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Abstract: This work presents a discrete on-line training algorithm for recurrent high-order
neural networks (RHONN). The proposed training algorithm is based on the arbitrary order
differentiators of high-order sliding modes (HOSM) theory. Due to HOSM-based differentiators
can approximate derivatives in finite time, the proposed training algorithm avoids the compute of
the derivatives, unlike conventional training algorithms. The proposed HOSM-based algorithm
is implemented for the training of a RHONN identifier, and its performance is compared with the
results using the extended Kalman filter (EKF) training algorithm. Results of a implementation
of the identifier for the Lorenz system and an implementation of the identifier for a tracked
robot using experimental data are presented.
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1. INTRODUCTION

Artificial neural networks (ANNs) have become an impor-
tant tool to solve several actual engineering problems, like
pattern recognition, filtering or control. One of the main
characteristics of ANNs is that they store knowledge in the
synaptic weights values of the connections between their
neurons. ANNs have the ability to learn and improve its
performance through an interactive process of adjusting
its synaptic weights by a set of well-defined rules called a
learning algorithm Haykin (1998). Frequently, ANNs are
trained with learning rules based on information from error
derivatives with respect to the weights, such as the back-
propagation (BP) algorithm that uses information from
the first-order derivatives Werbos (1990), or the extended
Kalman filter (EKF) based on the second-order deriva-
tives information Puskorius and Feldkamp (2001). Due to
the slow convergence of BP, a faster training algorithm
emerged, based on EKF, which has been used in the last
two decades to train ANNs Haykin (2001), Sanchez et al.
(2008).
Recurrent neural networks are a type of ANN with one or
more feedback loops. They are capable of having a state
variables representation, therefore, they are suitable for
different non-linear applications Haykin (1998). Recurrent
high-order neural networks (RHONN) allow to approx-
imate dynamic systems through high-order interactions
between dynamical neurons Kosmatopoulos et al. (1995).
There are several works where the RHONNs are trained
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with EKF to identify nonlinear systems Rios et al. (2013),
Rios et al. (2015), Villaseñor et al. (2018). Nevertheless,
the calculation of the derivatives is critical since the com-
putational efficiency depends on it. In fact, for recurrent
neural networks, the calculation of the derivatives using
EKF requires high computational resources Puskorius and
Feldkamp (2001). It is a drawback especially for real-time
implementations. To avoid the derivatives calculation, in
this work a training algorithm based on high-order sliding
modes (HOSM) is proposed.
Sliding modes (SM) is a control technique that consists in
designing a sliding variable of relative degree r = 1, that,
with a discontinuous control action, the sliding variable
is forced to zero in finite time and remains at zero even
in the presence of perturbations and uncertainties Moreno
(2018). Training algorithms based on continuous-time SM
have been proposed in Poznyak et al. (1998), Poznyak et al.
(1999), thus, they do not use the differentiators.
HOSM is an extension of basic sliding mode with an
arbitrary degree r > 1, that mitigate the chattering effects
which arise as high-frequency oscillations Moreno (2018),
Utkin et al. (2009). HOSM implementation requires the
r -th time derivatives of the sliding variables, which can
be obtained with an observer called HOSM-based differ-
entiator of order r-th, which is robust with respect to
input noises and exact in their absence, as well as, it
preserves the finite time convergence Shtessel et al. (2014).
These HOSM-based differentiators are the base of the
proposed training algorithm. Specifically, the differentiator
presented in Levant and Livne (2018), taking advantage of
a design parameter inclusion and its discretized represen-
tation that preserves the accuracy and robustness features
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of the continuous differentiator Levant (2014). Although,
recently in Salgado and Chairez (2018) a continuous-time
training algorithm based on the use of robust exact differ-
entiator of the super twisting algorithm from the second-
order sliding modes theory is proposed. In contrast, in the
work we present, it is proposed a discrete-time training
algorithm based on the robust exact differentiators with
an arbitrary order.
On the other hand, most physical phenomena have a non-
linear behavior. The modeling of nonlinear systems is dif-
ficult due to its complexity, therefore, the identification of
nonlinear systems is an alternative to obtained the model
of a system Sanchez and Alanis (2006). The ANNs have
been shown to be effective in the identification of nonlinear
systems Narendra and Parthasarathy (1990). Therefore,
to prove the performance of the proposed HOSM-based
training algorithm, results using a RHONN identifier for
the dynamic nonlinear Lorenz system and for an all-terrain
tracked robot are presented. To show the performance
obtained results are compared with the same RHONN
on-line trained with EKF. In this way, the main contri-
bution of this work is the presentation of the proposed
HOSM training algorithm implemented for the training of
RHONNs.
The outline of the work is the following, in Section 2
the mathematical preliminaries are described, first the
discrete-time RHONN model, and then, the learning pro-
cess to adjust the synaptic weights. In Section 3 the
HOSM-based training algorithm is presented. Results are
shown in Section 4, and finally, conclusions and future
work are given in Section 5.

2. MATHEMATICAL PRELIMINARIES

2.1 Discrete-Time Recurrent High-Order Neural Network

Consider the following discrete-time RHONN described in
Sanchez et al. (2008):

x̂i(k + 1) = w>i zi(x(k), u(k)), i = 1, ..., p (1)

where x̂i is the state of the i-th neuron, wi is the
respective i-th online adapted weight vector of dimen-
sion n ∈ [1, 2, ...), x(k) is the plant state vector, u =
[u1, u1, ...um]T is the input vector to the neural network,
and zi(x(k), u(k)) is given by

zi(x(k), u(k)) =


zi1
zi2
...

ziLi

 =



∏
jεI1

ξ
dij(1)
ij∏

jεI2

ξ
dij(2)
ij

...∏
jεILi

ξ
dij(Li)
ij


(2)

where Li is the respective number of high-order connec-
tions, {I1, I2, ..., ILi} is a collection of nonordered subsets
of {1, 2, ..., p+m}, p is the state dimension, m is the num-
ber of external inputs, dij(k) being nonnegatives integers,
and ξi is defined as follow:

ξi =



ξi1
...
ξip
ξip+1

...
ξip+m


=



S(x1)
...

S(xp)
u1
...
um


(3)

where the function S(•) is monotone-increasing, differen-
tiable and is represented by sigmoids of the form:

S(ς) =
α

1 + e−βς
− γ (4)

where ς is any real valued variable.

2.2 Learning process

The adjustment of the synaptic weight wi(k) is determined
by,

wi(k + 1) = wi(k) + ∆wi(k) (5)

where wi(k+1) is the adjusted weight, and in a supervised
learning algorithm

∆wi(k) = ηf(e(k)) (6)

is the adjustment term, where η is a positive constant
known as learning-rate parameter, e(k) is the error ob-
tained through the difference between the desired output
and the obtained output at the instant k, then, f(e(k)) is
the function in terms of the error signal to be minimized
Haykin (1998).

3. HIGH-ORDER SLIDING MODES BASED
TRAINING ALGORITHM

3.1 High-order sliding modes differentiator

The differentiator designing problem is very important
because numerical differentiation is found in many engi-
neering applications Efimov and Fridman (2011), among
these applications are the control theory Mboup et al.
(2009), and the training of ANNs Salgado and Chairez
(2018). The HOSM theory produces robust finite time-
convergent exact differentiators Levant and Livne (2018),
which are used for estimate the derivatives.
Hence, in this work, the development of a training al-
gorithm for RHONNs based on a discrete version of the
recursive differentiator (7) proposed in Levant and Livne
(2018).

v0 =−ϕ0(t, w0 − e(t)) + w1

v1 =−ϕ1(t, w1 − v0) + w2

...

vn =−ϕn(t, wn − vn−1) (7)

where ϕi is defined as:

ϕi(t, δ(t)) = λn−iL
1

n−i+1 |δ(t)
n−i

n−i+1 |sign(δ(t))

+Mµn−iδ(t) (8)

where L > 0 is a Lipschitz constant, and for λn−i > 1,
µn−i > 1, there exist a positive double sequence {λi, µi},
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i = 0, 1, 2, ..., n, such that for any n and in the absence
of noise, the differentiator (7), (8) uniformly converges
in finite time for any M ≥ 0 Levant and Livne (2018).
Moreover, it converges faster with large values of M .
Parameters {λi, µi} are chosen recursively as in Levant
(2003), some sequences are proposed in Levant and Livne
(2018), Levant (2014).
Generally, the implementation of this differentiator is in a
digital device, therefore, it is important to have a discrete-
time representation. However, the accuracy of the differ-
entiator (7) can be lost by the simplistic one-step Euler
discretization. This problem is solved by the discretiza-
tion presented in Levant (2014), Livne and Levant (2014),
which through an approximation adding Taylor-like terms,
preserves the accuracy of the continuous-time case.

3.2 High-order sliding modes training algorithm

The proposed HOSM training algorithm is base on the
discretization of (7) presented in Levant (2014), such
discretization is presented next:

w0(k + 1) =w0(k)− ϕ0(k,w0(k)− e(k))τ

+
n∑
j=1

wj(k)

j!
τ j

...

wi(k + 1) =wi(k)− ϕi(k,wi(k)− vi−1(k))τ

+

n∑
j=i+1

wj(k)

(j − i)!
τ j−i

... (9)

wn(k + 1) =wn(k)− ϕn(k,wn(k)− vn−1(k))τ

where k is the sampling instants, and τ > 0 is the constant
sampling interval. If it is developed the first term of the
summatory in each wi(k+ 1) equation in (9), it will result
the term wi+1(k), then, if we regroup it with the term
−ϕi(k,wi(k) − vi−1(k)), we will obtain the term vi(k)
described in (7). Now it is possible to substitute (7) in (9)
and results the following HOSM-based training algorithm:

w0(k + 1) =w0(k) + v0(k)τ +
n∑
j=2

wj(k)

j!
τ j

...

wi(k + 1) =wi(k) + vi(k)τ +

n∑
j=i+2

wj(k)

(j − i)!
τ j−i

...

wn(k + 1) =wn(k) + vn(k)τ (10)

Assumption: The training function of the RHONN is
unknown and it is considered as the deterministic part
of the error, then, it is assumed that is equal to zero
since a priori information of both the system and the
neural network is unknown, so that it is only preserved
the stochastic term, therefore, w0(k) = w0(k + 1) = 0.
Otherwise, an offset error appears, and the error not reach

the origin. Moreover, it is possible to add learning-rate
parameters. Then, the following on-line HOSM training
algorithm is proposed for the training of RHONNs:

v0(k) =−ϕ0(t,−e(k)) + w1(k)

v1(k) =−ϕ1(t, w1(k)− v0(k)) + w2(k)

w1(k + 1) =w1(k) + η

[
v1(k)τ +

n∑
j=3

wj(k)

(j − 1)!
τ j−1

]
...

vi(k) =−ϕi(t, wi(k)− vi−1(k)) + wi+1(k)

wi(k + 1) =wi(k) + η

[
vi(k)τ +

n∑
j=i+2

wj(k)

(j − i)!
τ j−i

]
...

vn(k) =−ϕn(t, wn(k)− vn−1(k))

wn(k + 1) =wn(k) + η[vn(k)τ ] (11)

In Fig. 1, the HOSM-based training algorithm is graph-
ically described. It is possible to observe two inputs, the
error as the training signal and the synaptic weights vector
in the instant k, with dimension n. Thus, it is required an
n-th order differentiator, where is not calculated w0(k+1)
as already determined previously. The output is a weight
vector adjusted with dimension n. Note the recursivity
since v0(k) to vn(k) as in (7), which implies the importance
of calculating v0(k).

Fig. 1. HOSM-based training algorithm scheme.

4. RESULTS

4.1 Lorenz system RHONN identifier

To validate the performance of proposed training algo-
rithm (11), it is implemented a RHONN as an identifier for
the discrete-time Lorenz system Patel and Haykin (2001),
which has a state of dimension three defined as (12),

x1(k + 1) = x1(k) + a[x2(k)− x1(k)]τ

x2(k + 1) = x2(k) + [x1(k)[r − x3(k)]− x2(k)]τ

x3(k + 1) = x3(k) + [x1(k)x2(k)− bx3(k)]τ (12)
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where τ > 0 is the constant sampling interval, and a = 10,
b = 8/3, and r = 28. Hence, it is considered that p = 3 in
(1).
On the other hand, a synaptic weights vector of dimension
n = 4 is chosen for each i-th neuron, such that the RHONN
structure (1), without an input vector u(k), it is designed
heuristically as follows:

x̂1(k + 1) =w11(k)S(x3(k)) + w12(k)S(x1(k))2

+w13(k)S(x3(k)) + w14(k)S(x1(k))2

x̂2(k + 1) =w21(k)S(x1(k))2 + w22(k)S(x3(k))

+w23(k)S(x3(k)) + w24(k)S(x3(k))

x̂3(k + 1) =w31(k)S(x3(k)) + w32(k)S(x1(k))2

+w33(k)S(x3(k)) + w34(k)S(x1(k))2

(13)

where wij(k) is the j-th synaptic weight of the i-th neuron.
As well by setting α = β = 2 and γ = 1 as values
for the activation function (4) to obtain the hyperbolic
tangent as activation function, that is important to avoid
saturation through input normalization Rovithakis and
Christodoulou (2000).Considering the problem to approx-
imate the Lorenz system (12) by (13), then, the state x̂i
of the i-th neuron corresponds to the i-th identified state
variable of the Lorenz system Sanchez et al. (2008). Now,
it is possible to define the error function e(k) as follows:

e(k) = x(k)− x̂(k) (14)

equation (14) is the neural network training error.

4.2 RHONN identifier training

As from equations (13), note that is required to adjust
four synaptic weights for each one of the three neurons.
Hence, based in a fourth order differentiator the HOSM-
based training algorithm (11), by expanding using (7) and
(8) can be rewritten as the following equations:

δ0(k) =−e(k)

v0(k) =−λ4L
1
5 |δ0(k)

4
5 |sign(δ0(k))

−Mµ4δ0(k) + w1(k) (15)

δ1(k) =w1(k)− v0(k)

v1(k) =−λ3L
1
4 |δ1(k)

3
4 |sign(δ1(k))

−Mµ3δ1(k) + w2(k)

w1(k + 1) =w1(k) + η

[
v1(k)τ +

1

2!
w3(k)τ2

+
1

3!
w4(k)τ3

]
(16)

δ2(k) =w2(k)− v1(k)

v2(k) =−λ2L
1
3 |δ2(k)

2
3 |sign(δ2(k))

−Mµ2δ2(k) + w3(k)

w2(k + 1) =w2(k) + η

[
v2(k)τ +

1

2!
w4(k)τ2

]
(17)

δ3(k) =w3(k)− v2(k)

v3(k) =−λ1L
1
2 |δ3(k)

1
2 |sign(δ3(k))

−Mµ1δ3(k) + w4(k)

w3(k + 1) =w3(k) + η[v3(k)τ ] (18)

δ4(k) =w4(k)− v3(k)

v4(k) =−λ0Lsign(δ4(k))−Mµ0δ4(k)

w4(k + 1) =w4(k) + η[v4(k)τ ] (19)

where the double sequence {λi, µi} is chosen as in Levant
(2014), i.e., {(1.1,1.5,2,3,5), (1,2,3,4,5)}, and by setting
η = 1. The equations (15) to (19) are valid to train each
one of i-th neurons. Besides, M is selected as 2.85 and L
is selected as 1× 10−6.

4.3 Lorenz system: simulation results

Let the initial values of the state variables be x1(0) =
0.7061, x2(0) = 0.5953, and x2(0) = 0.7529. In this
simulation it is considered that in (13), the initial synaptic
weights values are initialized as zero, wij(0) = 0, as well
as, the initial values for the neural network state variables,
x̂1(0) = x̂2(0) = x̂3(0) = 0. Nevertheless, all of them
can be randomly selected and the accuracy will not be
diminished.

The implementation is accomplished with a constant sam-
pling time τ = 0.0001s, and the number of samples used
is ns = 600000. Therefore, the simulation lasts 60s. More-
over, for comparison purpose, the same RHONN identifier
described in Section 4.1, is trained using EKF training
algorithm Sanchez et al. (2008), with identical conditions.
For spacing purposes, only the last 10s for each state
variable is shown in Fig. 2, Fig. 3, and Fig. 4, respectively.
Furthermore, Fig. 5 displays the phase portrait for the
three systems: real, identified by HOSM, and identified
by EKF. It is possible to see a similar performance with
both HOSM and EKF training algorithms. However, the
root-mean-square error (RMSE) and the mean absolute
deviation (MAD) are calculated as a comparison criterion,
results are presented in Table 1. We realize that the error
obtained by the HOSM-based training algorithm is less
than the obtained by EKF training algorithm only in the
case of state variable x2. Notwithstanding, we can claim
that a RHONN can train with the HOSM-based training
algorithm proposed and achieve good results.

Table 1. Identified Lorenz system error

RMSE MAD

State variable HOSM EKF HOSM EKF

x1 0.0067 0.0054 0.0033 0.0025
x2 0.0082 0.0089 0.0046 0.0055
x3 0.0059 0.0048 0.0016 0.0012

4.4 Neural identification of all-terrain tracked robot

As a second test for the proposed training algorithm,
a modified HD2 R© Treaded All-Terrain Tracked Robot
(ATR) is identified using the RHONN identifier (13),
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Fig. 2. State variable x1 of Lorenz system. Thick line is
the real measured state variable, thin line is the cor-
responding identified state variable using the HOSM
algorithm, and the dashed line is the corresponding
identified state variable using the EKF algorithm.
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Fig. 3. State variable x2 of Lorenz system. Thick line is
the real measured state variable, thin line is the cor-
responding identified state variable using the HOSM
algorithm, and the dashed line is the corresponding
identified state variable using the EKF algorithm.

Table 2. Identified tracked robot error

RMSE (×10−3) MAD (×10−4)

State variable HOSM EKF HOSM EKF

x1 0.1466 0.1577 0.7015 0.7795
x2 0.0497 0.0575 0.2406 0.3066
x3 0.2060 0.1806 0.6545 0.5524

for this identification process real experimental data of
tracked robot is used. For the training described in equa-
tions (15) - (19). Besides, M is selected as 3.9 and L is
selected as 1 × 10−9. Performance results are compared
with the obtained results using EKF training algorithm,
both results are shown in Table 2, and in Figs. 6, 7, where
it is possible to see that the error with HOSM is less than
EKF in the identification of x1 and x2 contrary to x3.

5. CONCLUSIONS

In this work, a new training algorithm based on HOSM-
differentiators for a RHONN is proposed. The proposed
training algorithm is an online training that does not

50 51 52 53 54 55 56 57 58 59 60
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15

20

25

30

35

40

45

50

55

Fig. 4. State variable x3 of Lorenz system. Thick line is
the real measured state variable, thin line is the cor-
responding identified state variable using the HOSM
algorithm, and the dashed line is the corresponding
identified state variable using the EKF algorithm.

Fig. 5. Lorenz system phase portrait. Blue line is the
real measured system, black line is the corresponding
identified system using HOSM algorithm, and the
green line is the corresponding identified system using
EKF algorithm.

require to calculate the derivatives. A good performance
in simulation of the proposed training algorithm can
be seen through Figs. 2 to 5 and Table 1, as well as
experimental results are shown in Figs. 6, 7 and Table 2. It
is important to remark that the proposed training method
is an online option which does not require the calculation
of the derivatives, which can be especially computational
beneficial for real-time implementations.
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