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Abstract: Deployment of a second-order nonlinear multi agent system over a desired open
smooth curve in 2D or 3D space is considered. We assume that the agents have access to
their velocities and to the local information of the desired curve and their displacements with
respect to their closest neighbors, whereas in addition a leader is able to measure his absolute
position. We assume that a small number of leaders transmit their measurements to other agents
through a communication network. We take into account the following network imperfections:
the variable sampling, transmission delay and quantization. We propose a static output-feedback
controller and model the resulting closed-loop system as a disturbed (due to quantization)
nonlinear damped wave equation with delayed point state measurements, where the state is the
relative position of the agents with respect to the desired curve. To manage with the open curve
we consider Neumann boundary conditions. We derive linear matrix inequalities (LMIs) that
guarantee the input-to-state stability (ISS) of the system. The advantage of our approach is in
the simplicity of the control law and the conditions. Numerical example illustrates the efficiency
of the method.

Keywords: Distributed parameter systems, multi-agent systems, network-based control,
time-delay.

1. INTRODUCTION

Deployment of large-scale multi agent system (MAS),
where a group of agents rearrange their positions into a
target spatial configuration in order to achieve a common
goal, has attracted attention of many researchers in the re-
cent years Mesbahi and Egerstedt (2010), Oh et al. (2015).
This is due to their vast applications, such as cooperative
movement of robots or vehicles Ren et al. (2007), biochemi-
cal reaction networks, animal flocking behavior (see Olfati-
Saber (2006)), search-and-rescue, environmental sensing
and monitoring Dunbabin and Marques (2012), etc. The
majority of the existing work in the field of MAS is con-
centrated on deploying of interconnected agents, modeled
by ordinary differential equations (ODEs) that provides
efficient methods when the number of agents is low.

When the number of agents is large, a methodology
based on partial differential equations (PDEs) becomes
efficient. In Frihauf and Krstic (2010); Meurer (2012), the
agents were treated as a continuum, and the collective
dynamics was modeled by a reaction-diffusion PDE, un-
der the boundary control. Feedforward control combined
with backstepping-based boundary controller was imple-
mented in Freudenthaler and Meurer (2016), where the
collective dynamics was modeled by a modified viscous
Burger’s equation. Finite-time transitions between desired

? This work was supported by Israel Science Foundation (grant no.
673/19) and by C. and H. Manderman Chair at Tel Aviv University.

deployment formations along predefined spatial-–temporal
paths by means of boundary control were contemplated in
Meurer and Krstic (2011). Pilloni et al. (2015) address
the problem of driving the state of a network of agents,
modeled by boundary controlled heat equations, toward a
common steady state profile. Formation tracking control
of a MAS, where the collective dynamics was modeled
by a wave PDE was studied in Tang et al. (2017). Qi
et al. (2019) considered the control of collective dynamics
of a large scale MAS moving in a 3D space under the
occurrence of arbitrarily large boundary input delay.

In the case of measurements of the leaders’ absolute po-
sitions, the majority of PDE-based results employ the
PDE observer for output-feedback control. The latter may
be difficult for implementation. Recently a simple static
output-feedback controller was suggested in Wei et al.
(2019), where it was proposed to transmit the leader abso-
lute displacement with respect to the desired curve to all
the agents by using communication network. The network-
based results of Wei et al. (2019) were confined to the
first-order integrators and to deployment onto the closed
curves. Among the network imperfection, the quantization
effects were neglected. Moreover, in the case of several
leaders a common delay (i.e. synchronized transmissions
in the same time with the same network-induced delay)
was considered that may be restrictive.
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In this paper we study deployment of the second-order
nonlinear agents onto the open curves. We assume that
the agents have access to their velocities and to the local
information of the desired curve and their displacements
with respect to their closest neighbors, whereas in addition
a leader is able to measure his absolute displacement with
respect to the desired curve. As in Wei et al. (2019) we
propose to transmit the leaders absolute displacements to
other agents by using communication network. However,
these transmissions are not synchronous that leads to
multiple delays in the closed-loop system. Moreover, we
take into account the quantization effect (see Liberzon
(2003)).

By applying the time-delay approach to networked control
systems (see Chapter 7 of Fridman (2014)), we model
the resulting closed-loop system as a disturbed (due to
quantization) nonlinear damped wave equation with the
delayed point state measurements under the Neumann
boundary conditions. The state is the relative position of
the agents with respect to the desired curve. Note that
the existing results under the point delayed measurements
are confined to one delay and to unperturbed systems
(see Fridman and Blighovsky (2012); Kang and Fridman
(2019); Terushkin and Fridman (2019)). Here, for the
first time for such systems, we analyze the ISS of the
closed-loop system by combining the Lyapunov-Krasovskii
method with the generalized Halanay’s inequality (Wen
et al. (2008)). Moreover, we treat the case of multiple
delays. We derive LMIs that guarantee ISS. The advantage
of our approach is in the simplicity of the control law
and the conditions. Numerical example of deployment onto
smooth open curve in a 3D space illustrates the efficiency
of the method.

Notation Throughout the paper the notation P > 0
with P ∈ Rn×n stands for a symmetric and positive
definite matrix, with the symmetric elements denoted by
∗. Functions, continuous (continuously differentiable) in
all arguments, are referred to as of class C (of class C1).
L2(0, L) is the Hilbert space of square integrable functions

z(ξ), ξ ∈ [0, L] with the norm ‖z‖2L2 =
∫ L

0
z2(ξ)dξ.

H 1(0, L) is the Sobolev space of absolutely continuous
scalar functions z : [0, L]→ R with dz

dξ ∈ L
2(0, L). H 2(0, L)

is the Sobolev space of scalar functions z : [0, L]→R with

absolutely continuous dz
dξ and with d2z

dξ2 ∈ L
2(0, L).

1.1 Mathematical preliminaries

The following inequalities will be useful:

Lemma 1.1. Wirtinger’s inequality Hardy et al. (1988).
Let z ∈H 1[a, b] be a scalar function, with the boundary
values stated below. Then

σ

∫ b

a

z2(ξ)dξ ≤ (b− a)2

π2

∫ b

a

[
dz(ξ)

dξ

]2

dξ (1)

where

σ =

{
1, if z(a) = z(b) = 0;
1/4, if z(a) = 0 or z(b) = 0.

Lemma 1.2. Generalized Halanay’s inequality Wen et al.
(2008). Let V : [t0−τM ,∞) −→ R+ be a locally absolutely
continuous function, and w : [t0,∞) −→ C be a bounded
continuous function satisfying ‖w(t)‖ ≤ ∆w, where ∆w >

0 is given. If there exists 0 < α1 < α0 and γ2 such that for
all t ≥ t0 the following holds

V̇ (t)+2α0V (t)−2α1 sup
−τM≤θ≤0

V (t+θ)−γ2|w(t)|2 ≤ 0, t ≥ t0,

then

V (t) ≤ exp
(
−2α(t−t0)

)
sup

−τM≤θ≤0
V (t0+θ)+

γ2

ε
∆2
w, t ≥ t0,

(2)
where ε = 2(α0 − α1) > 0, and α > 0 is a unique positive
solution of

α = α0 − α1 exp(2ατM ).

2. MAIN RESULTS

2.1 Problem formulation

Consider a group of N agents, described by the second-
order dynamics, that can move in space Rn, n ∈ {1, 2, 3}.
Our aim is to deployN agents onto a C2 curve Γ : [0, L] −→
Rn. If Γ(0) 6= Γ(L), the curve Γ is open. For simplicity, we
assume that the desired curve does not evolve over time.
We neglect collision avoidance as we assume agents of zero
volume operating within a large workspace. Furthermore,
we assume that no static or moving obstacles are present
in the operating workspace.

The dynamics of each agent, in each dimension n, n =
{1, 2, 3}, is given by

z̈i(t) = ui(t) + f(zi, t), i = 1, . . . , N, t ≥ t0. (3)

where zi(t) ∈ R, ui ∈ R are components of the position
and control of agent i respectively, and the acceleration
nonlinearities f are of class C1. For brevity, the notation
of dimension is omitted. We assume that the derivative fz
is uniformly bounded by a constant ρ1 > 0 :

|fz(z, t)| ≤ ρ1, ∀(z, t) ∈ R× [0, L]× [t0,∞). (4)

N points are assigned on the desired curve with constant
spacing h = L

N , namely Γ(h), . . . ,Γ(hN) which will give
the final desired position of each agent.

The leader-enabled deployment of mobile agents is consid-
ered under the following assumptions:

(1) Agents i = 2, . . . , N − 1 measure their displacements
with respect to the closest neighbors i−1, i+1. They
have access to Γ((i− 1)h),Γ(ih) and Γ((i+ 1)h). The
boundary agents with i = 1 and i = N measure
the relative positions of the agents 2 and N − 1 and
have access to Γ(h),Γ(2h) and Γ((N − 1)h),Γ(Nh)
respectively.

(2) All the agents measure their own velocity żi with
respect to the global coordinate system. However, no
agent can measure its global position zi except for the
leader agents labeled zim , m ∈ {1, . . . ,M}.

(3) The agents form a chain topology, and the adjacent
agents keep their order.

Our objective is to deploy the agents onto the desired curve
Γ by exploiting M << N leaders.

2.2 Controller design and PDE model

We propose a leader-follower displacement-based control,
where the position measurements of the leader agents
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are transmitted through communication network to other
agents. Define

z0(t) = z2(t), zN+1(t) = zN−1(t),
Γ(0) = Γ(2h), Γ((N + 1)h) = Γ((N − 1)h).

(5)

Consider the following static output-feedback controller:

ui(t) =
υ2

h2
[zi+1(t)− 2zi(t) + zi−1(t)] (6)

− υ2

h2

[
Γ
(
(i+ 1)h

)
− 2Γ

(
ih
)

+ Γ
(
(i− 1)h

)]
− βżi(t)− f(Γ(ih), t) + ūi(t), i = 1, . . . , N.

Here ūi will be found below as the product of a constant
gain K > 0 on the corresponding leaders’ position mea-
surements. Note that the proposed controller (6) contains
3 gains: υ2 (larger υ2 allows to reduce the number of the
leaders Wei et al. (2019)), K (compensates the destabi-
lizing effect of the nonlinearity f) and β (improves the
convergence). Given υ2, we aim to achieve the deployment
with as small as possible number M of leaders.

Denote the error

ei(t) = zi(t)− Γ(ih), u = 0, . . . N + 1, t ≥ t0.
We have

f(zi, t)− f(Γ(ih), t) = ρ(ei, t)ei(t),

ρ(ei, t) =

∫ 1

0

fz (θei + Γ(ih), t)) dθ,

where due to (4)

|ρ| ≤ ρ1 ∀(ei, t) ∈ R× [t0,∞).

Then the closed-loop system (3), (6) can be presented as:

ëi(t) =
υ2

h2
[ei+1(t)− 2ei(t) + ei−1(t)] (7)

− βżi(t) + ρ(ei, t)ei(t) + ūi(t), i = 1, . . . , N.

We further treat the large-scale MAS (3) as a continuum
with a spatial domain x ∈ [0, L]. Following Fridman and
Blighovsky (2012); Wei et al. (2019), we divide x ∈ [0, L]
into M sampling intervals

0 = x0 < x1 < . . . < xM = L, (8)

where the length of the interval is bounded

xm − xm−1 = ∆m < ∆, m = 1, ...,M. (9)

Since we aim to minimize M , we can always assume that
∆ ≤ L

M+1 . Similar to Terushkin and Fridman (2019), we
place the leader agent approximately in the middle of each
interval (see Fig. 1) such that

x̂m − xm−1 ≤
∆

2
, xm − x̂m ≤

∆

2
.

Note that if in discretization, the number Nm of agents
located on [xm−1, xm] is even, then leader may be located
in such a way that he has 0.5Nm− 1 agents on [xm−1, xm]
from the left (or right) and 0.5Nm from the right (or left).

∆m

leader
zim

xm−1 x̂m xmx0

0

xM

L

Fig. 1. MAS: leader location

The leader zim sends his absolute (relative to Γ) position
zim − Γ(imh) to all the agents zi located on [xm−1, xm)
through communication network. The measurements are
subject to quantization effect Liberzon (2003), Fridman
and Dambrine (2009). A quantizer is a piecewise constant
function q : R→ R such that

|q(y)− y| ≤ ∆q, (10)

where ∆q is the quantization error bound. Here for sim-
plicity we assume that the quantizer has no constraints on
the quantization range.

Let sm0 < sm1 < ... be the sampling times of the measure-
ments with limk→∞ smk =∞ and ηmk are network-induced
delays. We assume that sk + ηk < sk+1 + ηk+1 for all
k. The agents zi from the interval [xm−1, xm] employ the
controller

ūi(t) = Kq(zim(smk )−Γ(imh)), t ∈ [sk+ηk, sk+1+ηk+1),
(11)

where ūi(t) = 0 for t < t0.

By using the time-delay approach to network-controlled
systems (see Chapter 7 of Fridman (2014)), denote

τm=τm(t)= t−smk , t ∈ [smk +ηmk , s
m
k+1 +ηmk+1), k = 0, 1, . . .

where τm(t) ≤ τM ∀m = 1, ...,M and τM is the sum of
maximum transmission interval and maximum allowable
delay. Then the controller (11) can be presented as

ūi(t) = Keim(t− τm) +Kwm(t− τm), t ≥ t0,
wm(t− τm) = q(eim(t− τm))− eim(t− τm)

(12)

with
|wm(t− τm)| ≤ ∆q, ∀t ≥ t0. (13)

System (7), (12) can be considered as the discretization in
the spatial variable of the damped wave equation

ett(x, t) = υ2exx(x, t)− βet(x, t) + (ρ(e, t)−K)e(x, t)

+K

M∑
m=1

χm [e(x̂m, t− τm) + wm(t− τm)] , (14)

x ∈ (0, L), t ≥ t0
under the Neumann boundary conditions

ex(0, t) = ex(L, t) = 0, (15)

and initial conditions defined by the difference between of
the initial agents positions and their target positions on Γ.
Here χm are given by

χm(x) =

{
1, x ∈ [xm−1, xm]
0, x 6∈ [xm−1, xm]

,m = 1, . . . ,M. (16)

Note that (5) with e0 = e2 and eN+1 = eN−1 corresponds
to spatial discretization under the Neumann boundary
conditions. Due to (4)

|ρ| ≤ ρ1 ∀(e, t)R× [t0,∞).

Consider initial conditions for (14), (15) as

e(x, t) ≡ e(x, t0), et(x, t) ≡ et(x, t0), t ≤ t0.

Well-posedness of (14), (15) can be proved similar to
Terushkin and Fridman (2019). The state is presented as
ζ(t) = [ζ0(t) ζ1(t)]T = [e et(t)]

T . Denote

A =

[
0 I

υ
2 ∂2

∂x2
−βI

]
, F (ζ, t) =

[
0

F1(ζ0, t)

]
.

Here F1 : H 1(0, L)× [t0,∞)→ L2(0, L) is given by
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F1(ζ0, t) = f(z, t)− f(z − ζ0, t)

−K
M∑
m=1

χm(x) [ζ0(x̂m, t− τm) + wm(t− τm)] .

The resulting differential equation

ζ̇(t) = A ζ(t) + F (ζ(t), t), t ≥ t0 (17)

is considered in the Hilbert space H = H 1(0, L) ×
L2(0, L), where and ‖ζ‖2H = ‖ζ0x‖2L2 + ‖ζ1‖2L2 .

The operator A with the dense domain

D(A )=
{[
ζ0
ζ1

]
∈H 2(0, L)×H 1(0, L)

∣∣∣∣ζ0x(0)=ζ0x(L)=0
}

generates an exponentially stable semigroup (see Pazy
(1983)). The times smk + ηmk , k = 0, 1, ..., m = 1, ...,M are
ordered as t0, t1, ... By employing the step method for t ∈
[t0, t1], t ∈ [t1, t2] and applying Theorems 6.1.2 and 6.1.5
from Pazy (1983) (see Terushkin and Fridman (2019)), we
find that a unique mild solution exists in C([t0,∞),H ) for
(14), (15), initialized by [e(·, t0)et(·, t0)]T ∈H . Moreover,
if [e(·, t0) et(·, t0)]T ∈ D(A )), then there exists a unique
classical solutionC1([t0,∞),H )with ζ(t)∈D(A ) for t>t0.

2.3 ISS analysis

For the choice of the controller gains β and K we follow
Remark 3.1 of Terushkin and Fridman (2019), where larger

β and K = ρ1 + β2

4 lead to faster convergence.

Theorem 2.1. Consider the damped wave equation (14)
under the Neumann boundary conditions (15) initialized
for t ≤ t0 by e(·, t) ≡ e(·, t0) ∈ H 1(0, L), et(·, t) ≡
et(·, t0) ∈ L2(0, L) with the bounds τM , ρ1,∆q,∆ in (13)

and (9). Given α0 > α1 > 0, υ2, β > 0,K = ρ1 + β2

4 , let
there exist γ, s > 0, r > 0, q12 and p1, p2, p3 that satisfy
the LMIs

P0 =

[
p1 p2

∗ p3

]
> 0, (18)

α0p3 − p2 ≤ 0, (19)

R =

[
r q12

∗ r

]
≥ 0, (20)

and
Ψ|ρ=±ρ1 =

ψ11 ψ12 ψ13 ψ14 Kp2 −2αMp2 −Kp2

∗ ψ22 Kp2 + τ2
Mr 0 Kp2 0 −Kp2

∗ ∗ ψ33 ψ34 0 2αMp2 0
∗ ∗ ∗ ψ44 0 0 0
∗ ∗ ∗ ∗ ψ55 0 0
∗ ∗ ∗ ∗ ∗ −2αMp3 0
∗ ∗ ∗ ∗ ∗ ∗ −γ2


≤ 0,

(21)
where αM = α1

M and

ψ11 = 2p2(ρ−K) + 2(α0 − αM )p1 + s(1− exp(−2α0τM ))

ψ12 = p1 + p2(2α0 − β) + p3(ρ−K)

ψ13 = Kp2 + s exp(−2α0τM ) + 2αMp1

ψ14 = s exp(−2α0τM ), ψ22 = 2p2 + 2p3(α0 − β)

ψ33 = −(s+ r) exp(−2α0τM )− 2αMp1

ψ34 = −(s+ q12) exp(−2α0τM )

ψ44 = −(s+ r) exp(−2α0τM ), ψ55 = −2αMp3υ
2(π2/∆2).

Then, (14) is ISS, namely there exists c0 > 0 such that for
all t ≥ t0

c0(‖ex(·, t)‖2L2 + ‖et(·, t)‖2L2) ≤ exp
(
− 2α(t− t0)

)
×
[
‖ex(·, t0)‖2L2 + ‖et(·, t0)‖2L2

]
+
γ2

ε
∆2
qL, (22)

where ε = 2(α0 − α1) and α > 0 is a unique positive
solution of α = α0 − α1 exp(2ατM ).

Moreover, if the strict inequalities (18)-(21) are feasible
with α0 = α1 > 0, then the error system (14), (15) is ISS
with a small enough decay rate.

Proof Denote

ν1 = e(x, t)−e(x, t−τm), ν2 = e(x, t−τm)−e(x, t−τM ).

By employing the relations

e(x, t− τm) = e(x, t)− ν1(x, t), (23)

e(x̂m, t) = e(x, t)−
∫ x

x̂m

eζ(ζ, t)dζ

the error dynamics can be represented as

ett = υ2exx − βet + (ρ−K)e (24)

+K

M∑
m=1

χm

[
ν1 +

∫ x

x̂m

eζ(ζ, t− τm)dζ − wm(t− τm)

]
.

For deriving the ISS conditions of (7), we use a Lyapunov
functional similar to Terushkin and Fridman (2019)

V (t) = V0(t)+Vs(t)+Vr(t), t ∈ [tk, tk+1), k = 0, 1, 2, . . .
(25)

where V0(t) is given by

V0(t)=p3υ
2

∫ L

0

e2
xdx+

∫ L

0

[e et]P0[e et]
T dx, (26)

with P0 given by (18), and

Vs(t) = s

M∑
m=1

∫ xm

xm−1

∫ t

t−τM
e2α0(s−t)e2(x, s)ds dx, (27)

Vr(t) = rτM

M∑
m=1

∫ xm

xm−1

∫ 0

−τM

∫ t

t+θ

e2α0(s−t)e2
s(x, s)ds dθ dx,

with some scalars s, r ≥ 0. Here, Vs and Vr treat time-delay
terms. This functional is defined on the mild solutions
of (14), (15), and due to (18) it is positive definite with
V (t) ≥ c′(‖ex(·, t)‖2L2 + ‖et(·, t)‖2L2) for some c′ > 0.

As in Fridman (2013), we consider first

[e(·, t) ≡ e(·, t0), et(·, t) ≡ et(·, t0)]T ∈ D(A ).

Then we can differentiate V (t) along the classical solutions
of the wave equation. By differentiating Vs and Vr we have

V̇s+2α0Vs = s

M∑
m=1

∫ xm

xm−1

(
e2(x, t)−e−2α0τM e2(x, t−τM )

)
dx

(28)
and

V̇r + 2α0Vr ≤ τ2
Mr

M∑
m=1

∫ xm

xm−1

e2
tdx (29)

− τMre−2α0τM

M∑
m=1

∫ xm

xm−1

∫ t

t−τM
e2
s(x, s)ds dx.

Then, under (20) by Lemma 3.4 of Fridman (2014) we find

−τMr
M∑
m=1

∫ xm

xm−1

∫ t

t−τM
e2
sds dx≤−

M∑
m=1

∫ xm

xm−1

[ν1 ν2]R[ν1 ν2]Tdx.
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We proceed with differentiating (25) along (14). Note
that integration by parts and substitution of boundary
conditions leads to

2υ2

∫ L

0

(p2e+ p3et)exxdx = −2υ2

∫ L

0

[
p2e

2
x + p3exext

]
dx.

Then

V̇0 + 2α0V0 ≤2υ2(α0p3−p2)

∫ L

0

e2
xdx+

∫ L

0

[e et]G[e et]
T dx

+ 2

M∑
m=1

∫ xm

xm−1

K(p2e+ p3et)

×
[
ν1 +

∫ x

x̂m

eζ(ζ, t− τm)dζ − wm(t− τm)

]
dx

where

G
∆
=

[
2p2(ρ−K) + 2α0p1 p1 + p2(2α0 − β) + p3(ρ−K)

∗ 2p2 + 2p3(α0 − β)

]
.

By (13), we have

M∑
m=1

∫ xm

xm−1

|wm(t− τm)|2dx ≤ ∆2
qL. (30)

We will further apply the generalized Halanay’s inequality
(2) for some 0 < α1 < α0. Note that

sup
−τM≤θ≤0

∫ L

0

e2
x(x, t+θ)dx≥ 1

M

M∑
m=1

sup
−τM≤θ≤0

∫ xm

xm−1

e2
x(x, t+θ)dx

≥ 1

M

M∑
m=1

∫ xm

xm−1

e2
x(x, t− τm)dx.

(31)
Then

W
∆
= V̇ (t) + 2α0V (t)− 2α1 sup

−τM≤θ≤0
V (t+ θ)− γ2∆2

qL

≤ V̇ (t)+2α0V (t)−2αMp3υ
2
M∑
m=1

∫ xm

xm−1

e2
x(x, t−τm)dx

− 2αM

M∑
m=1

∫ xm+1

xm

[
e(x, t− τm)
et(x, t− τm)

]T
P0

[
e(x, t− τm)
et(x, t− τm)

]
dx

− γ2
M∑
m=1

∫ xm

xm−1

|wm(t− τm)|2dx. (32)

By Wirtinger’s inequality (1) with (b − a) = (∆)/2 and
σ = 1/4 we have∫ xm

xm−1

e2
x(x, t− τm)dx =

M∑
m=1

[ ∫ x̂m

xm−1

e2
x(x, t− τm)dx+

∫ xm

x̂m

e2
x(x, t− τm)dx

]
≥ π2

∆2

M∑
m=1

[ ∫ x̂m

xm−1

[e(x, t− τm)− e(x̂m, t− τm)]2dx

+

∫ xm

x̂m

[e(x, t− τm)− e(x̂m, t− τm)]2dx
]

≥ π2

∆2

M∑
m=1

∫ xm

xm−1

[e(x, t− τm)− e(x̂m, t− τm)]2dx

=
π2

∆2

M∑
m=1

∫ xm

xm−1

(∫ x

x̂m

eζ(ζ, t− τm)dζ

)2

dx.

Denote

η = [e et ν1 ν2

∫ x

x̂m

eζ(ζ, t−τm)dζ et(x, t−τm) wm(t−τm)].

Then, by taking into account (19),

W ≤2υ2(α0p3 − p2)

∫ L

0

e2
xdx+

M∑
m=1

∫ xm

xm−1

ηΨηT dx ≤ 0,

if Ψ ≤ 0, where Ψ is given by (21). Note that Ψ is affine in
ρ. Thus, it is sufficient to verify (21) in the vertices ±ρ1.

Thus, under (18)-(21), due to Halanay’s inequality, the
classical solutions of the wave equation satisfy (22). Since
D(A ) is dense in H , inequality (22) remains true (by
continuous extension) for the mild solutions originated in
H .

The feasibility of strict LMIs with α0 = α1 = 0 implies
their feasibility with a slightly larger ᾱ0 = α0 + δ > 0,
where δ > 0 is small, that completes the proof.

Remark 2.1. Differently from the existing works on dis-
tributed sampled-data control under point measurements
Fridman and Blighovsky (2012); Wei et al. (2019);
Terushkin and Fridman (2019), we consider the point mea-
surements (12) under the different delays τm that leads to
more restrictive conditions via Halanay’s inequality with
αM = α1

M instead of α1 for equal delays τ1 = ... = τM . Note
that still it is easier to satisfy the resulting conditions for
M >> 1 than forM = 1 since the stabilizing term with the
coefficient −α1

M p3υ
2 in (32) after application of Wirtinger’s

inequality in (33) leads to

−α1

M
p3υ

2 π

∆2
≤ −α1(M + 1)2

M
p3υ

2 π

L2
=⇒
M→∞

−∞.

2.4 Numerical simulations

In the sequel, we validate the proposed control approach in
a simulation. Consider a group of N = 49 agents, governed
by (3) with a linear f = z, where ρ1 = 1 in (4). Our
objective is deployment from initial position of Γ0 onto a
smooth open curve Γ, parameterized in the interval [0, π]

Γ0 =

[
sin

(
π

N
i

)
, cos

(
π

N
i

)
, 0

]
, i = 1, . . . , N (33)

Γ =

[
sin

(
π

N
i

)
+2 cos

(
2π

N
i

)
, cos

(
π

N
i

)
+2 sin

(
π

N
i

)
, 2+cos

(
2π

N
i

)]
.

We design a controller with the gains

υ2 = 4.1, β = 3, K = 1 + β2/4. (34)

For the linear system, LMI (21) of Theorem 2.1 is verified
only in one vertex ρ = ρ1 = 1. We find that the LMIs of
Theorem 2.1 are feasible for M ≥ 2 leaders. By further
verifying the LMIs of Theorem 2.1 with α0 = α1 = 0.4,
we find that the system with two leaders (M = 2) is ISS
provided τM ≤ 0.52.Note that increasing υ2 till 5.1, results
in 1 leader being sufficient for deployment if τM ≤ 0.29.
We further show simulations of the deployment for M = 2,
τM = 0.52, where the network induced delays are bounded
by ηmk ≤ 0.02, and quantization error is bounded by
∆q = 0.01. The agents are divided into two groups: 1)
agents z1, ..., z24 with the leader zi1 = z13 and 2) agents
z25, ..., z49 with the leader zi2 = z37. Fig. 2 depicts the
transitions of a system driven by two leaders from initial
(marked blue) to final (marked pink) open curves, given by
(33). Trajectories of the leaders are shown in cyan, whereas
the trajectories of the followers are shown in grey. Fig.
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3(a) demonstrates the convergence of the error energy for
each dimension. The error e for one of the dimensions is
illustrated by Fig. 3(b).
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Fig. 2. Deployment of N = 49 agents from Γ0 (blue) to Γ
(magenta), with M = 2 leaders (trajectories in cyan)
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Fig. 3. (a) Energy ‖ex‖2L2 + ‖et‖2L2 for each dimension
(dotted - dim. 1, dashed - dim. 2, solid - dim. 3),
(b) Convergence of e for dim. 1

3. CONCLUSIONS

We considered a network-based deployment of a large-
scale second-order nonlinear MAS onto a smooth (open
or closed) curve. Astatic output-feedback controller was
designed, by employing the measurements of velocity by
each agent, and of their displacements with respect to
the closest neighbours, as well as the measurements of
the leaders’ absolute positions with respect to the curve.
The leaders’ positions are sent through communication
network to other agents. The resulting closed-loop sys-
tem was modeled as a disturbed (due to quantization)
nonlinear damped wave equation with delayed point state
measurements. As a by-product, for the first time for PDEs
under delayed point measurements, the ISS conditions
were derived by combining Lyapunov functionals with the
generalized Halanay’s inequality. LMI-based conditions
were provided for finding the minimal number of leaders,
and the maximal admissible network delays and sampling
intervals that preserve the ISS.
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