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Abstract: This paper introduces a simple data-driven quadratic stabilization control (DDQSC)
method to design a state feedback controller based solely on experimental measurements while
avoiding explicitly identifying the plant. Rather, we seek a controller guaranteed to quadratically
stabilize all plants that could have possibly generated the observed data. While in principle this
leads to a very challenging non-convex robust optimization problem, our main result provides a
convex, albeit infinite-dimensional, necessary and sufficient condition for the existence of such
a controller and its associated Lyapunov function. In the second part of the paper, we provide
a tractable finite-dimensional convex relaxation of this condition and illustrate its effectiveness
with several examples.
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1. INTRODUCTION

Robust control of uncertain systems has been well studied
during the past decades, resulting in efficient synthesis
methods that guarantee the stability of a set of plants,
typically described by a nominal plant and bounded uncer-
tainty (see for instance Sánchez Peña and Sznaier (1998);
Zhou and Doyle (1998) and references therein). The tra-
ditional design procedure is based on first identifying a
nominal plant along with an uncertainty description, using
for instance control oriented identification methods (Chen
and Gu (2000)), followed by a robust controller synthesis
step. However, this two-step approach is typically conser-
vative, since the worst-case uncertainty bounds obtained
from the identification steps are usually not tight. This
conservativeness can be avoided by pursuing a data-driven
control approach, rather than model-based control, which
avoids the plant identification step and provides an end-to-
end control framework, i.e. design the controller directly
based on data. Indeed, as shown in (Formentin et al.
(2014)), for a not completely known or high-order system,
data-driven methods can statistically outperform model-
based ones in terms of control cost. In addition, the recent
work in (De Persis and Tesi (2019)) validated the fact
that the system model can be replaced by data-dependent
matrices.

During the past two decades, several data-driven control
approaches have been proposed. These methods include
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virtual reference feedback tuning (Campi et al. (2002),
Bazanella et al. (2011)), correlation-based tuning (Karimi
et al. (2004)) and iterative feedback tuning (Hjalmarsson
et al. (1998)). All of these methods assume a reference sig-
nal\model of the closed-loop system and aim to minimize
the error between the reference and true signal. However,
these methods either lack closed-loop stability guarantees
or consider simplified noise-free scenarios. (Van Heusden
et al. (2011)) provides an asymptotical stability criterion
but this is only valid when considering infinitely long data
sequence. As an alternative, the recent popularity of neural
networks motivated several data-driven methods based
on adaptive dynamic programming (Lee and Lee (2005),
Zhang et al. (2011)), reinforcement learning (Zhang et al.
(2016)) and Koopman eigenfunction (Kaiser et al. (2017),
Lusch et al. (2018)). While these methods perform well
in simulations, they lack rigorous stability certificates and
usually require a fair amount of work tuning the hyper-
parameters.

Recently (De Persis and Tesi (2019)) proposed an ap-
proach that guarantees closed-loop stability for scenarios
where the noise is small enough. Alternatively (Dai and
Sznaier (2018)) considered the data-driven control prob-
lem for discrete switched LTI systems and showed that a
controller guaranteed to stabilize the consistency set, i.e.
the set of all plants compatible with the observed data
can be synthesized using polyhedral control Lyapunov
functions (PCLFs). In principle, the same technique can be
applied to design data-driven controllers for non-switching
systems. However, the entailed computational complexity
is non-trivial, since finding the PCLF requires solving a
polynomial optimization problem. In addition, the number
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of faces of the corresponding polyhedral level sets must
be fixed a-priori, which constrains the regions where the
closed-loop can be placed. Motivated by this success in
(Dai and Sznaier (2018)), in this paper we pursue an
approach that is similar in spirit: searching for a control
Lyapunov function and associated controller guaranteed to
stabilize the consistency set. However, to avoid the difficul-
ties associated with using polyhedral Lyapunov functions,
here we will seek for quadratic ones, that is, our goal is to
find a controller that quadratically stabilizes the consis-
tency set, for scenarios where the noise is not necessarily
small. The advantages of seeking quadratically stabilizing
controllers are two-fold. On one hand, as shown by the
main result of this paper, this approach leads to convex
necessary and sufficient conditions for the existence of such
a controller; on the other, achieving quadratic stability is
a desirable property since it provides uniform bounds on
the rate of convergence of the trajectories to the origin and
their `2 bounds, for all plants in the consistency set.

The remainder of the paper is organized as follows. In
section 2, we state the problem under consideration and
provide some background results on the duality necessary
to solve it. The main result is given in section 3 where we
show that, by exploiting duality, the original non-convex
problem can be reformulated, without conservatism, as a
convex, albeit infinite-dimensional, Semi-Definite Program
(SDP). Section 4 presents a computationally tractable
relaxation of this infinite-dimensional problem. Section 5
presents two academic examples that illustrate the ad-
vantages of the proposed method over a naive alternative
based on explicitly finding a common Lyapunov for all ver-
tices of the consistency set. Finally, Section 6 summarizes
our results and points out directions for further research.

2. PRELIMINARIES

2.1 Notation

We use the standard linear algebra notation. R and Rn

denote the real numbers and the real n-dimensional vector
space, respectively. x ∈ Rn is a vector and X ∈ Rm×n is
a matrix. X � 0 indicates a positive semi-definite (PSD)
matrix. Tr(X) is the trace of the matrix. I is the identity
matrix of suitable size. 1 represents a vector of 1s.

2.2 Background Results

In this section we recall, for ease of reference, some
background results and definitions.

Definition 1. (Khargonekar et al. (1990)) An uncertain
continuous time system of the form ẋ(t) = Ax(t), with
A ∈ A is said to be quadratically stable if there exists a
n×n positive definite matrix P such that, for any A ∈ A,
V = xTPx is a Lyapunov function of the system, e.g. the
following holds

ATP + PA ≺ 0, ∀A ∈ A (1)

Similarly, a system of the form ẋ(t) = Ax(t)+Bu(t), with
uncertain A ∈ A and B ∈ B is said to be quadratically
stabilizable if there exists a state feedback controller u =
Kx such that, for any pairs (A ∈ A,B ∈ B) the resulting
closed-loop system is quadratically stable.

Theorem of Alternatives. The following result will play
a key role in recasting the data-driven quadratic stabi-
lization problem into a tractable form. Given n concave
functions fi(x), consider the following (primal) feasibility
problem:

Does there exist x such that fi(x) ≥ 0, i = 1, . . . , n?
(primal)

The dual function associated with the primal problem is:

g(µ) = sup
x

k∑
i=1

µifi(x) (2)

where µi are scalars (the Lagrange multiplier). In terms of
g(.) the dual problem is:

Does there exist µ ≥ 0 such that g(µ) < 0? (dual)

Theorem 1. The primal and dual problems are strong
alternatives, that is, exactly one of them is feasible.

The proof can be found for instance in (Boyd and Vanden-
berghe (2004)), Chapter 5.

2.3 Problem Statement

Throughout the paper, we consider the following controller
design problem:

Problem 1. Consider a continuous LTI system:

ẋ(t) = Ax(t) + Bu(t) + η(t) (3)

where A ∈ Rn×n, B ∈ Rn×m are unknown system
matrices, x ∈ Rn and u ∈ Rm denote the state and
input vectors, and η ∈ Rn denotes `∞ bounded noise 1 ,
with ||η||∞ ≤ ε. Given measurements ẋ(tk), x(tk), u(tk),
k = 1, . . . , ns representing the sample index, the goal is
to find a state feedback controller u = Kx guaranteed
to quadratically stabilize all pairs (A,B) that could have
generated the observed data.

Note that each measurement (ẋ(tk),x(tk),u(tk)) yields 2n
polytopic constraints on the elements of (A,B):[

A B
−A −B

] [
x(tk)
u(tk)

]
≤
[
ε1 + ẋ(tk)
ε1− ẋ(tk)

]
:= dk (4)

Thus, Problem 1 can be recast into the following robust
optimization form: Find a positive definite matrix P and
a controller K such that :

(A + BK)TP + P(A + BK) ≺ 0

for all (A,B) that satisfy (4)
(5)

Note that (5) is bilinear in K,P. However, using the
standard technique of pre/post-multiplying by Y

.
= P−1

and defining M
.
= KY yields the Linear Matrix Inequality

(LMI)

YAT + AY + MTBT + BM ≺ 0 (6)

Hence the problem above is equivalent to:

Problem 2. Find matrices Y � 0 and M such that (6)
holds for all (A,B) that satisfy (4).

2.4 A Naive Approach: Vertex LMIs.

Since the constraints (4) define a polytope of (A,B) in

Rn2 × Rnm a naive approach to solving Problem 2 is to

1 This noise arises for instance from numerical estimation of ẋ(t)
from measurements of x(t)
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simply find the vertices (Ai,Bi)
.
= Vi of this polytope

and search for a common solution (Y,M) to the set of
vertex LMIs. However, due to the exponential growth of
the number of vertices with the problem dimension and
number of samples, coupled with the limitations of existing
LMI solvers (at most ∼ 103 variables), this approach is
impractical beyond simple toy problems. For instance,
even a scenario with n = m = 3 and ns = 50 samples
yields 12.7×106 vertices. In the next section, we provide a
tractable alternative to this naive approach, based on the
use of duality.

3. A NECESSARY AND SUFFICIENT CONDITION
FOR QUADRATIC STABILIZABILTY

In this section we show that Problem 2 can be recast
as a convex (albeit infinite-dimensional) optimization by
exploiting duality. The first step towards this goal is, for
reasons that will be clear below, to rewrite the constraints
(4) in the following form:

Tr(AZx
i,k + BZu

i,k) ≤ di,k (7)

where di,k is the ith entry of the vector dk. This can
be accomplished by defining 4nns matrices Zx

i,k and Zu
i,k

having the data vector x(tk)(u(tk)) as their ith column
and all other entries equal to zero.

Zx
i,k = [. . . ,±x(tk), . . .]

n×n
Zu

i,k = [. . . ,±u(tk), . . .]
m×n

(8)

For example, for a second-order system there are 8 matri-
ces per sample. In this case we have:

Zx
1,k =

[
x1(tk) 0
x2(tk) 0

]
, Zx

2,k =

[
0 x1(tk)
0 x2(tk)

]
,

Zx
3,k =

[
−x1(tk) 0
−x2(tk) 0

]
,Zx

4,k =

[
0 −x1(tk)
0 −x2(tk)

] (9)

with similar expressions for Zu
i,k. In terms of these matrices

Problem 2 can be recast as:

Problem 3. Find matrices Y � 0 and M such that (6)
holds for all (A,B) that satisfy (7).

The next result shows that this problem can be solved by
solving an infinite-dimensional convex optimization.

Theorem 2. Problem 3 is feasible if and only if there exist
matrices Y � 0, M and ns non-negative (vector) functions
µk(x) : Rn → R2n

+ such that the following conditions hold
for all x ∈ Rn:

ns∑
k=1

2n∑
i=1

µi,kdi,k < 0 (10)

2xxTY −
ns∑
k=1

2n∑
i=1

µi,k(x)(Zx
i,k)T = 0 (11)

2xxTMT −
ns∑
k=1

2n∑
i=1

µi,k(x)(Zu
i,k)T = 0 (12)

In order to prove this Theorem, we need the following
preliminary result:

Lemma 1. Given a fixed x ∈ Rn and fixed matrices
Y ∈ Rn×n,M ∈ Rm×n, consider the following feasibility
problem in (A,B):

xT (YAT + AY + MTBT + BM)x ≥ 0

Tr(AZx
i,k + BZu

i,k) ≤ di,k
(13)

Then (13) is infeasible if and only if there exist ns non-
negative vectors µk(x,Y,M) such that:

ns∑
k=1

µT
k dk < 0

2xxTY −
ns∑
k=1

2n∑
i=1

µi,k(Zx
i,k)T = 0

2xxTMT −
ns∑
k=1

2n∑
i=1

µi,k(Zu
i,k)T = 0

(14)

where for notational simplicity we do not denote the
explicit dependence of µi,k on x, Y and M.

Proof: Omitted for space reasons follows by showing that
the dual problem of (13) is given by:

g(µ) =

ns∑
k=1

2n∑
i=1

µi,kdi,k < 0

subject to µi,k ≥ 0, (11) and (12)

(15)

and applying the Theorem of Alternatives to (13) and its
dual (15). 2

The detailed proof of Theorem 2 is omitted due to the lack
of space. Its main idea is to first use Lemma 1 to show
that Problem 3 is feasible if there exist matrices Y � 0,
M and ns vectors µk(x,Y,M) ≥ 0 such that (14) holds
for all x. The proof follows by showing that, since we are
interested in finding just one feasible solution, then the
vector functions µk can be taken to be independent of Y
and M. 2

Remark 1. Theorem 2 provides a convex necessary and
sufficient condition, in the form of an SDP in M,Y,µk, for
the existence of a state-feedback controller that quadrat-
ically stabilizes the set of all pairs (A,B) consistent
with the observed data. However, this SDP is infinite-
dimensional since the constraints (10)-(12) must hold for
all x.

4. A TRACTABLE RELAXATION

As noted in the previous section, Theorem 2 provides a so-
lution to Problem 2 in the form of an infinite-dimensional
SDP. While of theoretical value, this condition is impracti-
cal for designing controllers, even if one wants to discretize
it by gridding x, due to the limitation of existing SDP
solvers. To address this difficulty, in this section we present
a computationally tractable, Sum-of-Squares (SoS) based
relaxation.

From (11)-(12) it follows that µi,k(x) must be an ho-
mogeneous function in x of degree 2. In order to obtain
tractable relaxations, we will approximate these functions
by second-order SoS polynomials of the form µi,k(x) =
xTQi,kx leading to the following feasibility problem:

Problem 4. Find matrices Y � 0, M and Qi,k � 0 such
that the following conditions hold:
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ns∑
k=1

2n∑
i=1

Qi,kdi,k ≺ 0 (16)

2xxTY −
ns∑
k=1

2n∑
i=1

xTQi,kx(Zx
i,k)T = 0 (17)

2xxTMT −
ns∑
k=1

2n∑
i=1

xTQi,kx(Zu
i,k)T = 0 (18)

Note that (17)-(18) each defines n(n+1)
2 polynomial con-

straints that can be solved by simply setting the coeffi-
cients of each monomial in the (second-order) polynomial
to zero. In the sequel, for notational simplicity, we will de-
note these coefficients as ka(Y,Qi,k), kb(M,Qi,k) leading
to the following algorithm:

Algorithm 1 DDQSC

1: Given ns measurements x,u, ẋ, a noise bound ε and
a small number δ, build Zx

i,k,Z
u
i,k, di,k, i = 1, ..., 2n,

k = 1, ...., ns.
2: Solve:
3: minimize 0
4: subject to

ka(Y,Qi,k) = 0

kb(M,Qi,k) = 0

−
ns∑
k=1

2n∑
i=1

Qi,kdi,k � δI

Qi,k � 0

Y � δI

(19)

Remark 2. As indicated before, the algorithm above is a
relaxation of the original problem, in the following sense.
Existence of a feasible solution provides a certificate of
quadratic stabilizability through the Lyapunov function
xTY−1x and associated controller K = MY−1. On the
other hand, infeasibility of the Algorithm does not rule out
the existence of solutions to Problem 1 as there could exist
µk(x) > 0 outside the SoS set. Nevertheless consistent
numerical experience shows that this relaxation works well
in practice. In principle, conservatism can be reduced by
considering rational functions of the form

µi,k(x) =
Ni,k(x)

Di,k(x)

degree(Ni,k(x))− degree(Di,k(x)) = 2

where Ni,k(x), Di,k(x) can have arbitrarily high degree.
However, inserting such functions into (11)-(12), will lead
to bilinear constraints involving the products of YPi,k and
MTPi,k. In principle this problem can also be solved using
convex optimization by using the polynomial optimization
techniques presented in Lasserre (2009). However, the
entailed computational complexity prevents using this
approach except for small sized problems.

5. SIMULATION RESULTS

In this section, we illustrate the proposed framework with
several academic examples. In all cases the data was gener-
ated using the MATLAB function ode45.m (Shampine and

Reichelt (1997)) and Algorithm 1 was implemented using
YALMIP (Löfberg (2004)). For benchmarking purposes,
we also applied (when feasible) the Vertex LMI (VLMI)
method described in section 2.4. In this case, we obtained
all the vertices of the polytope (4) using the Vertex Enu-
meration (VE) algorithm introduced in (Avis and Jordan
(2018)) and then attempted to find a common Lyapunov
function to the corresponding LMIs.

5.1 Second-Order System

We first consider data generated by the second-order sys-
tem:

A =

[
0.9367 0.7211
0.3586 0.3974

]
, B =

[
0.3940 0.2038
0.3513 0.7954

]
(20)

A has eigenvalues (1.2426, 0.0915) and hence is unstable.
The input and the initial states are uniformly distributed
in [−1, 1]. The noise is uniformly distributed in [−ε, ε]. For
the parameters, we selected δ = 0.001, ε = 0.1, s = 25, i.e.
25 samples with 10% noise, obtained by equally sampling
within the time interval [0, 2]. Our goal is to find a
data-driven controller K to stabilize this unstable plant
using only experimental data. Applying the VLMI-method
yields the following matrix P and controller K:

P =

[
18.0627 0.7058
0.7058 4.7862

]
K =

[
−24.5452 1.1205

7.3253 −3.5479

] (21)

As expected, by construction, the controller stabilizes the
polytope defined by the experimental data. In particular,
the closed-loop poles corresponding to (20) are (-7.0267,
-2.2454), hence the system is stable. Applying now Algo-
rithm 1 to the same data yields :

P =

[
5.3551 1.7398
1.7398 1.3681

]
K =

[
−37.3735 −10.2398

1.5504 −4.6361

] (22)

In this case, the closed-loop system corresponding to
(20) has poles at (-17.924, -2.4359). Further, it is easy
to verify that the pairs (P,K) satisfy the Lyapunov
equation for all the vertices (Ai,Bi) found using the
VLMI method, certifying that indeed the controller K
quadratically stabilizes it. The initial condition response
of the system obtained when closing the loop around (20)
with the controllers (21) and (22) are shown in Figs. 1-
2. As illustrated there, both methods yield controllers
that perform well. Hence, for this choice of parameters,
there seems to be no advantage in using either algorithm.
However, in many scenarios, guaranteeing feasibility of
Problem 1 requires considering a moderately large number
of samples, in order to reduce the uncertainty 2 , at the cost
of extra computational burden. As we show in the next
example, the VLMI method is ill equipped to handle these
scenarios, becoming quickly intractable as the number of
samples grows, even for low dimensional examples.

2 When the number of samples is relatively low, the consistency set
is large and hence there may not exist a single controller that can
simultaneously stabilize all the plants in this set.
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Fig. 1. Closed-Loop Response of Trajectory 1
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Fig. 2. Closed-Loop Response of Trajectory 2

5.2 Third-Order System

In this example, we illustrate the ability of the proposed
approach to handle scenarios beyond the capabilities of
the naive VMLI method. The system we used to generate
the data is

A =

[
0.8757 0.1566 0.4821
0.0854 0.5821 0.0267
0.2978 0.5931 0.3061

]

B =

[
0.0525 0.1726 −0.0130
0.3098 −0.3037 0.1995
−0.3168 −0.0683 0.0252

] (23)

with the same parameters used for the second-order case
except we now use 50 samples, i.e. s = 50. As before,
A is unstable, with eigenvalues (1.1372, 0.4798, 0.1469).
Applying the VLMI method to this system is impractical.
Finding the vertices of the polytope takes only 16 seconds
but yields 12.7 million vertices. Solving an SDP with this
number of constraints is beyond the ability of existing
solvers. On the other hand, applying the algorithm 1 only
takes 8.5164 seconds to find the solution:

P =

[
14.7586 6.5061 1.8054
6.5061 3.5464 2.7224
1.8054 2.7224 8.4384

]

K =

[−743.6 −202.8 500.0
−387.6 −212.4 −312.9
430.9 −367.6 −2274.0

] (24)

The corresponding closed-loop poles are (−9.369,−183.2+
136.6i,−183.2 − 136.6i). A sample initial condition re-
sponse is shown in Figs. 3-5.

0 0.2 0.4 0.6 0.8 1
Time(s)

-0.2

0

0.2

0.4

St
at
e

Fig. 3. Closed-Loop Response of Trajectory 1
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Fig. 5. Closed-Loop Response of Trajectory 3

5.3 Computational Complexity

In this part, we briefly discuss the time complexity of the
VLMI method and the DDQSC method by counting the
number of SDP constraints. It is well known that for m
inequalities involving vectors in Rd, the number of vertices

is exponential Ω(m( d
2 )) in the size of the input. In our

case, for an nth-order system with ns samples, we will have

Ω(nn
(n)
s ) PSD constraints. That is quite a large number

and hard to deal with. On the other hand the DDQSC
algorithm only contains (2nns + 2) PSD constraints and

(n2(n+1)(n+m)
2 ) linear constraints (see (19)). Hence its

complexity grows linearly with the number of samples.
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6. CONCLUSION

This paper proposes a simple data-driven approach to
quadratically stabilize an unknown continuous LTI sys-
tem, based solely on experimental measurements. While
in principle this leads to a challenging non-convex robust
optimization problem, our main result shows that a convex
necessary and sufficient condition for quadratic stabiliza-
tion of all plants compatible with the observed experimen-
tal data can be obtained via the theorem of alternatives, by
rendering the dual of the original problem feasible. Since
this convex problem is an infinite-dimensional SDP (due
to the fact that the constraints must hold for all x ∈ Rn),
in the second portion of the paper we provide a tractable
finite-dimensional relaxation obtained by limiting the La-
grange multipliers, which in principle are arbitrary non-
negative homogeneous functions of degree two, to second-
order non-negative polynomials. Remarkably, the compu-
tational complexity of this relaxation grows linearly with
the number of samples. For comparison, the complexity of
a naive approach based on identifying the vertices of the
polytope of matrices compatible with the observed data
grows exponentially with the number of samples and thus
becomes impractical beyond some toy problems.

Perhaps the most serious limitation of the proposed algo-
rithm in its present form is that it only seeks to certify
the quadratic stability of the closed-loop system, with-
out taking performance into consideration. Research is
currently underway to extend our approach to address
performance. Possible venues to accomplishing this include
adding a suitable objective to the feasibility problem (19)
or replacing the Lyapunov inequalities with Riccati type
inequalities, handled via the Bounded Real Lemma. How-
ever, these extensions are beyond the scope of the present
paper.
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