | Z;λm), (2)

where Y = {y1, . . . ,ym}, Z =
{
z1, . . . , zp

}
, and where

λ = {λ1, . . . , λm} are hyperparameters describing the
observation models. The Bayesian network of the two-layer
stochastic model is presented in Fig. 1.

In Section 4, we show how two classical structures from
block-oriented system identification, the Wiener-Hammer-
stein and the Hammerstein-Wiener cascades, can be mod-
eled using such two-layer stocastic models.

The general estimation problem we consider is then to
estimate the posterior distribution,

p(Z | Y), (3)

of the latent Gaussian processes given the observations Y.
Note that, in the following, we will drop explicit dependen-
cies on the kernel and the likelihood hyperparameters λ
and ζ for notational convenience.

3. MONTE CARLO APPROXIMATE INFERENCE

In the general case, the Gaussian priors of the latent
variables (1) and the likelihood function (2) are not
conjugate, so the posterior distribution (3) is intractable.
Therefore, we make a Monte Carlo approximation of the
posterior according to

p(Z | Y) ≈ 1

M

M∑
m=1

δ
(
z1−z̄

(m)
1

)
· · · δ

(
zp−z̄(m)

p

)
, (4)

where the particles
{
z̄
(m)
i

}M
m=1

are drawn using a Markov

chain sampler targeting the posterior distribution (3).

To create the Markov chain, we use a Gibbs sampling

procedure: we start from an initialization z
(0)
1 ,. . . , z

(0)
p , and

we iteratively sample each latent variable conditioned on
the data and all the remaining latent variables,

z
(k+1)
1 ∼ p

(
z1 | Y, z(k)2 , . . . , z(k)p

)
,

z
(k+1)
2 ∼ p

(
z2 | Y, z(k+1)

1 , z
(k)
3 , . . . , z(k)p

)
,

...

z
(k+1)
p−1 ∼ p

(
zp−1 | Y, z(k+1)

1 , . . . , z
(k+1)
p−2 , z(k)p

)
z(k+1)
p ∼ p

(
zp | Y, z(k+1)

1 , . . . , z
(k+1)
p−1

)
(5)

Note that, from Fig. 1, there may be conditional inde-
pendence properties that reduce the number of condi-
tioning variables in (5). In particular, zi is conditionally
independent of all the measurements yj whose likelihood
function (2) does not contain zi.

Iteratively running (5) for a large number of iterations
and discarding the initial samples, we obtain a sequence of
values that can be used in (4) to approximate the posterior
distribution (3) and compute point estimates of interest
and (Bayesian) credible intervals.

Using the Gibbs sampler, we can sample the joint posterior
distribution of Z by sampling each variable zi in turns. To
sample zi, we notice that we are drawing from a conditional
density that is proportional to the product of a nonlinear
likelihood function and a Gaussian prior distribution,

p
(
zi | Y,Z\i

)
∝ p

(
Y | Z\i ∪ {zi}

)
p(zi)

where Z\i =
{
zj, j 6= i

}
. hence, to sample each step, we

can use elliptical slice sampling (ESS).

As the name suggests, ESS is a modification of the
standard slice sampler (Neal, 2003) specialized for drawing
samples from a target distribution that is proportional to
the product of a Gaussian distribution and a nonlinear
likelihood function (Murray et al., 2010). To sample the

latent variable, ESS starts from a sample z
(k)
i and draws a

point ν randomly from the prior p(zi). Then, samples z′i
are proposed along an ellipse passing through z

(k)
i and ν

with an adaptively decreasing step size until the proposal
has a likelihood that exceeds a threshold L determined by

the starting point z
(k)
i , in which case it is accepted as the

next sample in the chain. The ESS procedure is presented
in detail in Alg. 1 (adapted from Murray et al., 2010).

The whole Gibbs sampling algorithm targeting the joint
posterior (3) is presented in Alg. 2.

4. APPLICATION TO THREE-BLOCK CASCADES

In this section, we present two examples of block-oriented
nonlinear systems that can be modeled as two-layer stochas-
tic models. To this end, we first introduce nonparametric
Gaussian-process models on the unknowns; then, we manip-
ulate the models to put them in the structure described by
Fig. 1, in order to run Alg. 2 and approximate the posterior
distribution of the latent variables.
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Algorithm 1 Elliptical slice sampling updating the ith
latent variable of a two-layer stochastic model.

1: procedure ESS(i, Z)
2: ν ∼ p(zi), u ∼ U [0, 1] . U is uniform
3: L← log p(Y | Z) + log u . Likelihood threshold
4: τ ∼ U [0, 2π] . Step-size parameter
5: τmin ← τ − 2π, τmax ← τ
6: z′i ← zi cos τ + ν sin τ . Proposal on the ellipse
7: if log p(Y | Z\i ∪ {z′i}) < L then
8: if τ < 0 then τmin ← τ else τmax ← τ
9: τ ∼ U [τmin, τmax]

10: goto 6 . Update proposal
11: end if
12: return Z = Z\i ∪ {z′i} . Accept proposal
13: end procedure

Algorithm 2 Gibbs sampling algorithm targeting the
joint posterior of the two-layer model returning M samples
after a burn-in of B samples.

1: procedure 2LayerGibbs(M , B)
2: initialize Z . Arbitrary initialization
3: for m = −B, . . . ,M do
4: for i = 0, . . . , p do . For each latent variable
5: Z ← ESS(i,Z) . update variable
6: end for
7: if m > 0 then . Burn-in finished
8: Z(m) ← Z . Save samples
9: end if

10: end for
11: return

{
Z(m)

}M
m=1

12: end procedure

4.1 Wiener-Hammerstein Cascades

Consider the Wiener-Hammerstein cascade in Fig. 2; it
consists of a static nonlinear function f(·) sandwiched
between two linear dynamical systems (represented by the
impulse responses g1 and g2). The output is measured with
additive Gaussian white noise.

u g1 f(·) g2 +

e

yw

Fig. 2. The Wiener-Hammerstein cascade.

We suppose that we have collected N measurements of
the output in a vector of samples y. Similarly, we have
collected the values of the input in the vector u. Then, the
N samples of the internal signal w can be represented by
the vector

w = G1u,

where G1 is the N ×N lower-triangular Toeplitz matrix
of the impulse response samples that represents the
convolution operated by g1:

[G1]i,j =

{
g1[i− j + 1] if 0 < i− j + 1 ≤ N,
0 otherwise.

(6)

The whole system can be represented, in vector form, by

y = G2f(G1u) + e,

where G2, analogously to (6), is the Toeplitz matrix that
represents the convolutions operated by g2 and where the
function f(·) acts on vectors elementwise. We suppose that
the vector of noise samples e contains Gaussian white noise
with variance σ2.

We model the impulse responses of the linear systems as
independent zero-mean Gaussian processes. This means
that the vectors of impulse responses are multivariate
Gaussian vectors with

g1 ∼ N (0,Kg1
), g2 ∼ N (0,Kg2

), (7)

where the covariance matrices are determined by an
appropriately chosen kernel function—for instance the first
order stable spline kernel (Pillonetto et al., 2014):[

Kg1

]
i,j

= α1 · βmax(i,j)
1 , (8)

where α1 > 0 is a scaling parameter that determines
the overall amplitude of g1 and β1 ∈ (0, 1) is a shaping
parameter that determines the overall exponential decay
of g1. We use a similar model for Kg2 .

In addition, we model the static nonlinearity using a zero-
mean Gaussian process

ϕ(·) ∼ GP
(
0, H(·, ·)

)
, (9)

with a covariance function H(·, ·) suitable for functional
estimation—for instance, the squared exponential kernel

H(xi, xj) = η exp

{
−1

ρ
(xi − xj)2

}
, (10)

where the length-scale parameter ρ determines the overall
smoothness of the functions and η is a scaling parameter.
Note, however, that the method is general and in no way
limited to the presented kernel functions.

From the Gaussian-process model (9), we have that the
intermediate variable f = ϕ(G1u), is a multivariate
Gaussian vector with marginal distribution given by

f | g1 ∼ N (0,H), (11)

where the elements of the marginal covariance matrix H
are given by the covariance function (10) evaluated in
the entries of G1u. Note that this covariance matrix is a
function of the random variable g1; however, we keep this
dependency implicit for notational convenience.

Conditioned on the intermediate variable f and on the
impulse response of the second system in the cascade,
the output samples have a joint multivariate Gaussian
distribution given by the independent noise samples:

y | f ,g2 ∼ N
(
G2f , σ

2I
)
.

The complete nonparametric model of the Wiener-Hammer-
stein cascade is presented in Fig. 3 (left). It is important
to note that the Gaussian process model (9) for the static
nonlinearity is independent of the random variables g1 and
g2; however, in (11), we are computing the marginal distri-
bution of ϕ(·) evaluated in G1u, hence, the distribution of
f depends on the impulse response g1 (see Fig. 3, middle).

To formulate the nonparametric Wiener-Hammerstein
model as a two-layer model, we marginalize out f according
to

p(y | g1,g2) =

∫
p(y | f ,g2) p(f | g1) df .

This marginalization is given by:

y | g1,g2 ∼ N (0,G2HGT
2 + σ2I). (12)
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Fig. 3. Bayesian networks of the Wiener-Hammerstein
model. Left: the complete nonparametric model. Mid-
dle: the model after integrating out ϕ (note that
the vector f is conditionally dependent of g1). Right:
Model after integrating out f .

Collecting (7) and (12), we see that the Wiener-Hammer-
stein structure here discussed can be modeled using a
two-layer stochastic representation (see Fig. 3, right):

g1 ∼ N (0,Kg1
),

g2 ∼ N (0,Kg1),

y | g1,g2 ∼ N (0,G2HGT
2 + σ2I).

To evaluate the proposed approach, we consider a Wiener-
Hammerstein cascade with

G1(q) = κ1
1− 0.5q−1 + 0.6q−2

1− 0.3q−1 − 0.45q−2 + 0.175q−3
,

G2(q) = κ2
1

1− 0.8q−1
,

where κ1 and κ2 are such that the blocks have unit
gain. The static nonlinearity is given by the smooth and
noninvertible function

f(x) =
sin(4πx)

4πx
.

We generated N = 300 samples of the output of the system
in response to a white-noise input, uniform in the interval
[−1, 1], and we corrupted the output measurements with
Gaussian white noise with variance equal to 10% of the
variance of the noiseless output.

We considered a two-layer model, where the impulse
responses are modeled with stable-spline kernels such as (8)
and the static nonlinearity is modeled using a squared
exponential kernel (10).

Using the procedure presented in Alg. 2, we estimated
posterior distribution of g1 and g2 using M = 1000
samples, collected after burn-in of B = 100 samples. The
approximate wallclock time needed to estimate one system
using the method is 2 minutes.

The hyperparameters of the stable-spline kernels were set
using a validation set of 150 samples (50% of initial the
training set): αi were choosen among 6 values logarith-
mically spaced between 10−3 and 102; βi were choosen
among 6 values uniformly spaced between 0.2 and 0.8.
As the model is not identifiable, the hyperparameters of
the static nonlinearity were fixed arbitrarily to η = 10
and ρ = 5. Different models were estimated using 50%
of the data as training and then evaluated using the
prediction error on the remaining 50% of the data. Finally,
the hyperparameters that minimized prediction error were
used to sample the posterior using the whole dataset.

0 2 4 6 8 10 12
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1

k

g
1

−1.5 −1 −.5 0 .5 1 1.5
−.1

0
.1
.2
.3

w

f
(w

)

0 5 10 15 20
0

.2

.4

.6

k

g
2

True Estimated

Fig. 4. Result of the identification of Wiener-Hammerstein
cascades. Note that the blocks of the estimated system
have been scaled to match the true system.

The result of this simulation is presented in Fig. 4. In the
figure we see the characteristics of the blocks of the true
system compared with the blocks estimated by the method.
The marginalized f(·) was estimated using its posterior
mean given the estimated g1 and g2. From this simulation,
it appears that the proposed two-layer stochastic model is
effective at modeling nonparametric Wiener-Hammerstein
cascades.

4.2 Hammerstein-Wiener cascades

Consider the Hammerstein-Wiener cascade in Fig. 5; as
we did for the Wiener-Hammerstein case, we represent the
linear block with the vector of impulse response samples g.
The output of the cascade is subject to an additive noise e.

u f1(·) g f2(·) +

e

yw

Fig. 5. The Hammerstein-Wiener cascade.

If we suppose that we have collected N measurements of
the input in a vector of samples u then the samples of the
internal signal w can be represented by the vector

w = Gf1(u),

where f1(·) is evaluated elementwise and where G, anal-
ogously to (6), is the N × N lower-triangular Toeplitz
matrix that represents the convolution operated by the
linear system. Similarly, the N samples of the output can
be represented, in vectorized form, as

y = f2(w) + e,

where e is a vector of samples of Gaussian white mesure-
ment noise with variance σ2.

We model the impulse response of the linear system g
with a zero-mean Gaussian process, obtaining the following
multivariate Gaussian distribution for the vector g:
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Fig. 6. Bayesian networks of the Hammerstein-Wiener
model. Left: the complete nonparametric model. Mid-
dle: the model after integrating out ϕ1(·) and ϕ2(·)
(note that the vector f2 is conditionally dependent
on g and f1). Right: Model after integrating out the
vector f2.

g ∼ N (0,Kg), (13)

where the covariance matrix is determined by the covariance
function of the Gaussian process—for instance, the stable-
spline kernel (8).

Similarly to what we did in the Wiener-Hammerstein case,
we use zero-mean Gaussian-process models for the static
nonlinearities,

ϕ1(·) ∼ GP
(
0, H1(·, ·)

)
, ϕ2(·) ∼ GP

(
0, H2(·, ·)

)
,

for appropriate covariance functions H1(·, ·) and H2(·, ·)—
for example, the squared exponential kernel (10).

Considering the intermediate random variables f1 = ϕ1(u)
and f2 = ϕ2(Gf1). We can write the marginal distributions

f1 ∼ N (0,H1), f2 | f1,g ∼ N (0,H2), (14)

where the elements of H1 are given the covariance function
evaluated in the entries of u, and the elements of H2

are given by the covariance function evaluated in the
entries of Gf1. Note that the covariance matrix H2 has
a dependency on f1 and g which we keep implicit for
notational convenience.

Conditioned on f2, the output has a multivariate normal
distribution given by

y | f2 ∼ N (f2, σ
2I).

This complete nonparametric model of the Hammerstein-
Wiener cascade is presented in Fig. 6 (left). Note again
that the Gaussian process models are a priori independent
and the dependency of f2 and g and f1 is introduced by
marginalization (see Fig. 6, middle).

To formulate the two-layer model of the Hammerstein-
Wiener cascade, we can marginalize out f2 according to

p(y|f1,g) =

∫
p(y|f2) p(f2|f1,g) df2.

Similarly to the Wiener-Hammerstein case, also this
marginalization has a closed-form solution:

y | f1,g ∼ N (0,H2 + σ2I). (15)

Collecting (13), (14), and (15), we see that the Hammer-
stein-Wiener structure here discussed can be modeled using
a two-layer stochastic representation (see Fig. 6, right):

−1 −.5 0 .5 1

−5

0

5

u

f
1
(u

)

0 2 4 6 8 10 12

0

.5

1

k

g

−4 −2 0 2 4

0

.5

1

w

f
2
(w

)

True Estimated

Fig. 7. Result of the identification of Hammerstein-Wiener
cascades. Note that the blocks of the estimated system
have been scaled to match the true system.

g ∼ N (0,Kg),

f1 ∼ N (0,H1),

y | f1,g ∼ N (0,H2 + σ2I).

To evaluate the approach, we consider a Hammerstein-
Wiener cascade with

f1(x) = x3, f2(x) =
sin(πx)

πx
,

G(q) =
3− 0.2q−1 − 0.32q−3

3.08− 0.308q−1 − 0.9855q−2 + 0.1848q−3
.

We generated N = 300 samples of the output of the
system in response to a white-noise input, uniform in the
interval [−1, 1]. We corrupted the output measurements
with Gaussian white noise with variance equal to 10% of
the variance of the noiseless output.

We considered a two-layer model where the impulse
response is modeled with the stable-spline kernel (8).
For the nonlinear blocks, we used squared exponential
covariances such as (10).

Using the procedure presented in Alg. 2, we estimated the
posterior distribution of g and f1 using M = 1000 samples,
collected after a burn-in of B = 100 samples.

The result of this simulation is presented in Fig. 7. In
the figure we see the characteristics of the blocks of the
true system compared with the blocks estimated by the
method. From this simulation, it appears that the proposed
two-layer stochastic model is also effective at estimating
Hammerstein-Wiener cascades.

5. CONCLUSION

In this paper, we have proposed a two-layer stochastic
model with an associated estimation algorithm. The
estimation algorithm uses a Gibbs sampling procedure,
paired with ESS, to target the posterior distribution of
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the latent variables. We have validated the approach on
two example nonlinear systems showing that the proposed
approach can be used to effectively identify nonparametric
models of three-block cascades from data.

While the two layer stochastic approach seems very pow-
erful and has many applications, there are limitations. In
particular, the elliptical-slice sampling step involved in the
algorithm can become expensive in large models or when
there are many measurements: as shown in Algorithm 2,
we need to sample every latent variable using a rejection
scheme that involves the computation of the likelihood
function. If the likelihood function is expensive to compute,
this may lead to a large overall computational burden—for
instance, in the examples considered here, the complexity
of the likelihood function is cubic in the number of data.
Accelerating the sampling procedure (possibly using varia-
tional approximations) is left as future work. In addition,
there is no obvious way to tune the hyperparameters. In
the simulation examples, we have used a validation set
to select the hyperparameters. However, this is slow (for
reference, the estimation is Sec. 4.1 took about 45 hours)
and can possibly lead to overfitting. Extensions of the
method attempting to estimate the hyperparameters from
the marginal likelihood function are currently under study.
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method for Wiener–Hammerstein system identification
based on the fractional approach. Automatica, 94, 349–
360.

Giri, F. and Bai, E.W. (2010). Block-oriented nonlinear
system identification. Springer.

Haryanto, A. and Hong, K.S. (2013). Maximum likelihood
identification of Wiener–Hammerstein models. Mechani-
cal Systems and Signal Processing, 41(1-2), 54–70.

Hasiewicz, Z. and Mzyk, G. (2004). Kernel instrumental
variables for Hammerstein system identification. In Proc.
IEEE Int. Conf. Methods. Models. Autom. Robot.

 Lawryńczuk, M. (2016). Nonlinear predictive control of
dynamic systems represented by Wiener–Hammerstein
models. Nonlinear Dynamics, 86(2), 1193–1214.
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