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Abstract: Constant spacing-based platooning systems cannot guarantee string stability if
platoon members only use the preceding vehicle’s information. To meet string stability
specification, leader-predecessor-follower (LPF) platooning systems are proposed to incorporate
the information of both the preceding vehicle and the platoon leader into the control loop.
However, string stability of LPF platooning systems is very sensitive to communication and
sensing delays. Even a delay of 5 milliseconds may render LPF platooning systems string-
unstable. This paper focuses on a new approach to deal with communication and sensing
delays in LPF platooning systems. A semi-constant spacing policy that synchronizes delayed
measurements of system states obtained from different sources is proposed. This spacing
policy aims at tracking the past information of the preceding vehicle to gurantee string
stability. Moreover, the delay-synchronizing LPF platooning system puts the same requirements
on controller parameters as the nominal LPF platooning system that is not affected by
communication and sensing delays. Thus, control gains of the delay-synchronizing LPF platoon
can be designed without considering delays.

Keywords: Communication delay, constant spacing policy, leader-predecessor-follower topology,
platooning, individual vehicle stability, string stability, vehicle following

1. INTRODUCTION

Vehicle platooning has been attracting extensive atten-
tion in recent years for its potential for improving traffic
throughput (Bian et al., 2019) and reducing fuel assump-
tion (Gattami et al., 2011). To achieve vehicle platooning,
initial efforts were taken to equip the subject vehicles
with a controller to regulate a predefined constant inter-
vehicle spacing, using only the predecessor’s position as
a reference (Swaroop and Hedrick, 1999). However, this
kind of systems suffers from the problem of string insta-
bility (Swaroop and Hedrick, 1999; Seiler et al., 2015),
i.e., amplification of oscillation from the predecessor to the
follower, which may lead to stop-and-go traffic waves and
even rear-end collisions. Furthermore, the string instability
problem occurs regardless of the controller parameters, the
control law, or the oscillation profile.

? This work was partially supported by National Natural Science
Foundation of China under Grant number 71871163 and Chinese
Scholarship Council. Corresponding author: Meng Wang.

To achieve string stability, two kinds of measures are
mainly adopted. The first one is to change the constant
spacing (CS) policy to be velocity-dependent spacing pol-
icy (for instance, constant time gap policy), allowing inter-
vehicle distance growing with the speed of the host vehicle
(Naus et al., 2010; Ploeg et al., 2014; Wang, 2018; Ploeg
et al., 2013; Monteil et al., 2018; Zhang et al., 2020).
Improvement in string stability with velocity-dependent
policy is realized at the expenses of compromising the traf-
fic throughput benefits (Santhanakrishnan and Rajamani,
2003). Another way is to keep the CS policy and incor-
porate the platoon leader’s information into the control
loop under the leader-predecessor-follower (LPF) topology
(Liu et al., 2001; Peters and Middleton, 2011; Bian et al.,
2019). LPF based CS policy facilitates tighter platoon as
the CS policy does not require larger spacing when platoon
operates in higher speeds and it improves string stability
at the expense of higher complexity of communication
structure (Swaroop and Hedrick, 1999; Konduri et al.,
2017).
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However, string stability performance of both the above-
mentioned methods can be jeopardized by communica-
tion and sensing delays, intrinsic characteristic of any
communication systems and onboard sensors (Liu et al.,
2001; Ploeg et al., 2014). To design a string-stable pla-
tooning system considering communication and sensing
delays, systems adopting the velocity-dependent spacing
policy have to employ large inter-vehicle time gap (Ploeg
et al., 2014), which compromises the benefit of vehicle
platooning. For LPF based CS platooning systems, string
instability is unavoidable even when the delays are small
(Liu et al., 2001).

A few methods that deal with delay in platooning systems
have been proposed, mainly resorting either to predictor-
feedback (Molnár et al., 2017; Bekiaris-Liberis et al., 2017)
or to delay-based spacing policy (Besselink and Johansson,
2015, 2017; Ge et al., 2017). Yet, these methods focus on
the platooning systems with velocity-dependent spacing
policy and using a predecessor-follower communication
architecture. It is still a challenge to develop a method
to deal with the delays for LPF platooning systems with
constant spacing policy.

In this paper, we focus on the control design of delay-
synchronizing LPF platooning system. Toward this end,
a new semi-constant spacing (SCS) policy is proposed.
The SCS policy modifies the CS policy such that the
subject vehicle regulates its position with respect to the
past position of the preceding vehicle. This modification
results in the same requirements of both individual vehicle
stability and string stability as the nominal delay-free case.
Thus, controller gains of the delay-synchronizing LPF
platoon can be designed without considering delays.

The remainder of the paper is organized as follows. Section
2 presents the vehicle platooning system dynamics and
the basic assumptions on the operation of the system.
Section 3 presents the control design and stability analysis
of LPF platooning systems in the absence of communi-
cation/sensing delays. Section 4 shows the influence of
delays on the platooning systems’ string stability and re-
veals the mechanism behind the string instability. Section
5 describes the delay-synchronizing strategy and shows
the individual vehicle stability and string stability of the
delay-synchronizing LPF platoon. Section 6 verifies the
theoretical analysis by simulation. Section 7 concludes the
paper and remarks the future research.

2. VEHICLE PLATOONING SYSTEM DYNAMICS

A platoon with LPF communication topology is shown in
Fig. 1. For a platoon of m+ 1 vehicles, the vehicles in the
platoon are indexed from 0 to m with the one indexed with
0 being the platoon leader and the rest being followers.
The sensing delay of the i-th vehicle is denoted as δs,i;
the communication delay between the i-th vehicle and its
preceding vehicle is denoted as δp,i; the communication
delay between the i-th vehicle and the leader vehicle is
denoted as δl,i.

All the vehicles in the platoon are assumed to share the
same dynamic model as follows:

...
p (t) = v̈(t) = ȧ(t) =

u(t)− a(t)

τ
, 0 ≤ i ≤ m (1)

Fig. 1. LPF platooning system.

where p, v, and a are the rear-bumper position, speed and
acceleration respectively. Variable u is the control, which
can be interpreted as the desired acceleration. τ is the time
constant of vehicle driveline dynamics, which is assumed
to be identical for all the platoon members.

The following assumptions are made regarding the opera-
tion of the system:

Assumption 1. The preceding vehicle’s speed and position
are obtained by the subject vehicle’s onboard sensors with
delay δs,i; the preceding vehicle’s acceleration is obtained
by vehicle-to-vehicle (V2V) communication with delay δp,i;
all the information (position, speed, and acceleration)
about the lead vehicle are obtained by V2V communica-
tion delayed by δl,i. All signals from the platoon leader
and preceding vehicle are transmitted together with ap-
propriate timestamps.

Assumption 2. Communication delays are time-varying in
nature but bounded: δp,i is bounded in [δp,i, δp,i]; δl,i

is bounded in [δl,i, δl,i]; the difference between δl,i and

δl,i−1 is bounded in [∆δl,i,∆δl,i]; sensor delay δs,i is

deterministic and constant.

Assumption 3. The vehicles in the platoon have differ-
ent sensor delays, communication delays, and desired dis-
tances, which represents heterogeneity.

In view of the performance of the state-of-the-art on-
board sensors and communication technology, the afore-
mentioned assumptions are not restrictive.

3. NOMINAL LPF PLATOONING SYSTEM
WITHOUT COMMUNICATION AND SENSING

DELAYS

This section focuses on the control design and stability
analysis of LPF platooning systems without communica-
tion/sensing delays, which sets a nominal controller as
benchmark. We briefly revisit the spacing policy, control
law, as well as string stability analysis as proposed in
previous works, e.g., Swaroop and Hedrick (1999); Liu
et al. (2001). The LPF platooning system in this paper
regulates on the control of the platoon followers and the
platoon leader’s control is out of scope.

3.1 Nominal Control Law

Constant spacing policy is proposed in previous works,
e.g., Swaroop and Hedrick (1999); Liu et al. (2001):

dr,p,i(t) = Li, (2)

where i is the index of the subject vehicle; dr is the desired
spacing; Li is the constant, vehicle-specific spacing. The
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desired spacing with respect to the lead vehicle indicated
by this policy is

dr,l,i(t) =

i∑
j=1

Lj . (3)

The spacing policy leads to spacing error with respect to
the preceding vehicle and the lead vehicle, respectively, as:

ep,i(t) = dr,p,i(t)− dp,i(t) = pi(t)− pi−1(t) + Li, (4)

el,i(t) = dr,l,i(t)− dl,i(t) = pi(t)− pl(t) +

i∑
j=1

Lj , (5)

where e is the spacing error; d is the actual spacing;
pi, pi−1, and pl are the rear-bumper positions of the
subject vehicle, the preceding vehicle, and the lead vehicle,
increasing with the driving direction.

The following control law was proposed in Liu et al. (2001):

ui(t) =
1

1 + q3

[
ai−1(t) + q3al(t)− (q1 + λ)ėp,i(t)− q1λep,i(t)

− (q4 + λq3)ėl,i(t)− λq4el,i(t)
]

=
1

1 + q3

[
ai−1(t) + q3al(t)− (q1 + λ)(vi(t)− vi−1(t))

− q1λ(pi(t)− pi−1(t) + Li)− (q4 + λq3)(vi(t)− vl(t))

− λq4
(
pi(t)− pl(t) +

i∑
j=1

Lj

)]
,

(6)
where u is the control; q1, q3, q4, and λ are controller
parameters; vl and al are, respectively, the speed and
acceleration of the lead vehicle. This control law incorpo-
rates the acceleration, speed difference, and spacing errors
to both the lead vehicle and the preceding vehicle. The
control law is designed such that the subject vehicle tracks
the position of both the preceding vehicle (with desired
distance Li) and the lead vehicle (with desired distance∑i
j=1 Lj).

The block diagram of the nominal LPF platooning system
is shown in Fig. 2(a), in which K1, K2, K3, and K4 are
respectively the transfer functions associated with the lead
vehicle’s information, the preceding vehicle’s acceleration,
the preceding vehicle’s position, and the subject vehicle’s

position, and read as K1 = q3s
2+(q4+q3λ)s+q4λ

1+q3
, K2 =

1
1+q3

, K3 = (q1+λ)s+q1λ
1+q3

, K4 = (q1+λ+q4+q3λ)s+(q1λ+q4λ)
1+q3

(Liu et al., 2001). K5 and K6 are the transfer functions
associated with the constant spacing and read as K5 =
λq4
1+q3

and K6 = λq1
1+q3

. Transfer functions G1 and G2

together represent vehicle dynamics, and read as G1 =
1

1+τs , G2 = 1
s2 (Öncü et al., 2014; Ploeg et al., 2014).

3.2 Stability Analysis of the Nominal Controller

The criteria for both individual vehicle stability and string
stability are given in this section. As no delay is involved
in the statements of the following lemmas, their proofs
can be found in literature, see, e.g., Liu et al. (2001);

Öncü et al. (2014); Ploeg et al. (2014). Yet, as we adopt
similar proof strategies for our control design (enabled
by its delay-synchronizing structure), we also detail the
respective proofs for the delay-free case below.

(a) Nominal LPF platoon

(b) Delay-untreated LPF platoon

(c) Delay-synchronizing LPF platoon

Fig. 2. Block diagrams of different system/control setups.

Lemma 1. (Individual vehicle stability criterion) The LPF
platooning system is stable if (q1 + q4)λ > 0, 1 + q3 > 0,
and λ(1 + q3) > (λτ − 1)(q1 + q4).

Proof. The block diagram indicates the following relation
in the frequency domain (note that the Laplace transform
is carried out ignoring the constant spacing Li, as this does
not affect the analysis)(

K4(s) +
1

G1(s)G2(s)

)
Pi(s) = (K2(s)s2 +K3(s))Pi−1(s)

+K1(s)× Pl(s).
(7)
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Rearranging the above equation gives

A(s)Pi(s) = B(s)Pi−1(s) + C(s)Pl(s), (8)

with

A(s) =(1 + q3)s2(1 + τs) + (q1 + λ+ q4 + q3λ)s

+ (q1λ+ q4λ),

B(s) =s2 + (q1 + λ)s+ q1λ,

C(s) =q3s
2 + (q4 + q3λ)s+ q4λ. (9)

P (s) in the above equation is the Laplace transform of p(t).
Routh-Hurwitz stability criterion shows that the sufficient
conditions to guarantee the individual vehicle stability of
the system are (q1 + q4)λ > 0, 1 + q3 > 0, and λ(1 +
q3) > (λτ − 1)(q1 + q4), which completes the proof of
Lemma 1. �
Lemma 2. (String stability criterion) The LPF platooning
system is string stable if

sup
ω>0

∣∣∣∣ 1
1+q3

[s2+(λ+q1)s+λq1]
s2(1+τs)+

λ(1+q3)+q1+q4
1+q3

s+
λ(q1+q4)

1+q3

∣∣∣∣ ≤ 1, s = jω

Proof. Substituting the vehicle index i in equation (8)
with i− 1 gives

A(s)Pi−1(s) = B(s)Pi−2(s) + C(s)Pl(s). (10)

Subtracting equation (10) from (8) then leads to

A(s) [Pi(s)− Pi−1(s)] = B(s) [Pi−1(s)− Pi−2(s)] . (11)

which gives the transfer function between ei and ei−1 as:

Γerror
i,i−1(s) =

Pi(s)− Pi−1(s)

Pi−1(s)− Pi−2(s)
=
B(s)

A(s)
. (12)

To guarantee that the spacing error does not amplify, the
following should hold

sup
ω>0

∣∣Γerror
i,i−1(jω)

∣∣ ≤ 1. (13)

This is exactly the condition given by Lemma 2. �

4. DESTABILIZATION EFFECTS OF
COMMUNICATION AND SENSING DELAYS

The influence of communication and sensing delays on
LPF platooning systems is revealed in this section. The
mechanism behind the sting instability is also discussed.
To ease the following discussions, communication delays
are assumed to be constant in this section.

As indicated by Assumption 1, the position and speed of
the preceding vehicle are delayed by δs,i, the acceleration
of the preceding vehicle is delayed by δp,i, and all the
information associated with the leader vehicle are delayed
by δl,i. The block diagram of the delay-untreated LPF
platooning systems affected by delays is shown in Fig. 2(b).
The three delay blocks in the block diagram, respectively,
read as Ds,i = e−δs,is, Dl,i = e−δl,is, Dp,i = e−δp,is.

When affected by communication/sensing delays, the
transfer functions have the following recursive relation:

A(s)Pi(s) =



B1(s)Pi−1(s)e−δs,is +B2(s)Pi−1(s)e−δp,is

+C(s)Pl(s)e
−δl,is, if i > 2

B1(s)Pi−1(s)e−δs,is +B2(s)Pi−1(s)e−δp,is

+C1(s)Pl(s)e
−δs,is + C2(s)Pl(s)e

−δl,is,

if i = 2
(14)

with

B1(s) = (q1 + λ)s+ q1λ,

B2(s) = s2,

C1(s) = (q4 + q3λ)s+ q4λ,

C2(s) = q3s
2.

4.1 String Instability of the Delay-untreated Controller

A comparison of the error transfer function of LPF pla-
tooning system with and without delays is shown in Fig.
3, which clearly indicates the string instability of LPF
platooning systems affected by communication/sensing de-
lays.
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Fig. 3. Error transfer function for λ = 1.0, q1 = 0.8,
q3 = 0.5, q4 = 0.4, τ = 0.25 s, δs,i = 0.02 s, δp,i = 0.1
s, δl,i = 0.1× i s.

The string instability of delay-untreated LPF platoons
originates from two conflicting control objectives, which
is detailed as follows.

The control law (6) gives the desired spacing between the
subject vehicle and the leader vehicle as

[pl(t− δl,i)− pi(t)]desired =
i∑

j=1

Lj . (15)

The argument of pl is t − δl,i rather than t, which is
originated from the communication delay and implies the
actual control objective is to track the lead vehicle’s past
position. The equation above is equivalent to:

[pl(t)− pi(t)]desired =

i∑
j=1

Lj +

∫ t

t−δl,i
vl(t
′)dt′. (16)

On the other hand, for each vehicle, the desired spacing
with respect to its preceding vehicle is

[pi−1(t− δs,i)− pi(t)]desired = Li, (17)

which gives the desired spacing between the subject vehicle
and the lead vehicle as:

[pl(t)−pi(t)]desired =

i∑
j=1

Lj +

i−1∑
j=0

∫ t

t−δs,j+1

vj(t
′)dt′. (18)

The difference between equation (16) and (18) shows
that tracking the preceding vehicle’s position is actually
conflicting with tracking the lead vehicle’s position. When
there is no communication/sensing delays, the conflict
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vanishes. Yet, when delays are taken into account in the
control design, the string instability emerges.

4.2 Fixing String Instability

As discussed in the previous section, it is the conflict be-
tween tracking the preceding vehicle’s position and track-
ing the lead vehicle’s position that causes string instability.
To fix the string instability caused by communication and
sensing delays, the key point is to harmonize the two track-
ing objectives. To this end, the prevailing constant spacing
policy needs to be adapted. The mechanism behind the
proposed SCS policy, presented in the next section, relies
on synchronization of the delays of sensing and commu-
nication measurements, which leads to elimination of the
conflict.

5. DELAY-SYNCHRONIZING LPF PLATOONING
SYSTEM

This section details the delay-synchronizing strategy for
LPF platooning systems including presentation of control
design and stability analysis.

5.1 Control Design

A semi-constant spacing policy is proposed as:

d̃p,r,i(t) = Li +

∫ t

t−gi
vi−1(t′)dt′, (19)

where
gi ≥ max(δs,i, δp,i,∆δl,i). (20)

The tilde symbols hereinafter are used to distinguish
the delay-synchronizing LPF platoon variables with the
nominal counterparts. gi is a design parameter. It is
interpreted as memory time window and is formulated to
guarantee that the information of the preceding vehicle
gi seconds ago is available to the subject vehicle at the
current time as long as inequality (20) is respected, as well
as to synchronize the delays of communicated and sensing
measurements.

Note that gi is not determined by δl,i, but by ∆δl,i (par-
tially), i.e. the difference between δl,i and δl,i−1. Therefore,
the delay-synchronizing LPF system puts no requirement
on the realization of the leader’s information (it can be
either single hop or multiple hops) and there is no need
to employ larger spacing for the vehicles at the tail of
the platoon than those at the head. Furthermore, com-
munication/sensing delays are normally small and the
contribution of integral part of the desired spacing policy is
marginal when compared with the constant part, thus the
proposed spacing policy is quite alike the constant spacing
(that is why the formulated spacing policy is called semi-
constant spacing policy).

Under this formulation, the spacing error with respect to
the preceding vehicle is

ẽp,i(t) = pi(t)−
[
pi−1(t)−

∫ t

t−gi
vi−1(t′)dt′

]
+ Li

= pi(t)− pi−1(t− gi) + Li.

(21)

Similarly, the desired spacing with respect to the lead
vehicle is defined as

d̃l,r,i(t) =

i∑
j=1

Lj +

∫ t

t−hi
vl(t
′)dt′, (22)

with

hi =

i∑
j=1

gi, (23)

which leads the spacing error with respect to the lead
vehicle to be

ẽl,i(t) = pi(t)− pl(t− hi) +

i∑
j=1

Lj . (24)

Correspondingly, control law is then formulated as in the
similar way as Eq. (6):

ũi(t) =
1

1 + q3

[
ai−1(t− gi) + q3al(t− hi)

− (q1 + λ)(vi(t)− vi−1(t− gi))
− q1λ(pi(t)− pi−1(t− gi) + Li)

− (q4 + λq3)(vi(t)− vl(t− hi))

− λq4
(
pi(t)− pl(t− hi) +

i∑
j=1

Lj

)]
.

(25)

The difference between the adapted control law (25) and
the original one (6) lies in the time arguments. The
time arguments associated with the preceding vehicles
information are all t − gi and those associated with the
lead vehicle are t−hi. The two objectives indicated by the
proposed control law are: 1) tracking preceding vehicle’s
past state gi seconds ago; 2) tracking the lead vehicle’s past
state hi seconds ago. As shown by equation (23), the delays
between the consecutive vehicles’ time arguments (gi) add
up to the delay between the subject vehicle and the lead
vehicle (hi), thus the delays are synchronized and the two
aforementioned objectives are consistent. Moreover, the
information required in equation (25) is all available as:

gi ≥ δs,i, (26)

gi ≥ δp,i ≥ δp,i, (27)
and

hi =

i∑
j=1

gi ≥
i∑

j=2

∆δl,j + δl,1

≥
i∑

j=2

(δl,j − δl,j−1) + δl,1 = δl,i,

(28)

To implement the control law (25), the choice of gi should
be made such that the signals involved are available.
One straightforward way is to use the nearest samples
before and after the time instant t − δp,i to interpolate
the preceding vehicle’s information. A similar practice
can be applied to obtain the lead vehicle’s information.
This is made possible thanks to the assumption that
timestamp is transmitted together with the preceding
vehicle acceleration. The block diagram of this control law
is shown in Fig. 2(c), in which Dg,i = e−gis, Dh,i = e−his.

5.2 Stability Analysis

Lemma 3. (Individual vehicle stability) The delay syn-
chronizing LPF platooning system is stable if (q1 + q4)λ >
0, 1 + q3 > 0, and λ(1 + q3) > (λτ − 1)(q1 + q4).
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The individual vehicle stability proof is similar with that of
the nominal LPF platooning systems without delays and
thus is omitted. �

Lemma 4. (String stability) The delay-synchronizing LPF
platooning system is string stable if

sup
ω>0

∣∣∣∣ 1
1+q3

[s2+(λ+q1)s+λq1]
s2(1+τs)+

λ(1+q3)+q1+q4
1+q3

s+
λ(q1+q4)

1+q3

∣∣∣∣ ≤ 1, s = jω.

Proof. The block diagram indicates that(
K4(s) +

1

G1(s)G2(s)

)
Pi(s) = (K2(s)s2 +K3(s))Pi−1(s)e−gis

+K1(s)× Pl(s)e−his.
(29)

Rearranging the above equation then gives

A(s)Pi(s) = B(s)Pi−1(s)e−gis + C(s)Pl(s)e
−his. (30)

Substituting vehicle index i with i−1 in the above equation
and multiplying by e−gis, A(s)Pi−1(s)e−gis can be derived
as:

A(s)Pi−1(s)e−gis = B(s)Pi−2(s)e−(gi+gi−1)s

+ C(s)Pl(s)e
−his.

(31)

Subtracting equation (31) from (30) gives that

A(s)[Pi(s)− Pi−1(s)e−gis]

= B(s)[Pi−1(s)− Pi−2(s)e−gi−1s]e−gis
(32)

Thus,

Γ̃error
i,i−1(s) =

Pi(s)− Pi−1(s)e−gis

Pi−1(s)− Pi−2(s)e−gi−1s
=
B(s)

A(s)
e−gis. (33)

Hence, the sufficient condition for string stability is:

sup
ω>0

∣∣∣Γ̃error
i,i−1(jω)

∣∣∣ = sup
ω>0

∣∣∣∣B(jω)

A(jω)
e−gijω

∣∣∣∣ ≤ sup
ω>0

∣∣∣∣B(jω)

A(jω)

∣∣∣∣ ≤ 1.

(34)

Substituting A(s) and B(s) into the above equation gives
the relation stated in Lemma 4. �

Notice that the delay-synchronizing LPF platoon has the
same individual vehicle stability conditions and string
stability conditions as the nominal LPF platoon with-
out delays. This greatly eases the parameter tuning task.
Parameters of delay-synchronizing LPF platoon can be
predetermined without considering communication delay.
The only added work for designing a delay-synchronizing
LPF platooning system is to determine gi and hi according
to equation (20) and (23). The speed/acceleration er-
ror transfer functions of the proposed delay-synchronizing
method cannot be guaranteed to not exceed unity. Never-
theless, this can be avoided by carefully design the longi-
tudinal following controller of the leader, which is beyond
the scope of this paper.

6. VERIFICATION

In this section, simulations are carried out to verify the
effectiveness of the proposed delay-synchronizing LPF
platoon strategy (with SCS policy and control law (25))
against the nominal LPF platoon (with CS policy, control
law (6) and zero communication/sensing delays) and the
delay-untreated LPF platoon (with CS policy, control law
(6) and untreated communication/sensing delays).

6.1 Experiment Design

An LPF platoon with 22 vehicles (indexed from 0 to 21)
is simulated. The vehicle indexed with 0 is the leader and
the rest are followers. Simulation settings are as follows:

• Simulation parameters: simulation horizon 100 s;
communication frequency 10 Hz; sensing frequency
10 Hz; control frequency 10 Hz.

• Controller parameters: λ = 1.0, q1 = 0.8, q3 = 0.5,
q4 = 0.4; Desired constant spacing: Li = 10 m (i ≥ 1);

• Vehicle dynamics parameters: estimated time con-
stants are all 0.25 s for all vehicles; real time constants
are uniformly distributed in [0.20, 0.30] seconds;

• Delay parameters: sensor delay is 0.02 seconds, com-
munication delays with the preceding vehicle are uni-
formly distributed in [0.08, 0.10] seconds, commu-
nication delays with the lead vehicle are uniformly
distributed in [0.08× i, 0.1× i] seconds;

• Memory time window: gi = 0.1 s (i ≥ 1).
• Initial state: simulations start with equilibrium state;

the lead vehicle decelerates from 30 m/s to 5 m/s with
a constant desired deceleration (i.e., u0) -1 m/s2.

The requirement on homogeneous dynamics shown by Eq.
(1) is relaxed in the simulation setting. The real time
constants for the platoon members are assumed to be
different from the estimated ones. This is to show the
robustness of the proposed delay-synchronizing method
against vehicle dynamics heterogeneity.

6.2 Simulation Results

The proposed delay-synchronizing strategy helps to en-
hance the string stability of the platoon, thus reduce
traffic oscillation. This can be seen from both the Bode
plots, which are obtained by adopting the average com-
munication delays, and the motion profiles of the LPF
platoon members. Under the same experiment setting,
the acceleration and spacing error transfer functions of
the delay-synchronizing LPF platooning system are much
smaller than that of the delay-untreated system, as shown
in Fig. 4. Moreover, the spacing error transfer function of
the delay-synchronizing LPF platooning system converges
toward zero (showing string stability) as the errors propa-
gate to the platoon tail, while that of the delay-untreated
platoon diverges (showing string instability). Fig. 5 indi-
cates that the delay-synchronizing LPF operates similarly
with the nominal LPF. While the oscillations of errors
ep,i and el,i of delay-synchronizing platoon gradually de-
crease as they are propagating to the tail, those of the
delay-untreated platoon continuously increase. Further-
more, due to the variations in communication delay, the
delay-untreated platoon exhibits significant oscillations in
both the state and control even when the lead vehicle runs
at steady state.

The simulation results clearly show the conflict between
tracking the preceding vehicle’s position and the lead
vehicle’s position in the delay-untreated LPF platooning
system. Fig. 5 shows that the steady-state spacing errors
of the delay-untreated LPF platoon are not always zero.
Yet, the conflict between the two objectives is not present
in the delay-synchronizing system.
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(b) Bode plot of ai/a0 with delay synchronization
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(c) Bode plot of Γerror
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Fig. 4. Bode plot of the respective transfer functions with λ = 1.0, q1 = 0.8, q3 = 0.5, q4 = 0.4, τ ∼ [0.2, 0.3] s,
δs,i = 0.02 s, δp,i = 0.09 s, δl,i = 0.09× i s, gi = 0.1 s.
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(a) Simulation results of the nominal LPF
platoon
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(b) Simulation results of the delay-untreated
LPF platoon
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(c) Simulation results of the delay-
synchronizing LPF platoon

Fig. 5. Simulation results: delay-compensated LPF platooning system is string stable, while the delay-untreated LPF
platooning system is not. λ = 1.0, q1 = 0.8, q3 = 0.5, q4 = 0.4, τ ∼ [0.2, 0.3] s, δs,i = 0.02 s, δp,i ∼ [0.08, 0.10] s,
δl,i ∼ [0.08× i, 0.10× i] s, gi = 0.1 s.
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Moreover, the LPF platoon under the proposed strategy
shows good robustness against vehicle dynamics hetero-
geneity. Although in the experiments, the actual time
constants (which are uniformly distributed in [0.2, 0.3]
seconds) do not perfectly match the estimated ones (which
are 0.25 seconds), both the individual vehicle stability and
string stability are not significantly affected.

Overall, the simulation results are in accordance with
the theoretical analysis and prove the effectiveness of the
proposed delay-synchronizing spacing policy.

7. CONCLUSIONS

String instability in LPF platooning systems is caused
by the conflict between tracking the preceding vehicle’s
position and tracking the lead vehicle’s position under
heterogeneous delays of different information sources. To
eliminate the conflict, the semi-constant spacing policy is
proposed. By employing this novel spacing policy, string
stability of LPF platooning systems can be guaranteed,
as opposed to LPF platooning systems with untreated
communication & sensing delays. The parameters of the
delay-synchronizing LPF control law can be predetermined
without considering delays, which greatly eases the control
design. Moreover, the proposed strategy also shows robust-
ness against parameter uncertainty of the vehicle driveline
dynamics in simulation.

Apart from the constant spacing policy, state-of-the-art
LPF platooning systems also adopt other spacing poli-
cies (for instance, constant time gap policy) to regu-
late the inter-vehicle distances. Handling the communi-
cation/sensing delays of these systems is seen as the next
research step. Moreover, in this paper, the vehicles in the
platoon are restricted to have the same dynamics. Control
design of heterogeneous LPF platoon strategies will also
be a topic of future research.
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