
A Green Routing and Scheduling Problem in
Home Health Care ⋆

Hongyuan Luo ∗ Mahjoub Dridi ∗ Olivier Grunder ∗

∗ Nanomedicine Lab, Univ. Bourgogne Franche-Comté, UTBM,
F-90010, Belfort, France (e-mail: {hongyuan.luo, mahjoub.dridi,

olivier.grunder}@utbm.fr).

Abstract: The growing concern about the influences of anthropogenic pollutions has forced
researchers and scholars to study the environmental concerns. This paper addresses a green
routing and scheduling problem in home health care (HHC) with the constraints of synchronized
visits and carbon emissions. In this work, the objective is to design a reasonable logistics route
meanwhile reduce the effect on the environment for the HHC company. The formulated mixed-
integer programming (MIP) model is solved for a set of small scale instances using Gurobi solver
with a time limit of 1 hour. An efficient two-phase heuristic approach through decomposing the
studied problem into a routing problem and a speed optimization problem is proposed. The
heuristic approach is based on two exact methods using Gurobi solver and dynamic programming
(DM) method. The proposed heuristic approach is examined by a total of 19 instances with
different scales. The experimental results for the studied problem highlight the effectiveness and
efficiency of the proposed heuristic approach.

Keywords: Home health care; Synchronized visits; Carbon emissions; Heuristic; Dynamic
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1. INTRODUCTION

Home health care (HHC) company provides the health
care service for the patients at their homes in order
to help them recover from illness or injury. According
to a survey of the HHC companies, the HHC company
conducts various logistic activities including delivering the
caregivers, drugs, medical devices from the HHC company
(i.e. the depot) to the patients, and biological samples
(such as blood and urine) from the patients’ homes to
the medical laboratory for testing every day (Liu et al.,
2013). The daily scheduling of the caregivers has been
demonstrated to be a very difficult problem but a crucial
decision activity for a HHC company (Yuan et al., 2018).
As for a HHC company, transportation cost is one of the
largest operating costs in company daily activities, thus it
is crucial to optimize daily traveling routes of the HHC ve-
hicles in order to reduce the transportation cost meanwhile
improving the service quality to patients. However, trans-
portation has serious impacts on the environment, such
as resource consumption, toxic effects on ecosystems and
humans, noise, and the effect induced by greenhouse gas
(GHG) emissions. Among these, GHG, especially carbon
dioxide (CO2) emissions, are the most concerning because
CO2 emissions have direct influences on people’s health
(Bektaş and Laporte, 2011). If logistics is not scheduled
well, it will cause congestion and a large amount of CO2

emissions. Therefore, it compels managers of the HHC
companies to pay more attention to CO2 emissions when
designing the daily logistics activities.
⋆ The first author would thank the China Scholarship Council for
the financial support gratefully. (contract No. 201801810122).

Recently, some scholars have started studying the HHC
problems with the consideration of the carbon emissions.
Fathollahi-Fard et al. (2018) studied the problem of the
delivery the required drugs and other HHC services to pa-
tients. They firstly introduced the environmental pollution
or green emissions into the HHC problems, and developed
a bi-objective optimization model. Four fast heuristics are
proposed to solve the problem. However, in this research,
the authors didn’t consider the speed of the vehicle. Xiao
et al. (2018) also considered the carbon emissions in the
HHC transportation problem. They used a capacity VRP
(CVRP) model to describe the HHC scheduling problem
and proposed an improved cuckoo search (ICS) algorithm
for the problem. In this research, the authors set the speed
of the vehicle as a constant.
This paper addresses a green routing and scheduling prob-
lem in home health care (HHC) with the constraints of
synchronized visits and carbon emissions. In order to solve
the problem, a mixed-integer programming model and a
two-phase heuristic approach are developed. The rest of
this paper is organized as follows. Section 2 introduces the
scheduling problem and Section 3 builds the mathematical
model. Section 4 develops a two-phase heuristic approach
in order to solve the problem. The computational experi-
ments are described in Section 5. Section 6 concludes the
paper.

2. PROBLEM DESCRIPTION

This paper addresses a daily routing and scheduling prob-
lem of a HHC company with the constraints of synchro-
nized visits and carbon emissions. The problem can be
defined as follows. Let G = (N,A) be a directed graph
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with a set of nodes N = {0, 1, ..., n, n + 1} and a set
of arcs A = {(i, j) |i, j ∈ N, i ̸= j}. Node 0 and node
n + 1 represent the depot and the medical laboratory,
respectively. Nodes P = {1, 2, ..., n} represent the patients
who need care service from the HHC company.
Each patient i ∈ P has a drug and service demand qi, and
each caregiver has the same load and service capacity Q.
Each patient i ∈ P is associated with a service duration
τi. Each patient i ∈ P has a service time window [ai, bi],
where ai represents the earliest time and bi represents
the latest time for visiting the patients. Each caregiver
is allowed to arrive before the earliest time ai, but the
caregiver must wait until that the time is available for
the patient. The caregiver is prohibited to arrive after the
latest time bi. The depot and the laboratory have the same
time window, meaning the caregivers must leave from the
depot and return to the laboratory between the earliest
time and latest time.
Some patients may need synchronized services, which
means that two or more caregivers must service these
patients simultaneously. In this paper, we only consider
two caregivers visit a patient simultaneously. For each
patient i ∈ P with synchronized services, a fictive patient
i′ who has the same locations, demand, service duration
and time window with patient i is generated. We refer all
fictive patients to Pf . Therefore, we define N ′ ← N ∪ Pf ,
P ′ ← P ∪ Pf , A′ = {(i, j) |i, j ∈ N ′, i ̸= j}. We adopt
(i, j) ∈ P sync to represent a couple of patients i, j ∈ P ′

who need synchronized services. In other words, i and j
are associated to the same patient and must be serviced
by two different caregivers simultaneously.
The distance between patient i and j is denoted as
dij . This paper considers the constraints of the carbon
emission. Speed has a great influence on carbon emission.
Therefore, the speed parameter is employed in the paper.
The speed of the vehicle k associated to the caregiver k is
v. Based on the speed v, it is very easy to calculate the
travel time between i and j. The travel time between i and
j is dij/v.
The problem is developed to determine a set of routes
in order to minimize the carbon emissions under the
constraints of time windows, capacity and synchronized
visits, and the following assumptions: (1) each caregiver
has the same service capacity and is associated to a vehicle;
(2) each vehicle leaves from the depot and returns to the
laboratory, and visits each node at most once; (3) the
unused vehicles are assumed to start from the depot and
end at the laboratory, in order to prevent from adding
the emission cost, we assume that the distance from depot
to laboratory is 0; (4) because there are many uncertain
factors in the city transportation, the speed of the vehicle
is assumed to be a constant average speed; (5) for the
patient with synchronized visit services requirement, a
fictive patient who has the same locations, demand, service
duration and time windows is generated. We assume that
the patient at most needs two caregivers to service at
the same time; (6) for the patient with synchronized visit
services requirement, if caregiver 1 arrives earlier than
caregiver 2, caregiver 1 must wait for caregiver 2 and then
serving the patient together.

3. MATHEMATICAL FORMULATION

In this section, the mathematical model of the studied pro-
belm is introduced Firstly, the theory of carbon emissions
is introduced; then, a mixed-integer programming (MIP)
model is developed for this problem.

3.1 Carbon emissions

This paper adopts the emissions function developed by the
United Kingdom Transport Research Laboratory (Hick-
man et al., 1999). The emissions function has been used by
many researchers, such as Jabali et al. (2012), Teoh et al.
(2018) and so on, which can demonstrate the effectiveness
of the emission function. The emissions function ε (v) is
provided as follows:

ε (v) = L+ av + bv2 + cv3 + dv−1 + ev−2 + fv−3 (1)
where v is the speed of the vehicle in km/h, and the
coefficients L, a, b, c, d, e and f will be different under the
vehicles with different types and sizes.
The coefficients are adopted the settings in Hickman et al.
(1999), and the values of L, a, b, c, d, e and f are 765, -7.04,
0, 0.006320, 8334, 0, 0, respectively.
The vehicle will emit ε (vij) g/km carbon dioxide (CO2)
when the vehicle is driven at the speed v. Therefore, the
CO2 emission of a vehicle travels from patient i to patient
j can be expressed as:

Eij = ε (vij) dij (2)
where the units of Eij and dij are g and km, respectively.
As is shown in Eq. (1), it is very clear that the CO2

emissions rate ε (v) will vary with different speed. There-
fore, an optimal speed can be found in order to reduce
the CO2 emissions. However, it is very difficult to control
the speed particularly during the peak hours in real life.
Thus in this paper, the speed is assumed to be an average
speed in every arc. Define two different speed as v1 and
v2, and define the corresponding CO2 emissions at an arc
between patient i and j as E1

ij and E2
ij . A proposition can

be obtained as follows.
Proposition 1. As for an arc between patient i and j, if
ε (v1) ≤ ε (v2), then E1

ij ≤ E2
ij .

Proof. It is obvious that the distance is the same as for
the same arc between patient i and j. Therefore,

E1
ij − E2

ij

= dij ∗ ε (v1)− dij ∗ ε (v2)
= dij ∗ (ε (v1)− ε (v2))

≤ 0,

namely E1
ij ≤ E2

ij .

3.2 Mixed-integer programming model

In this section, we will describe the mixed-integer program-
ming (MIP) model of the problem. Firstly, the model no-
tations of the parameters for the problem are summarized
as follows:
V : set of all vehicles.
N : set of all nodes, including the patients, the depot and
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the laboratory.
N ′: set of all nodes, including the patients, the fictive
patients, the depot and the laboratory.
A′: set of arcs, A′ = {(i, j) |i, j ∈ N ′, i ̸= j}.
P : set of all patients.
P ′: set of all patients, including the fictive patients .
Q: capacity of each caregiver.
P sync: set of synchronized visits.
dij : the distance from node i to node j.
uij : the demand of patients up to node i, and transported
in arc (i, j).
qi: the demand of patient i.
τi: the service duration for node i.
[ai, bi]: the availability time window of patient i.
vij ∈ [vlb, vub]: the speed of vehicle in arc (i, j), vlb and vub
are the lower and upper bound of speed.
ε (vij): the carbon emissions function.
M : a large positive value.

Then, we will introduce the variables of the studied prob-
lem. The first binary decision variable is presented as
follows:
xijk =

{
1, if caregiver k travels from i to j, in which i ̸= j;
0, otherwise.

The secondary decision variable is denoted as follows:
yi: the start working time of node i.
In this paper, vij is a variable, so it is obvious that
the studied model is nonlinear. In order to linearize the
mathematical model, we use a set of speed levels R =
{1, 2, ..., r, ...} to discretize the speed. Each speed level
r ∈ R is corresponding to a speed vr. And we introduce
a new binary decision variable zijkr which is denoted as
follows:
zijkr =

{
1, if k travels from i to j with speed level r ;
0, otherwise.

The relationship between decision variables zijkr and xijk

is presented as follows:∑
r∈R

zijkr = xijk, ∀i ∈ N ′, j ∈ P ′, k ∈ V, i ̸= j (3)

where R is the discrete speed levels R = {1, 2, ..., r, ...}.
Thus, the MIP model is presented as follows:

Minimize
∑

(i,j)∈A

∑
k∈V

ε (vr) dijzijkr (4)

subject to, ∑
k∈V

∑
j∈N ′

xijk = 1, ∀i ∈ P ′ (5)

∑
j∈N ′

xjik −
∑
j∈N ′

xijk = 0, ∀i ∈ P ′, k ∈ V (6)

∑
j∈N ′

x0jk ≤ 1, ∀k ∈ V (7)

∑
i∈N ′

xi(n+1)k ≤ 1, ∀k ∈ V (8)

∑
i∈N ′

uji −
∑
i∈N ′

uij = qj , ∀j ∈ P ′ (9)

uij ≤ Q
∑
k∈V

xijk, ∀ (i, j) ∈ A′ (10)

yi − yj + τi + dijzijkr/vr ≤M (1− zijkr) ,

∀i ∈ N ′, j ∈ P ′, k ∈ V, r ∈ R, i ̸= j
(11)

ai ≤ yi ≤ bi, ∀i ∈ N ′ (12)
yi = yj , ∀ (i, j) ∈ P sync (13)

xijk ∈ {0, 1}, ∀ (i, j) ∈ A′, k ∈ V (14)
zijkr ∈ {0, 1} ∀ (i, j) ∈ A′, k ∈ V, r ∈ R (15)∑

r∈R

zijkr = xijk, ∀i ∈ N ′, j ∈ P ′, k ∈ V, i ̸= j (16)

uij ≥ 0, ∀ (i, j) ∈ A′ (17)
yi ≥ 0, ∀i ∈ P ′ (18)

The objective function (4) is the total carbon emission
cost based on the speed of the vehicle, the planed distance
and the carbon emissions function. Constraint (5) guar-
antees that each patient is visited only once. Constraint
(6) ensures the flow balance of the vehicles, i.e., the care-
giver visits the patient and then will leave the patient.
Constraints (7) and (8) ensure that the vehicles start at
the depot and end at the medical laboratory. Constraint
(9) is the flow equation for the demand of patients, and
constraint (10) is the capacity constraints. Constraint (11)
denotes that the caregiver k can’t arrive at j before yi +
τi + dij/vr, the reason is that the caregiver k needs the
service duration τi and travel time from i to j. Here,
M is a large positive value. Constraint (12) ensures the
time window of the patient i. Constraint (13) guarantees
the synchronized services. Constraints (14) and (15) are
two binary variables. Constraint (16) is the relationship
between these two binary variables. Constraints (17) and
(18) ensure the non-negative.
The VRPTW has been proven that it is a non-deterministic
polynomial hard (NP-hard) problem. The studied prob-
lem is a combination of routing problem and speed opti-
mization problem, which is more difficult than VRPTW.
Therefore, the studied problem is also a NP-hard problem.

3.3 Speed optimization model

In this paper, we design a two-phase heuristic algorithm to
solve the studied MIP model. We decompose the studied
problem as a route optimization problem and a speed
optimization problem. In this section, we will introduce the
mathematical model of the speed optimization problem.
Define a set of routes S = {1, 2, ..., s, ...}, each route s
has m nodes including the depot, the lab and all the
patients. And each node is corresponding to the original
number id ∈ N ′. The speed optimization problem can be
formulated as follows:

Minimize

S∑
s=1

m−1∑
i=0

ε
(
vsi,i+1

)
dsi,i+1 (19)

subject to,
ysi+1−ysi−dsi,i+1/v

s
i,i+1 ≥ 0, ∀s ∈ S, i = 1, 2, ...,m−1 (20)

aid ≤ yid ≤ bid, ∀id ∈ N ′ (21)
yid1 = yid2, ∀ (id1, id2) ∈ P sync (22)

vlb ≤ vsi,i+1 ≤ vub, ∀s ∈ S, i = 1, 2, ...,m− 1 (23)

The objective function (19) is the total carbon emission
cost in the fixed routes. Constraints (20) and (21) ensure
the time window of the node id. Constraint (22) guarantees
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the synchronized services. Constraint (23) is the speed
selection scope.

4. PROPOSED APPROACH

As mentioned before, the proposed model is a NP-hard
problem, which is very difficult to solve by using an exact
method for the large scale problems. In order to simplify
this problem, we design a two-phase heuristic approach
through decomposing the studied problem into a routing
problem and a speed optimization problem. The proposed
method is based on the following two-phase approach:
• Route construction phase: a set of routes is built in

the first phase. In this phase, we degenerate the MIP
model, and use exact method Gurobi solver to solve
the degenerated problem with the constant speed.

• Speed optimization phase: a set of routes have been
calculated in the first phase. In this phase, we design
a dynamic programming method for the speed opti-
mization in the fixed routes.

In this section, the proposed dynamic programming (DM)
method for the speed optimization problem is detailed.

4.1 Dynamic programming

In this section, a dynamic programming (DP) method is
used to solve the carbon emission optimization problem in
multiple routes with the constraints of time windows and
synchronized visits. Qian and Eglese (2014) have used a
DP method to optimize the cost in terms of fuel emissions
in a time-varying network. However, rather than in only a
single fixed route, the problem with synchronized visits is
more complicated.

V23V01 V12 V34 V45Depot LabCaregiver 1 7 10115

V23V01 V12 V56V34 V45Depot LabCaregiver 2 9 683 4 V67 V782 1

i=0 i=5i=1 i=2 i=3 i=4

i=0 i=2i=1 i=3 i=4 i=5 i=6 i=7 i=8

Fig. 1. Example of a solution to an instance with 10
patients.

In order to visualize the model, we take an example
of a solution to an instance with 10 patients, which is
shown in Fig. 1. It should be noted that the patient 11
is fictitious, and is actually patient 3 who has the demand
of synchronized visits. However, due to the constraint of
synchronized visits, we can’t optimize the speed in a single
fixed route, but in multiple routes which have the patiens
with the demand of synchronized visits. The caregiver 1
and caregive 2 must serve the patient 3 at the same time,
which increase the difficulty of speed optimization.
The speed optimization problem is solved in two steps,
and each step involves a recurrence. First, the optimal
carbon emissions for pi−1 to pi, where pi−1, pi ∈ Psub, with
different start times, finishing times, and start working
time are computed. Second, the optimal carbon emissions
for the fixed route through all the patients are calculated.

Dynamic programming recurrence for the adjacent patients
Define C (pi, tstart, tfinish, yi) as the optimal carbon

emissions of traveling from patient pi−1 at time tstart,

arriving at patient pi at tfinish, and start working at yi.
The start working time can be calculated as follows:

yi =

{
ai, if tfinish ≤ ai

tfinish, if ai < tfinish ≤ bi
∞, otherwise

(24)

where ai and bi are the lower bound and upper bound
of the time windows at node i, respectively. It should
be noticed that for the patients (i, j) ∈ P sync who
needs synchronized services, the start working time is
max{yi, yj}. For each pair of adjacent patients pi−1, pi ∈
Psub, the carbon emissions with all possible starting,
finishing, and start working times should be calculated.
Define f (i, ti, yi) as the minimum carbon emissions from
the start node to patient i with the associated arrival time
ti and start working time yi. Define g (arcij , ti, tj) as the
carbon emissions along arc arcij when the caregiver travels
from node i at ti and arrives node j at tj . Therefore, it is
easy to calculate the speed along arcij as follows:

vij = dij/ (tj − ti) (25)
where dij is the distance of arcij . Based on the time
windows constraint, it is clear that the smallest speed vlbij
along arcij can be calculated as follows:

vlbij = dij/ (bj − yi − τi) (26)
where τi is the service time at node i. Then, the carbon
emissions along arcij can be calculated as follows:

g (arcij , ti, tj) =

{
ε (vij) dij , if vij ≥ vlbij
∞, otherwise

(27)

The DP recurrence for updating the value of f (j, tj , yj) is
described as follows:
f (j, tj , yj) = min

tj∈{ti+dij/vij}
[f (i, ti, yi) + g (arcij , ti, tj)]

(28)
The value of f (j, tj , yj) is calculated based on the greedy
rules from the start node to node j with the arrival time
being tj and start working time yj . It is obvious that
the value of f (j, tj , yj) may not be the minimum carbon
emissions from the start node to node j with the arrival
time being tj and start working time yj . The value of
f (j, tj , yj) can only be considered as the upper bound of
the minimum carbon emissions during this trip. Of course,
if the start node and j are two adjacent points, f (j, tj , yj)
is the optimal carbon emissions. The iterations will be
stopped when the value of f (j, tj , yj) cannot be reduced
anymore.
Therefore, if the start node is pi−1 and the start
time is tstart, the value of optimal carbon emissions
C (pi, tstart, tfinish, yi) can be calculated as follows:

C (pi, tstart, tfinish, yi) = f (i, tfinish, yi) (29)

Dynamic programming recurrence for the fixed route
Define F (pi, tfinish, yi) as the optimal carbon emissions
from the depot to patient pi with the arrival time at pi
being tfinish and start working time yi. The following DP
recurrence will be utilized to calculate the optimal carbon
emissions for the complete route.

F (pi, tfinish, yi) = min
ai≤yi−1+τi−1≤bi

{F (pi−1, ti−1, yi−1)

+C (pi, yi−1 + τi−1, tfinish, yi)}
(30)
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Algorithm 1 Dynamic Programming
Input: SInput;
Output: Optimal carbon emissions F , speed v;
1: N ← length(SInput), set t1arrive ← 0, t1start ← 0, F 1 ← 0.
2: for k ← 2,..., N do
3: Calculate all the {tkarrive}, {tkstart}, {vk−1,k} and {Fk} based

on {tk−1
start}, speed bound, time windows and synchronized visits

constraint;
4: if {tkstart}′ ⊆ {tkstart}, and all the values of {tkstart}′ are same

then
5: Fk

min ← min
(
{Fk}

)
, ∀tkstart ∈ {tkstart}′.

6: Update {tkarrive}, {tkstart}, {vk−1,k} and {Fk}.
7: end if
8: end for

In the process of recurrence, if there are some decisions
with the same start working time yi at patient pi, we
can compare these decisions and find the optimal carbon
emissions at patient pi associated the same start working
time yi. Because the same start working time will not have
an influence on the latter patients, the patient pi can be
considered as a new ”depot” for the latter patients. The
dynamic programming method is presented in Algorithm
3, {tkarrive}, {tkstart}, {vk−1,k} and {F k} are the sets
of arrival time, start working time, speed and carbon
emissions at node k, respectively. If the synchronized
visits constraint doesn’t be considered in the process of
DP method, the value of F (pi, tfinish, yi) can only be
considered as the lower bound of optimal carbon emissions
of the complete route.

5. COMPUTATIONAL EXPERIMENTS

To the best of our knowledge, there is no existing bench-
mark instance for our HHC scheduling problem. Therefore,
in order to obtain effective benchmark instances, we gen-
erate the test instances based on the classical VRPTW
benchamark instances designed by Solomon (1987). We
use the proposed heuristic approach to solve the studied
problem. At the same time, the Gurobi solver is also
applied to solve the MIP model.

5.1 Test instances and experiment settings

There are no similar problem in the existing researches,
so we generate the test instances based on the classical
Solomon VRPTW benchmark instances. In the Solomon
VRPTW benchmark instances, the information includes
the location of the customers and depot, demand, time
windows(ready time, due time), and the service time.
In the Solomon VRPTW benchmark instances, the speed
is standardized to 1. It is very necessary to adjust the pro-
portion of the data in the Solomon VRPTW benchmark
instances to suit the proposed problem. According to the
survey, the normal speed limit is 50 km/h in the city of
France. However, the drivers often need to slow down and
accelerate during driving when driving to the intersection,
so it is difficult to keep an average speed at 50 km/h. In
this paper, the HHC scheduling activities happens at a city
or a town. Therefore, an average speed 10m/s (namely 36
km/h) is very suitable in the test instances of the proposed
problems. In the basis of the Solomon VRPTW benchmark
instances, the rules of generating the test instances of the

proposed problems are as follows: we set the coordinate
of the medical laboratory as (30,40); the distance is 100
times the original, the time window and service time are 10
times the original; other parameters will not be changed.
The unit of the Xcoord and Ycoord is meter(m), and the
unit of the time windows and service time is second(s).
As for the speed level settings, we set two speed level in
the paper. The first is 30 km/h, and the second is 40 km/h.
As for the synchronized visits constraint, we set the third
patient in every ten patients as the synchronized-service
patient.
In this paper, we use two methods to solve the studied
problem. The first method is mixed-integer programming
(MIP) solved by Gurobi solver, and the second method is
a two-phase heuristic approach. The proposed heuristic
approach solves the probelm through decomposing the
studied problem into a routing problem and a speed opti-
mization problem. The routing probelem is a degerenated
probelm of the studied probelm with constant speed 40
km/h, and solved by Gurobi solver. All the experiments
are conducted on Intel Core i7-3770, 8 Duo 3.4 GHZ in
order to solve the proposed problem.

5.2 Experimental results

In this part, the proposed MIP model is solved. Based
on the Proposition 1, for a route between patient i and
j, the carbon emission with the speed of 30 km/h is
smaller than carbon emission with the speed of 40 km/h.
Therefore, for degerenated probelm, if the speed of some
route between the patients can be optimized under all
the constraints, then the carbon emissions can be reduced
again by optimizing the speed. In other words, it is a
speed optimization problem in the fixed route under the
constraints of time windows and synchronized visits (Wang
and Meng, 2012; Qian and Eglese, 2014).
However, due to the constraint of synchronized visits, we
cannot optimize the speed in a single fixed route, but in
multiple routes with the constraint of synchronized visits.
Therefore, we design a dynamic programming method for
the speed optimization problem based on the best results
solved by Gurobi solver for the degenerated model.
The experimental results for the studied problem are
presented in Table. 1. It is obvious that the Gurobi
solver can only solve 12 instances (63.16%) for the MIP
model, and give a best lower bound and upper bound for
other instances in 1 hour, which proves that the studied
problem is very complicated and Gurobi solver is very
difficult to solve all the instances in 1 hour. Therefore,
we design a two-phase heuristic approach for the studied
problem. The proposed heuristic approach can solve all the
studied instances, and the calculating time of the heuristic
approach is much smaller than Gurobi solver, which can
demonstrate efficiency of the proposed heuristic approach.
The gap between the proposed heuristic approach and
Gurobi solver is smaller than 0.16%, which can prove the
effectiveness of the proposed heuristic approach.

6. CONCLUSIONS

Transportation cost is one of the largest operating costs
in HHC company daily activities, thus it is crucial to
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Table 1. The experimental results for the studied problem.

Instance Gurobi solver Heuristic-(Gurobi+DP)
Name NP NSync Cost(kg) CpuT(s) Cost(kg) Gap(%) CpuT1(s) CpuT2(s)

HHC_C105 10 1 11.43 0.71 11.43 0.00 0.63 0.002
HHC_C203 10 1 [16.30,20.39] 3,600.00 20.39 0.00 236.05 0.002
HHC_C204 10 1 [15.73,19.29] 3,600.00 19.29 0.00 680.41 0.004
HHC_C205 10 1 22.11 22.37 22.11 0.00 5.99 0.002
HHC_R103 10 1 26.59 159.77 26.82 0.86 48.23 0.012
HHC_R104 10 1 24.25 206.68 24.25 0.00 258.99 0.003
HHC_R105 10 1 30.11 0.34 30.11 0.00 0.50 0.002
HHC_R203 10 1 23.34 191.42 23.34 0.00 123.20 0.002
HHC_R204 10 1 21.94 246.91 21.94 0.00 41.22 0.003
HHC_R205 10 1 23.48 11.15 23.48 0.00 1.39 0.002

HHC_RC103 10 1 22.47 2,945.68 22.74 1.20 1,291.29 0.015
HHC_RC105 10 1 24.47 678.81 24.47 0.00 423.20 0.002
HHC_RC203 10 1 [17.74,21.04] 3,600.00 21.04 0.00 1,647.13 0.002
HHC_RC204 10 1 [17.66,20.52] 3,600.00 20.52 0.00 2,249.72 0.003
HHC_RC205 10 1 [21.91,22.30] 3,600.00 22.30 0.00 593.23 0.005
HHC_C105 25 3 29.73 1,762.08 29.73 0.00 23.14 0.016
HHC_C205 25 3 [31.37,35.81] 3,600.00 34.45 <0.00 1,817.45 0.013
HHC_R105 25 3 64.13 424.90 64.80 1.04 37.08 0.018
HHC_R205 25 3 [44.15,48.53] 3,600.00 47.63 <0.00 214.58 0.009

AVG 1,676.36 <0.16 510.18 0.006
1 The set [a,b] represents that Gurobi solver doesn’t give an exact solution in 3600s, a and b are the best

lower bound and upper bound, respectively.
2 CupT1 is the calculating time in the first phase, and CupT2 is the the calculating time in the second phase

of the the proposed two-phase heuristic algorithm.
3 Gap = Heuristic.Cost−Gurobi.Cost

Gurobi.Cost
× 100%.

optimize the routes of the HHC vehicles in order to
reduce the transportation cost meanwhile improving the
service quality to patients. However, transportation has
serious impacts on the environment. Therefore, it compels
the managers to pay more attention to carbon emissions
when designing the daily logistics activities. This study
addresses a green routing and scheduling problem in home
health care with the constraints of synchronized visits
and carbon emissions. We formulated the problem as
a mixed-integer programming (MIP) model. The MIP
model is solved by the optimization solver Gurobi. A two-
phase heuristic approach through decomposing the studied
problem into a routing problem and a speed optimization
problem is proposed. The approach is based on two exact
methods using Gurobi solver and dynamic programming
(DM) method. The proposed heuristic approach has the
advantage to perform joint route and speed optimization
within Gurobi solver and DP method, and thus performs
much better on difficult instances than single approach.
There are several interesting research directions to this
work. On the one hand, it could be very interesting to
extend the problem with considering traffic congestion
issues in order to reduce even further carbon emissions. On
the other hand, we are currently studying the opportunity
to develop column generation based exact methods to solve
the studied problem.
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