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Abstract: In insurance telematics, the information about the motion of a vehicle is mostly
derived by a combination of inertial signals measured from e-Boxes installed integral to the
vehicle. However, one must cope with poor reliability and possible lack of continuity of the
GPS/GNNS signals. In this work, an inertial-based classification method that discriminates
whether a two-wheeled vehicle is in motion is presented. This binary detection can be very helpful
in circumstances where the GPS/GNNS signal is not sufficiently reliable and consequently the
speed. With respect to what dead-reckoning algorithms do, the present contribution aims to
recognize when the vehicle is moving without estimating the vehicle speed, but rather by
correctly interpreting the intensity of the measured inertial signals. The approach has been
extensively tested on experimental data, proving its suitability for practical applications.
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1. INTRODUCTION

Traditional telematic devices and related service providers
generally use standard GPS/GNSS technology to track ve-
hicles position and velocity. However, GPS/GNSS sensors
often suffers from signal loss, and multipath can occur
due to “urban canyons”, tunnels and parking garages,
skyscrapers, or tall structures blocking or weakening the
connection from the satellites to the device. In fact, for
generating an output signal, a GPS/GNSS device needs
to connect to at least four satellite signals, out of thirty-
one, in order to calibrate its exact location. Otherwise, it
is not able to get an accurate reading, causing GPS/GNSS
devices to become ineffective until they regain a reliable
signal Kao (1991); Toledo-Moreo et al. (2009b).

Inertial low-cost navigation systems, made of Inertial Mea-
surement Units (IMUs), integrating acceleromerter and
gyroscopes, generally installed integral to the vehicle, can
be used for greater reliability of the vehicle motion moni-
toring tasks, Groves (2013). They are usually employed to
continuously compute the vehicle position, orientation and
velocity without the need for external references, Toledo-
Moreo et al. (2009a). However, all inertial navigation sys-
tems suffer from integration errors due to mounting inac-
curacy, and sensors’ bias and drifts, which induce progres-
sively larger errors in the estimated quantities. Therefore,
these measures must be periodically corrected, for example
by resorting to a GPS/GNSS unit as reference for resetting
the integration tasks, Bevly and Parkinson (2007).

Non-GPS/GNSS-based navigation and tracking technolo-
gies are currently being developed based also on precision
time transfer using optics and chip-scale atomic clocks.
Additionally, expensive vision-based navigation systems,

which rely on cameras and signal processing algorithms,
offer high precision through complex processing methods.
However, for tracking and for the realization of telematic
services, the common approach is mainly based on ob-
taining inertial sensors measurements at high sampling
rates and fusing them to obtain position, velocity and
orientation information. With these approaches, accuracy
is limited only over a short time window, while drops, as
mentioned before, from integration drift over longer time
scales, Achtelik et al. (2009); Nagatani et al. (2000).

In this work, we are interested in establishing whether
a ground vehicle (in particular a two-wheeled one) is in
motion or not. This condition is crucial to be detected
in certain accident-related arbitrations, see, e.g., Gelmini
et al. (2019), and also when the GPS/GNSS sensors are not
working. In particular, we set the problem as that of learn-
ing the in-motion or not in-motion status of the vehicle
by processing and classify in real time the inertial signals,
without resorting to direct integration. This approach has
the merit of overcoming the integration-related limitations
discussed above, and to yield a repeatable and accurate
method in all working conditions. The effectiveness of the
approach is tested over a varied experimental data set.

2. PROBLEM STATEMENT AND EXPERIMENTAL
SETUP

The motion classification approach presented in this work
is designed, trained, and validated against experimental
data recorded with a telematic e-Box, which is placed to
be approximately integral with the motorcycle center of
mass (Fig. 1). The devices is equipped with:
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• An IMU, recording both the triaxial acceleration
(a = [ax, ay, az]

′
) and angular rate (ω = [ωx, ωy, ωz]

′
)

vectors, with a sampling frequency of 400 Hz.
• A GPS/GNSS receiver, the sampling frequency of

which is 10 Hz, measuring the vehicle speed. As
illustrated later in this contribution, speed is only
used to label the data and build the training and
validations sets, as it is supposed to be non-available
when the algorithm is working.

In particular, the vehicle is considered in-motion when its
speed is estimated to be larger than a certain threshold,
while it is considered to be not in-motion otherwise. The
threshold is set to 3 km/h, which corresponds to the
maximum value of the GPS/GNSS receiver’s noise when
the vehicle is not moving.

In what follows, it is assumed that the input signals
are perfectly aligned with the vehicle standard reference
frame. However, since the e-Boxe can be freely installed on
the vehicle, the measurements are affected by its mount-
ing orientation. Therefore, to ensure that the measured
quantities are aligned as expected, axes are virtually ro-
tated through a self-calibration algorithm, as described in
Gelmini et al. (2018a).

The experimental data presented herein are collected on a
500 cm3 Piaggio MP3. Tests are conducted under mixed
traffic conditions, both on urban and extra-urban roads.

Fig. 1. The experimental setup: a Piaggio MP3 and the
e-Box mounted underneath the seat.

3. FEATURES ENGINEERING

As previously described, the proposed algorithm is de-
signed to detect whether a two-wheeled vehicle is in mo-
tion or not without relying on the presence of a valid
GPS/GNSS signal. In this section, the features engineer-
ing phases used to train the classification algorithm are
discussed.

3.1 Preliminary data analysis

In this preliminary phase, four scenarios are considered:

• Standing Engine OFF : The motorcycle is powered off
and the vehicle is standing still.
• Standing Engine On Low RPM : The motorcycle is

standing still, powered on, with the engine idling.
• Moving Low Speed : The vehicle is driven stationary

at low speed (up to 10 km/h).
• Moving High Speed : The vehicle is driven at constant

speed, at different velocities, all larger than 10 km/h.

Fig. 2 plots pairs of signals in the four vehicle condi-
tions indicated above. As shown, signals exhibit significant

differences in terms of their spanned range. In fact, the
size of the clusters grows with increasing levels of vehicle
vibrations. In fact, when the vehicle is powered off, the
range of the signals is approximately zero. Instead, when
powered on, the engine-induced vibrations have increas-
ing intensity, which further grows when the vehicle is in
motion. These differences can be modeled considering the
variance of the signals.

The ratio of the variance of each signal in Moving Low
speed and Standing Engine On Low RPM

VarLS(j)

VarSEON
(j)

, (1)

with j = {ax, ay, az, ωx, ωy, ωz}, is analyzed and shown
in Fig. 3. This analysis proves that ωz, ωy, ax have a much
more discriminating power than ωx, az, ay. This result can
also be explained intuitively: At low speed, it is difficult
(or even impossible) to lean rapidly (i.e., large values of
ωx), the vehicle lateral slip is minimal (i.e., low ay), and
the heave movement is only subject to road imperfections
(i.e., az is limited). For this reason, to reduce the problem
dimensionality, only these three most informative signals
are used from now on for classification purposes.

It is worth to mention that there exists a critical scenario
that has not been introduced yet: Standing Engine On
High RPM. In this condition, the vehicle is powered on,
standing still, with the engine intentionally accelerated, so
to increase its RPMs. This operation is often performed by
some riders who turn the throttle handlebar while waiting
to restart (e.g., at traffic lights). This non moving scenario
shows that the vibrations sensed by the IMU are compara-
ble, or even more significant, than those experienced when
the vehicle is in motion at constant low speed (Fig. 4).
This condition proves that analyzing inertial data without
considering their dynamics would probably lead to a non-
robust detection algorithm.

To effectively detect when the vehicle is moving, inertial
measurements are analyzed in the frequency domain. In
this context, the differences appear to be clearer, as
depicted in Fig. 5. In fact, focusing only on the two
previously misleading scenarios (i.e., Standing Engine On
High RPM and Moving Low Speed), one may see that
the related information content is spread over different
harmonic ranges: At Moving Low Speed, the information
is mainly present up to 10 Hz for all the signals, with
additional peaks at 19.6, 38, 79 Hz. On the contrary, when
the vehicle is standing still, the spectra are almost flat to
zero up to 14 Hz, where the first peak is encountered.
Thus, the influence of the vehicle dynamics, which affects
the measurements only when the vehicle is in motion,
is dominant at low frequencies, while engine-transmission
resonances influence the harmonics above 10 Hz.

3.2 Data pre-processing

Since the goal of the proposed approach is to be vehicle-
independent, the analysis in the frequency domain pro-
vided insights on how to pre-process inertial signals so to
remove the effect of vehicle’s resonances, retaining only the
informative content related to the navigation dynamics of
interest. To this end, signals are filtered with a first-order
low-pass filter

F (s) =
2πfc

s+ 2πfc
. (2)

The cut-off frequency (fc) is chosen based on a sensitivity
analysis aiming to enhance the ratio between the signals
variance for Moving Low Speed over the Standing Engine

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

15699



-5 0 5

ax [m/s2]

-5

0

5

a
y
[m

/
s2
]

-5 0 5

ax [m/s2]

-5

0

5

a
z
[m

/
s2
]

-5 0 5

ay [m/s2]

-5

0

5

a
z
[m

/
s2
]

-20 0 20

ωx [deg/s]

-20

-10

0

10

20

ω
y
[d
eg
/
s]

-20 0 20

ωx [deg/s]

-20

-10

0

10

20

ω
z
[d
eg
/
s]

-20 0 20

ωy [deg/s]

-20

-10

0

10

20

ω
z
[d
eg
/
s]

Moving High Speed
Moving Low Speed
Standing engine On Low RPM
Standing engine Off

Fig. 2. Analysis of the six inertial measured signals for different vehicle conditions: Clusters are more spread for a more
intense use of the vehicle. Note that az was debiased from the effect of gravity.
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Fig. 3. Ratio of the variance computed for scenario Mov-
ing Low Speed (LS) over Standing Engine On Low
RPM (SEON ). For ωx, az, ay, the ratio is less than
unity, meaning that the vibrations, when moving, are
significantly less intense than when standing still.

On High RPM condition, which can be considered as a
quantitative descriptor to measure how different the two
clusters are. As illustrated in Fig. 6, this ratio increases for
small values of fc, though greater values of fc provide a
prompter response. It can be seen that while ωz discrimi-
nates between the two cases even for fc = 10 Hz, ωy and ax
require a more significant filtering action. A good trade-off
is found for fc = 0.5 Hz, despite the non-negligible phase
lag.

Once the data are filtered, as shown in Fig. 7, the size of
the ranges for Moving Low speed and Standing Engine On
High RPM are sufficiently different to distinguish between
the two classes, even in this particularly critical scenario.

3.3 Features extraction

To extract the discriminating information, two features are
derived for each signal s, with s = {ax, ωy, ωz}, over a
sliding window that buffers the last N samples:

• sran, computes the difference between the maximum
and minimum values of the current values stored in
the sliding window
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Fig. 4. Analysis of the special case Standing Engine On
High RPM vs Moving Low Speed for the most in-
formative signals. In this case, the clusters are over-
lapped and the not-moving one is larger than its
moving counterpart.

sran(k) = max (s(k, . . . , k −Nran))

−min (s(k, . . . , k −Nran)) .
(3)

• svar, computes the variance of the buffered values

svar(k) = E
[(
s(k, . . . , k −Nvar)

− E
[
s(k, . . . , k −Nvar)

])2]
.

(4)

Hence, six features are extracted, three variances (i.e.,
axvar , ωyvar , ωzvar ), and three max-min differences (i.e.,
axran

, ωyran
, ωzran

). In this application, the buffer size is
chosen to be Nran = 500, which allows storing the past
1.25 seconds of the signals. Alternatively, the variance can
be computed with a filtering chain, as discussed in Gelmini
et al. (2018b). In this case, an equivalent window Nvar is
obtained with a chain of high-pass and low-pass filters, the
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Fig. 5. Spectral analysis of ax, ωy, ωz for Standing Engine On High RPM and Moving Low Speed. The two scenarios,
which are hardly distinguishable in the time-domain framework, are instead well separated in the frequency domain.
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Fig. 6. Sensitivity analysis of the low-pass filter cut-off
frequency: The ratio between the variance computed
on the filtered signals increases for low value of fc.

cut-off frequency of which are respectively fchigh
= 0.35 Hz

and fclow = 1.5 Hz.

4. DETECTION ALGORITHM AND
EXPERIMENTAL RESULTS

The features extracted in the previous section can be used
to classify the motion of the vehicle. Thus, the classifi-
cation can be performed with Support Vector Machines,
a machine-learning classification algorithm that optimizes
the class separation finding the optimal hyperplane that
maximizes the separation margin between any training
point and the hyperplane itself Scholkopf and Smola
(2001); Duda et al. (2012); Friedman et al. (2001). This
hyperplane is obtained solving the following optimization
problem

min
w∈H, b∈R, ξ∈R

1

2
‖w‖2 + C

m∑
i=1

ξi

subject to yi (〈w, xi〉+ b) ≥ 1− ξi, ∀i = 1, . . . ,m
ξi ≥ 0,

(5)
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Fig. 7. Analysis of the special case Standing Engine On
High RPM vs Moving Low Speed for the most infor-
mative signals (i.e., ax,ωz, and ωy), filtered with a
low-pass filter. In this case, the clusters have different
dimensions, making the classification possible.

in which w is a vector orthogonal to the hyperplane, H
is the product space, (xi, yi) are the training inputs and
outputs, and C > 0 the penalty parameter of the error
term ξ, which limits the bias if the training dataset is
corrupted with outliers. Besides, SVM is preferred, among
all the linear classifiers, for its relatively low computational
effort during the prediction phase, crucial for running on
devices with reduced computational power, such as the
telematic e-Boxes herein considered.

The SVM algorithm is trained with all possible combina-
tions of features extracted from training data. The dataset
used in the learning process is composed of a hundred miles
of tests recorded on both urban roads and highways, both
maintaining the vehicle stationary at a given speed and
reproducing a more natural driving profile, with different
stops.
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4.1 Validation

The trained algorithm is then evaluated and optimized
against a validation dataset, containing only real riding
scenarios not used in the training phase. In the upper
part of Fig. 8, the classification performance is analyzed
in terms of accuracy, specificity and sensitivity. As shown,
most of the classifiers achieve comparable high perfor-
mance for all the analyzed indexes. The SVM number
47, trained with ωyvar and ωzvar , shows the highest accu-
racy (97.38%), with both sensitivity and specificity above
97.2%. Overall, it is possible to claim that the vast major-
ity of the features combinations provide solid results.

When a dynamic system is involved in a classification, the
output bounces when switching from one class to another.
Thus, we can compute the average time to robustly detect
when a vehicle starts moving (denoted as rise time), and
when it stops (fall time). Results shown in the lower part of
Fig. 8 point out that most of these classifiers are generally
faster at detecting when the vehicle starts moving (0.25
seconds) than when it stops (2.5 seconds). This is mainly
due to the low-pass filtering and data buffering steps,
which lag the output.

In turn, this delay affects of course the classification
performance indexes. Therefore, at each class variation,
classification performance can be evaluated removing the
effects of these transients, assuming the classifier to have
settled to the new class. We can denote with steady the
classification performance removing the data within the
average rise and fall times. As further discussed in Table
1, steady-state results confirm the classifier performance:
SVM 47 obtains an accuracy of 99.47%, the highest sen-
sitivity of 99.37% and an important specificity increment,
reaching now 99.49%.

Spikes can be defined as very short-time outliers in the
prediction (e.g., in this application, spikes are no longer
than few samples – it is unrealistic to assume that the
motorcycle is in motion for such a short amount of time
only). Despite spikes do not play a significant role in the
evaluation of the classification performance, it is inter-
esting to evaluate the number of spikes for the different
classifiers. As shown in the bottom right of Fig. 8, the
best classifier in terms of accuracy (i.e., SVM 47), is quite
affected by spikes, with 13 instances in 1400 s. This result
should not surprise: A prompt classifier (i.e., small fall and
rise time) is more subject to short inconsistent events than
slower and more conservative ones.

4.2 Testing

For a fair evaluation of the performance, the same SVMs
are employed against a testing dataset. Classification per-
formance slightly drops for all the trained models. In par-
ticular, SVM 47 proves not to be the most performing clas-
sifier as it was for the validation dataset, although it is still
in the top five ones. In testing, SVM 47 achieves 94.231% in
accuracy, 97.748% in sensitivity, with a significant drop in
specificity (93.617%), which is explained with an increment
of the fall time, as opposed to all the other classifiers in
which drops. By analyzing the performance of the classifier
at steady-state, all the top classifiers, including SVM 47,
achieve at least 99% of accuracy and specificity, and 98.5%
in sensitivity, results comparable with the same obtained
in validation.

To better analyze the achieved classification performance,
the four best performing classifiers are compared in detail
in Table 1. The following remarks are in order:

• Performance of these four classifiers is comparable
and consistent in validation and testing, both in
the nominal and steady-state cases, with limited
differences also for the mean rise and fall time.

• All the four most performing classifiers have ωzvar
as

their most relevant feature. Thus, yaw-angle varia-
tions that occur in the transition between the stand
still and in motion conditions are the most relevant
physical phenomenon in this context. The second key
feature is the pitch rate, with minimum differences
using either ωyvar

or ωyran
.

• The classifiers become more conservative (yet more
robust against the testing dataset) including also
axran

, the longitudinal acceleration. However, the
classifiers slightly underperform when the longitudi-
nal acceleration is added.

5. CONCLUDING REMARKS

In this work, a classification method that allows discrim-
inating an in-motion versus a non-in-motion two-wheeled
vehicle was presented. Notably, the approach employs only
IMU-based inertial measurements, and thus can reliably
work when GPS/GNSS sensors are not working, due to
multiple reasons. The capability of discriminating among
the two states is of particular interest in the process of
detecting whether a crash occurred, and in possible crash-
related arbitration within the insurance telematic context.
The effectiveness of the approach is witnessed by an ex-
tensive experimental campaign that covered both urban
and non-urban driving under many different dynamic con-
ditions.
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