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Abstract: The main contribution of this paper is to design an enhanced fractional-order controller for the 
higher-order system. The analytical design methodology utilizes a delayed Bode’s ideal transfer function 
in place of the conventional one as the reference model. A reduced fractional-order plus dead-time 
transfer function is used to represent a higher-order process. The design also embeds a Smith predictor 
for the enhanced closed-loop performance. Analytical tuning for the designed fractional-order controller 
is provided based on frequency domain specifications. The proposed methodology is applied to two 
higher-order systems, which can be represented by a reduced fractional-order plus dead-time transfer 
function. The closed-loop performance of the designed controller is compared with that of the three other 
related controllers. Frequency domain characteristics, load disturbance, sensitivity analysis, and model 
mismatch performance are demonstrated and compared with those of other controllers as well. The 
results of the paper reveal that the proposed controller leads to an overall enhanced closed-loop 
performance. 

Keywords: Reduced-order models, delayed Bode’s ideal transfer function, fractional-order controller, 
Smith predictor, sensitivity analysis, robust control.  


1. INTRODUCTION 

Industrial processes are often represented by higher-order 
models in order to capture in-depth dynamical behaviour with 
high accuracy (Isaksson and Graebe, 1999). Many control 
strategies are available for higher-order processes. They pose 
a significant challenge to tune the controllers. Isaksson and 
Graebe (1999) proposed an analytical tuning of integer-order 
PID for higher-order processes.  

    Fractional-order controllers have proven superior 
performance in contrast to integer-order controllers 
(Podlubny, 1999). Moreover, fractional-order representation 
of higher-order systems offers a more significant description 
of the dynamics instead of the integer-order representation 
(Tavakoli-Kakhki and Haeri, 2011). Fractional-order 
representation has found places in various forms: fractional-
order controllers for fractional-order systems (Malek et al., 
2013; Luo et al., 2010), fractional-order controllers for 
integer-order systems (Monje et al., 2010), and integer-order 
control for fractional-order systems (Meneses et al., 2019). 
An Internal Model Control (IMC) based fractional-filter 
cascaded with integer-order PID was presented by Maâmar 
and Rachid (2014). They used the concept of Bode’s ideal 
transfer function as the reference model. Moreover, Smith 
predictor based approach for the design of enhanced 
fractional-order as well as the integer-order controller has 
proved their usefulness in recent years (Bettayeb et al., 2017; 
Araujo and Santos, 2019; Pashaei and Bagheri, 2019). 
Tuning of the fractional-order controllers is a critical process, 
failing which, will lead to an unsatisfactory performance (Das 
et al., 2011). Yumuk et al. (2019) proposed a novel 
fractional-order controller design for higher-order processes 

using frequency domain specifications. They considered a 
reduced-order model known as Non-integer Orders Plus Time 
Delay (NIOPTD) models (Das et al., 2011).  

    This paper incorporates a design of an enhanced fractional-
order controller using an accurate NIOPTD-I transfer 
function for the higher-order processes. First, the higher-
order processes are approximated by fractional structure, i.e. 
NIOPTD-I, instead of the integer-order approximation. 
Second, the Smith predictor (dead-time compensator) is 
embedded into the inner loop. Then, the proposed controller 
is designed, where the delayed Bode’s ideal loop transfer 
function is placed in the forward path as a unity feedback 
reference model. The Bode’s ideal transfer function is 
modified with a delay term in order to account for the time 
delay of the NIOPTD-I transfer function. Analytical tuning is 
provided based on the given frequency domain specifications. 
Stability analysis and numerical simulations of the proposed 
method are demonstrated for two appealing higher-order 
processes. Closed-loop performance, frequency-domain 
characteristics, robustness as well as sensitivity analysis of 
the proposed method are compared with the methodologies of 
Bettayeb and Mansouri (2014), Das et al., (2011) and Yumuk 
et al., (2019). The controller performance indices and the 
sensitivity performance indices display the enhanced 
performance of the proposed fractional-filter-fractional-PI 
controller in this paper.       
    

2. DELAYED BODE’S IDEAL TRANSFER FUNCTION 

Bode suggested an ideal transfer function popularly known as 
the Bode’s ideal transfer function (Barbosa et al., 2004) 
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where the gain cross-over frequency  1 cgc , i.e., 

.1)( gcL   More details are available with Barbosa et al. 

(2004). Consider unity feedback where Bode’s ideal transfer 
function is placed in the forward path. Then the desired 
closed-loop transfer function is obtained as  

                                 .
1

1
)(


  s

sCL
c

ref                             (2) 

The closed-loop transfer function (2) is used as a reference 
model for tuning the controllers. Suppose the desired gain 
cross-over frequency )( gc and the Phase Margin (PM) are 

given, then fractionality and the time constant c are  
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Now, consider a delayed version of the Bode’s ideal transfer 
function (Yumuk et al., 2019), i.e.  
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Due to the change in the original form of Bode’s ideal 
transfer function, the new closed-loop transfer function of the 
unity feedback is given by 

                               .)(
s

c

s

ref
es

e
sL 



 




                          (5) 

The fractionality   and the time constant c for (5) are given 

by 
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It can be observed from (3) and (6) that the time delay term 
and the gain cross-over frequency have their contribution in 
deciding the fractionality, which was not present in the delay 
less transfer function.  

3. CONTROLLER DESIGN 
 

Consider a classical feedback closed-loop structure, as shown 
in Fig. 1. The feedback consists of a Smith predictor (dead-
time compensator) )(sDc embedded in the inner feedback 

with controller transfer function )(sGc  in the forward path. 

The dead-time compensator is defined as 

),()1()( * sGesD s
c

 where )(* sG is the plant transfer 

function void of dead-time. The unity feedback with the 
delayed Bode’s ideal transfer function in the forward path is 
shown in Fig. 2.  
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Fig. 1. Classical feedback with embedded Smith predictor. 
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Fig. 2. Reference control-loop with delayed Bode’s ideal 
transfer function. 

Using the notion of equivalent systems, the controller transfer 
function is derived as  
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Making )(sGc the subject of formula in (8),  
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Equation (9b) is recast as 
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Now, One Non-integer Order Plus Time Delay (NIOPTD-I) 
reduced-order representation of the higher-order processes is 
given by (Das et al., 2011) 
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Hence, on substituting the reduced fractional-order transfer 
function (11) and the delayed Bode’s ideal transfer function 
(4) into (10), we get the fractional-filter-fractional-PI 
controller, i.e. 
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On further simplifications,  
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Approximating the delay term with Taylor series expansion 
in (12) 
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4. NUMERICAL SIMULATIONS 

 

In this section, the closed-loop performance resulting from 
the proposed controller (13) is compared with the other three 
controllers. The comparison is made based: Integral of 
Square Error (ISE), Integral of Time Absolute Error (ITAE), 
Integral of Squared Control Input (ISCI), Overshoot (OS), 
Settling-time (ST), and maximum absolute sensitivity )( maxS . 

The fractional-filters are implemented using Oustaloup 
approximation (Nagarsheth and Sharma, 2020), with 4N , 

410h  and .10 4l  

Example 1 

Consider a higher-order system (Yumuk et al., 2019), i.e. 

                                   .
)1(

1
)(

3


s
sH                               (14) 

NIOPTD-I model for (14) is expressed as (Das et al., 2011) 
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The given frequency domain specifications for the closed-
loop system are 80PM  and ./3.0 sradgc   By 

substituting these specifications in (6), 92.0 and 
0275.3c  are obtained. Now, utilizing (13), the proposed 

controller for example 1 is obtained as 
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For the same set of values, the controllers obtained using the 
methods of Bettayeb and Mansouri (2014), Das et al. (2011), 
and Yumuk et al. (2019) are as follows: 
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Filter fractionality and fractional-PI controller introduces 
fractionality in the closed-loop characteristic polynomial. The 
fractional characteristic polynomial can be converted to 
natural degree characteristic polynomial to assess the stability 
(Kaczorek, 2011). Then, all the roots of the associated natural 
degree characteristic polynomial must satisfy the 

condition ),2( ir  in order to have the proposed 

closed-loop system stable. Here, ir  denotes the roots of the 

polynomial and   is the greatest common divisor. The 
intricacy of finding the roots of the fractional characteristics 
polynomial is circumvented by demonstrating the stability 
analysis graphically via the FOMCON toolbox of 
MATLAB© (Monje et al., 2010). 

 
Fig. 3. Stability assessment of proposed controller for 
example 1 

Fig. 3 shows that )2( ir holds, as the roots of the 

associated natural degree characteristic polynomial do not lie 
inside the principal sheet of the Riemann surface constructed 
by ),2(  where 04.0 for example 1. Thus, the proposed 

closed-loop system is stable. 
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Fig. 4. Closed-loop responses: nominal case, mismatch case 
associated with example 1.   

Figs. 4 and 5 show the closed-loop and load disturbance 
responses for nominal as well as mismatch cases, 
respectively. Solid lines denote the nominal case, and the 
dashed lines denote the mismatch case. The time-domain 
characteristics with controller performance indices for the 
nominal case are depicted in Table 1. It can be observed from 
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Fig. 4 that the proposed controller exhibits 0% overshoot 
with the least settling time.  

     Moreover, the ISCI index displays the efforts by the 
controller, which is least in the case of the proposed method. 
For the robustness analysis, a 40% mismatch in the plant 
transfer function (14) parameters is considered. The closed-
loop results of reference tracking and disturbance rejection 
for the mismatch case are displayed in Figs. 4 and 5. In 
contrast to the other controllers, the proposed controller 
offers less OS, less ST, and improved performance indices. 
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Fig. 5. Load disturbance responses: nominal case, mismatch 
case associated with example 1.   

Table 1. Controller performance indices for the nominal case 
 

Controllers ISE ITAE ISCI 
OS 
(%) 

ST 

Proposed method 2.01 25.9 45.8 - 16.4 

Bettayeb and 
Mansuri (2014) 

2.7 30.18 46.7 3.3 26 

Das et al. (2011) 1.9 31.0 61.1 6 28.3 

Yumuk et al. 
(2019) 

2.2 32.6 46.6 - 24 

 

-400

-200

0

200

 

 

M
ag

n
it

u
d

e 
(d

B
)

Frequency  (rad/s)
10

-5
10

0
10

5
-315

-270

-225

-180

-135

-90

-45

P
h

as
e 

(d
eg

)

Proposed method
Bettayeb and Mansouri (2014)
Das et al. (2011)
Yumuk et al. (2019)

 

Fig. 6. Comparison of Bode diagrams for example 1.   

Bode diagrams for the open-loop transfer function using all 
the controllers (16)-(19) are shown in Fig. 6. Complimentary 
sensitivity functions associated with the closed-loop of all the 
controllers in comparison are displayed in Fig. 7. Fig. 8 
shows the absolute sensitivity plots. The inverse of maximum 
absolute sensitivity maxS denotes the stability margin. Lesser 

the maxS higher is the stability margin (Åström and Murray, 

2008).  
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Fig. 7. Complimentary sensitivity graphs for example 1.   
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Fig. 8. Graphical illustration of absolute sensitivity for 
example 1.   

From Fig. 7, it can be observed that the controller in Bettayeb 
and Mansouri (2014) filters the high-frequency signals better 
in comparison to all the controllers. On the other hand, the 
proposed control method filters better than the control 
methodologies in Das et al. (2011) and Yumuk et al. (2019). 
Moreover, the proposed controller has the least maxS in 

contrast to all the other controllers (Table 2), which is 
indicative of better robustness and less amplification 
occurring due to model mismatch and input disturbances 
(Fig. 8). Importantly, less maxS resulting from the proposed 

controller indicates more stability margin in comparison to 
other controllers.  

Table 2. Frequency domain characteristics and sensitivity 
performance indices for the nominal case of example 1 

 

Controllers PM gc  maxS  ms  

Proposed method 83.95 0.27 1.22 0.86 
Bettayeb and 

Mansuri (2014) 
70.27 0.235 1.27 0.67 

Das et al. (2011) 78.66 0.28 1.24 1.01 
Yumuk et al. 

(2019) 
81.59 0.3 1.29 0.94 

 
Example 2 
Consider a third-order system (Yumuk et al., 2019), i.e. 
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NIOPTD-I model for (20) is expressed as (Das et al., 2011) 
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The given frequency domain specifications for the closed-
loop system are 80PM and ./1 sradgc  Thus, we get 

0336.1 and .1c  Now, utilizing (13), the proposed 

controller for example 2 is obtained as 

  .
9997.0

88613.0
)4274.0(

)(
0212.10336.0

0212.0

)( 





 




ss

s
sG proposedc  (22) 

For the same set of values, the controllers obtained using the 
methods of Bettayeb and Mansouri (2014), Das et al. (2011), 
and Yumuk et al. (2019) are as follows: 

                ,
1281.1

1
)3397.21(

07331.2
)(

0212.1111.0

0212.0







 




ss

s
sGc             (23) 

              ,2713.0
2309.1

8944.0)( 9355.0
0019.1 






  s

s
sGc         (24) 

and 

                          ,
1281.1

1
88613.0

)(
0212.101243.0 






 

ss
sGc                 (25) 

respectively. Fig. 9 displays the stability assessment of the 
proposed closed-loop of example 2 on the Riemann surface. 

 
Fig. 9. Stability assessment of the proposed controller for 
example 2. 

Figs. 10 and 11 show the closed-loop and load disturbance 
responses for nominal as well as mismatch cases, 
respectively. The time-domain characteristics with controller 
performance indices for the nominal case are depicted in 
Table 3. It is evident from Fig. 10 that all the other 
controllers (23)-(25) possess OS under a 40% mismatch in 
the gain of the plant. On the other hand, the proposed 
controller still does not possess OS and is able to provide 
promising performance without overshoot under model 
mismatch case. This improvement in the robust performance 
is due to the contribution of the dead-time compensator in the 
proposed controller.  
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Fig. 10 Closed-loop responses: nominal case, mismatch case 
associated with example 2. 
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Fig. 11 Load disturbance responses: nominal case, mismatch 
case associated with example 2.   

Table 3. Controller performance indices for the nominal case 
 

Controllers ISE ITAE ISCI OS (%) ST 

Proposed 
method 

0.47 4.8 18.1 - 6.6 

Bettayeb and 
Mansuri (2014) 

0.92 9.9 19.3 4.7 8.6 

Das et al. (2011) 0.6 7.1 28.7 6.3 6.5 

Yumuk et al. 
(2019) 

0.75 5.0 19.7 6.1 7.5 

 

Bode diagrams for the open-loop transfer function using all 
the controllers (22)-(25) are shown in Fig. 12. 
Complimentary sensitivity functions associated with the 
closed-loop of all the controllers in comparison are displayed 
in Fig. 13. Fig. 14 shows the absolute sensitivity plots. The 
PM in Table 4 clearly shows that the proposed controller 
achieved the closest PM to the reference model in contrast to 
the other controllers.  
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Fig. 12. Bode diagrams comparison for example 2.   
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Fig. 13. Complimentary sensitivity graphs for example 2. 
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Fig. 14. Graphical illustration of absolute sensitivity for 
example 2.   

Table 4. Frequency domain characteristics and sensitivity 
performance indices for the nominal case of example 2. 

 

Controllers PM gc  maxS  ms  

Proposed method 75.7 0.7 1.51 2.725 
Bettayeb and 

Mansuri (2014) 
70.7 0.71 1.51 2.603 

Das et al. (2011) 74.5 1.02 1.53 3.203 
Yumuk et al. 

(2019) 
70.1 1.01 1.94 2.725 

 
6. CONCLUSION 

 

This paper has proposed a fractional-filter fractional-PI 
controller for higher-order processes, which are represented 
by the NIOPTD-I fractional-order model. The utilization of 
the delayed version of the Bode’s ideal transfer function 
instead of the conventional one, as in the other controllers, 
has lead to the enhanced closed-loop performance of the 
proposed controller in the sense of improved controller and 
sensitivity performance indices. The resulting enhanced 
performance in nominal as well as mismatch case is 
attributed to the use of the combined effect of Smith predictor 
and the delayed Bode’s ideal transfer function in the 
controller design. The proposed method also meets the 
desired frequency domain specifications satisfactorily. It is 
evident from the comparison of the proposed controller with 
all other controllers that the controller resulting from the 
proposed method either achieves the same level or a much 
better closed-loop performance.  
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