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Abstract: Cold rolling is a process that finishes the production of flat steel and must therefore
guarantee high strip precision. However, the strip thickness produced in the roll gap cannot be
measured directly which makes its observation in the roll gap challenging. In this paper, the
model of both the mill frame as well as the cold rolled strip are optimized online using measured
process data. A Recursive Least Squares parameter estimator is used to determine mill modulus
and offset of the roll stand, while the rolling model of the steel strip is adapted using Gaussian
Process Regression. The adapted models are then used in a model based controller which adjusts
the roll gap accordingly. Experimental results show that the precision of the models is enhanced
using online measurements. As a result the desired strip thickness is achieved despite initial
model uncertainties.
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1. INTRODUCTION

Cold rolling is a metal forming process where a work
piece is primarily reduced in thickness. This is done by
passing the sheet through a pair of rolls which rotate in
opposite directions with a manipulated roll gap size of s0.
When pulled through the rolls the strip is reduced from
the incoming strip thickness h0 to the outcoming strip
thickness h1 with the roll force F . The most important
quality measure is the outcoming strip thickness which is
desired to match the reference thickness h1,des with as little
deviation as possible. Both the mill frame and the strip are
influenced by the occurring force as can be seen in Fig. 1.
Thus, not only the strip is reduced in thickness, but also
the mill frame is extended by the force F . This leads to
the loaded roll gap size s1 with a mill stretch

∆s = s1 − s0. (1)

As a result, the manipulated roll gap s0 does not match
the outcoming thickness h1. Instead, the loaded roll gap
approximately matches the outcoming strip thickness.
Neglecting elastic recovery effects of the strip, it holds

h1 ≈ s1, (2)

where h0 > h1 ≈ s1 > s0 with the roll force F > 0. The
incoming strip thickness h0 can be measured in advance
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Fig. 1. Characteristic behavior of the mill frame (derived
from Kopp and Wiegels (1999, in German))

while the roll force F and the roll gap s0 can be acquired in
the roll gap. Nevertheless, measuring h1 in the roll stand
is not possible. Thus, it can only be monitored model wise
based on a process model using F . Fig. 2 depicts the strip
and the position of the thickness gauges which measure
h0,m and h1,m. Distances between the gauges and the roll

h0 h1,mh0,m

Thickness gauge Incremental encoder

h1, F

l0 l1

v0 v1
Load cell

Fig. 2. Rolling mill with thickness gauges and incremental
encoders to track measured values along l0 and l1,
modified from Wehr et al. (2018)

gap are denoted as l0 and l1 while strip speeds are denoted
by v0 and v1, respectively. A comprehensive introduction
to flat rolling is given by e.g. Lenard (2014).
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Knowing the strip thickness h1 in the roll gap is, however,
desirable for any kind of thickness control. Thus, two
models have to be developed which determine h1 based
on the measured quantities. The first effect to be modeled
is the appearing mill frame extension force FM which
depends on the difference s1 − s0 and a set of mill frame
parameters ΘM including the mill modulus (stiffness):

FM = f(s1 − s0,ΘM). (3)

The second effect is the roll force F S which is modeled as
a function of h0 and h1 with several parameters ΘS:

F S = f(h0, h1,ΘS). (4)

The parameter vector ΘS includes coefficients such as
friction, yield stress, strip tension, roll diameter, and
others. More details are given by Alexander (1972) and
Stockert et al. (2017). While rolling both forces have the
same quantity F = FM = F S which is explained in further
detail in section 3.

In prior work experiments on a rolling mill for slit strips
were conducted. A Model Predictive Controller (MPC)
was implemented for roll gap control. It receives the ref-
erence trajectory for s0 according to h0 and the desired
thickness h1,des from the above mentioned nominal pro-
cess models (Wehr et al., 2018; Stockert et al., 2018). In
such a way a feedforward strip thickness controller was
established. Although high accuracy was achieved in the
experiments a high calibration and modeling effort was
involved. On the one hand the roll gap s0 needs to be
calibrated accurately. On the other hand the force needed
for strip thickness reduction needs to be modeled as pre-
cisely as possible, too. However, due to inevitable model
uncertainties, calibration errors and changing process con-
ditions, the desired strip thickness could not be reached
only using models which were derived offline.

In literature, several adaptive modeling approaches for
both model types have been presented. The mill modulus
is modeled linearly by e.g. Kugi et al. (2000), Lenard
(2014), and Kopp and Wiegels (1999, in German). Also,
experiments conducted by Wehr et al. (2019) show a
linear behavior of the mill frame of the used cold rolling
mill beyond a certain force. Hence, linear parametric
modeling is favorable. This is different for the cold rolling
model. Models which are based on the elementary theory
of plasticity and which are considered to deliver high
precision results (Bland and Ford, 1948; Alexander, 1972)
carry several material and process parameters which have
nonlinear impact. A verification was done by e.g. Stockert
et al. (2017). Also, there are approaches to adapt those
models online. Randall and Stephens (1997) for example
use parameter estimation by Extended Kalman Filter
(EKF) based on a hot rolling model in the first roll
stand of a section mill. The results are passed to all
subsequent roll stands. For use in an EKF those models
need to be simplified and observable. Pires et al. (2009)
perform parametric identification of friction and yield
stress based on the model provided by Bland and Ford
(1948) using Nelder-Mead method. Ohta and Washikita
(2006) use a Recursive Least Squares (RLS) algorithm
for online adaptation of a simplified process model for a
downstream roll stand. These approaches bear the chance
of increasing process knowledge by means of white box
modeling, yet they need to be simplified or complex

optimization strategies have to be adopted which may be
prone to local minima.

Another way of modeling is using data-driven approaches
from the machine learning domain such as artificial neu-
ral networks (ANN). They do not rely on a physically
motivated model structure and therefore can incorporate
unanticipated effects. The ANN is parametrized by its
number of layers and neurons per layer which must be
defined in advance. Depending on the number of neurons,
much data is needed to train the ANN. Thus, data can
be generated by a highly accurate physical model (Zárate
and Bittencout, 2008) or finite element method (Shahani
et al., 2009) to train an ANN. Clearly, if measured data
is available the models can be trained and used in the
next roll pass as done by Zheng et al. (2018). In adaptive
control ANN have further been used where the model
is trained offline by the above mentioned method while
thickness controller parameters are tuned using online data
(Mousavi Takami et al., 2010). By simplification of the
learning process i.e. using incremental learning together
with additional offline learning it was demonstrated, that
online learning is possible with ANN (Son et al., 2005).
A drawback using standard ANN is that the favorable
number of neurons and layers is not known for a certain
model in advance. Furthermore, the model uncertainty
of sample points not covered by the data can neither be
quantified nor can any extrapolation guarantee to converge
to a technical useful value.

Assuming that the desired thickness h1,des is not attained
initially because of model uncertainties and incorrect cal-
ibration, ANN cannot guarantee to find a correct extrap-
olation to the desired point. Instead, a method with good
extrapolation properties is required which can relate the
values of h1,des and the actually measured values of h1
in the proximity of the desired value. Furthermore, in
completely unknown areas of the process it should con-
verge to the precalculated nominal model. Both criteria
are fulfilled by the Gaussian Process Regression (GPR).
GPR is sometimes also known as kriging and is a non-
parametric probabilistic regression method widely used
in various domains. In comparison to other black box
modeling approaches such as neural networks, GPR may
result in similar precision for prediction but requires far
less training data (Kamath et al., 2018). In literature,
GPR is famously known in geosciences, based on the
approach of Matheron (1971). In mining applications it
is used to extrapolate the spread of resources for nearby
but unknown regions (Daya Sagar et al., 2018). In recent
years GPR has been widely used to map nonlinear rela-
tionships between model inputs and outputs (Rasmussen
and Williams, 2006). Moreover, there are applications in
the chemical industry where GPR is used for soft sensors
(Grbic et al., 2012; Fan et al., 2014; Zhang et al., 2015).
These approaches enable process monitoring even if only
sensors with poor sample rates are used. In order to use
only recent data points, moving window strategies are
implemented for data selection. In context of control the
mean model identified by GPR is used e.g. by Hewing
et al. (2018) in a nonlinear MPC which aims for lap time
optimization of a racing car.

This paper aims at the improvement of process quality
i.e. strip thickness precision by enhancing the underly-
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ing models involved in rolling using data available in
the process for online learning. The roll gap size of the
mill cannot be calibrated precisely in the magnitude of
the desired tolerances. For this purpose the roll stand
characteristic curve (3) is adapted in mill modulus and
calibration offset using RLS estimation. Moreover, a non-
parametric cold rolling model is adapted to compensate
model uncertainties in (4) which arise from an initially
calculated rolling model. Using GPR, the precalculated
cold rolling model is expected to be improved even if the
initial values do not hit the desired operating point exactly.
Here, the measurement of h1 is especially important not
only because it is the controlled variable, but also because
it is the common variable present in both models.

Hence, the presented work extends the MPC presented
by Wehr et al. (2018) by an adaptation mechanism for
the predetermined models to consider current process
conditions and thus to close the loop for thickness control.

The paper organizes as follows: Section 2 briefly sum-
marizes the most important fundamentals and aspects of
the used algorithms. In section 3 it is shown how the
process is modeled along with its nominal conditions.
Afterwards, section 4 explains how the above mentioned
algorithms are utilized to adapt the process models online.
Section 5 shows the controller architecture as well as the
distribution of calculation to several cores of a real-time
system. Section 6 presents the results of the conducted
experiments. Finally, section 7 concludes the results and
gives an outlook on further work.

2. FUNDAMENTALS

2.1 Recursive Least Squares optimization

If a model to be estimated is known in its structure and
carrying linear parameters Θ, RLS estimation can be used
to find these parameters. The estimated parameter vector
Θ̂ is chosen such that the quadratic deviation between
model output y and measurement value ym is minimized.
In order to be able to integrate new values without
recalculating the entire set of data points a recursive
formulation e.g. given in (5) can be used for current time
k using information from the previous time k − 1:

Θ̂k = Θ̂k−1 + gk ·
(
ym −mT

k Θ̂k−1

)
, (5)

where gk is the correction factor and mk is the measure-
ment vector which bears the structure of the system. The
correction factor is updated as follows:

gk =
Pk−1mk

ρ+ mT
k Pk−1mk

, (6)

where P is the covariance matrix of the estimated parame-
ters and ρ is the forgetting factor. Moreover, P is updated
in every time step k as well using

Pk =
1

ρ

(
I− gkm

T
k

)
Pk−1, (7)

where I is the identity matrix. In such a way, computa-
tional effort can be kept minimal since large matrix inver-
sions are avoided and the parameter vector Θ̂ is updated
in every time step. Further reading of system identification
with RLS is provided e.g. by Isermann (2005, p. 303)

2.2 Gaussian Process Regression

Hereafter, a brief introduction to GPR is given. For a
detailed introduction the reader is referred to Rasmussen
and Williams (2006, chap. 2). From now on we consider n
observations (measurements) with inputs X = [x1, . . . , xn]
and targets Y = [y1, . . . , yn]. They are combined in the
data set D = [X,Y]. In GPR, it is assumed that a
measurement y(x) = f(x) + ε with input x ∈ RD is
corrupted by additive noise ε, where f(x) represents the
true unknown function value at location xi or xj. GPR is
a non parametric probabilistic regression model. It does
not rely on assuming a fixed set of basis functions for
f(x) as for example in polynomial regression or artificial
neural networks. Instead it is assumed that any finite set of
function evaluations at different locations {f1, . . . , fn, } =
{f(x1), . . . , f(xn)} is distributed according to a multivari-
ate normal distribution. This relation can be written as a
Gaussian Process:

(f i) ∼ GP (m(xi, θm), k(xi, xj, θk)). (8)

The GP is fully characterized by an a-priori mean
m(x, θm) = IE[f(x)] with hyper parameters θm and a
covariance function k(xi, xj, θk) = cov(f(xi), f(xj)) with
hyper parameters θk. Applying bayes rule to Equation (8)
allows to calculate the conditional normal distribution of
f at an unknown location as a function of previously ob-
tained function values. Since we are in a setting where sen-
sor measurements are noisy, we consider the case where ob-
servations are corrupted by homoscedastic gaussian noise
ε ∼ N (0, σ2

n) with variance σ2
n. The true function value

f ∼ N (f̄ , σ2
f ) is considered to be a predictive normal

distribution with expected value f̄ and its variance σ2
f .

Then, the predictive distribution of the observed value is

y|f ∼ N (f, σ2
n) = N (f̄ , σ2

f + σ2
n) (9)

That way, the predictive distribution with mean ȳ(x∗) =
f̄(x∗) and accumulated variance σ2

y(x∗) = σ2
f (x∗) + σ2

n for
a measurement at a given location x∗ can be written as:

y(x∗) ∼ N (f̄(x∗|D, θm, θk, σ2
n),

σ2
y(x∗|D, θm, θk, σ2

n)).
(10)

By making suitable choices for m(x, θm) and k(xi, xj, θk)
as well as for the observation model, we can encode
prior knowledge about the particular system. Without any
measurements, the predicted mean is exactly identical to
the a-priori mean function m(x, θm). Additionally, if no
training data is available in the proximity of a query point
x∗ where the model is evaluated, the prediction will tend
towards the very same a-priori mean. A so called kernel
function (covariance) k(xi, xj, θk) is used to determine how
well the responses of two points f(xi) and f(xj) correlate
given their locations xi and xj. In this work an isometric
squared exponential kernel

k(xi, xj, θk) = σ2
0exp

[
−1

2

D∑
d=1

(
xi,d − xj,d

ls
)2

]
(11)

with hyper-parameters θk = {σ2
0 , ls} is chosen. Correlation

between two locations decreases with increasing distance.
The quantitative impact is determined by the length scale
ls and the kernel scaling factor σ2

0 . Omitting the details,
equations for predictive mean and predictive variance at
multiple query points X∗ are given in (12) and (13). The
predictive mean f̄∗ is given by
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f̄∗ = f̄(X∗) = m(X∗)+K(X∗,X)·K−1Y ·(Y−m(X)) (12)

while the estimated variance Σf∗ is calculated by

Σf∗ = K(X∗,X∗)−K(X∗,X) ·K−1Y ·K(X,X∗). (13)

Both equations include m query points X∗ as well as
the measurement points X. Furthermore, they require the
inversion of KY given by

KY = K(X,X) + σ2
n · I. (14)

The covariance matrix K can be calculated for any com-
bination of K(X,X), K(X∗,X), and K(X,X∗) following
the scheme

K(X,X∗) =

k(x1, x∗1, θk) . . . k(x1, x∗m, θk)
...

. . .
...

k(xn, x∗1, θk) . . . k(xn, x∗m, θk)

 . (15)

3. PROCESS MODELS

3.1 Roll stand model

Most roll stands have characteristics similar to a progres-
sive spring. The initial part is nonlinear, relatively soft and
barely generates any force, while at larger stretch the roll
stand shows linear behavior (Lenard, 2014, p. 106), (Wehr
et al., 2019). Therefore, the roll stand can be modeled

linearly by a parameter vector Θ̂M = [a1 a0]
T

with the
mill modulus a1 and an additional offset a0 beyond the
limiting force Flim as shown in Fig. 3. Beyond F lim it holds:

0 0.1 ∆slim 0.3

∆s [mm]

-20
a0

0
F lim

20
30

F
M

[k
N

]

a1

Fig. 3. Nominal roll stand characteristic curve

FM = a1∆s+ a0. (16)

Applying (2) yields

FM = a1(h1 − s0) + a0. (17)

Parameterization can be done offline by pressing the work
rolls against each other without an inserted strip such that
h1 = s1 = 0. By variation of s0 the resulting FM can be
measured. In such a way Θ̂M is initially determined to

Θ̂M =
[
128.23 kN mm−1 −11.52 kN

]
. (18)

Furthermore, the limiting force is set to F lim = 10 kN.

3.2 Cold rolling model

As mentioned in section 1, the roll force F S depends on h0,
h1 and several parameters ΘS which influence the force in
a nonlinear way. Moreover, due to roll flattening as well as
a varying contact length between the rolls and the strip,
iterative calculation is necessary. Therefore, the roll force
model is pre-calculated offline using the model developed
by Alexander (1972) with the nominal parameters ΘS =
{µ, t0, t1, ν, E, n,B, Y0, r, b} given in Tab. 1. The resulting
map is depicted in Fig. 4 (blue). It can be used to calculate

Table 1. Cold rolling model parameters

Variable Value Description

µ 0.11 Friction
t0 100 N Incoming strip tension
t1 100 N Outcoming strip tension
ν 0.3 Poisson’s ratio
E 210 GPa Young’s modulus
n 0.165 Swift coefficient
B 193.4 Swift constant
Y0 270 MPa Initial strain
r 60 mm Rigid roll radius
b 18.9 mm Strip width

0
0.7

25

F
S

[k
N

] 50

0.8 0.70.80.9 0.91 1 h0 [mm]h1 [mm]

Fig. 4. Nominal cold rolling force map

the force at particular pairs of thicknesses {h0, h1}. An
exemplary force needed to reduce the strip thickness from
h0 = 0.9 to any h1 is highlighted in red. The force is
zero beyond h1 = 0.9 mm and increases nonlinearly from
h1 = 0.9 mm to h1 = 0.7 mm. The advantage of the map is
that a force can be evaluated rapidly for any pair {h0, h1}.
The disadvantage, clearly, is that changes in parameters
lead to a recalculation of the whole map.

3.3 Combined model

To combine both models, it is needed to extract the
curve at a specific h0 from the rolling map and find the
intersection with the roll stand line (see Fig. 5). If h0
changes, the curve to be extracted from the map changes
as well. The position of the roll stand line, again, depends
on the roll gap size s0. The resulting h1 and F are obtained
at the intersection of both curves. Smaller values of s0, i.e.
a smaller roll gap, will move the line to the left resulting
in a smaller h1 and a larger F . A larger s0 value will result
in the opposite. Thus, if h0 and s0 as well as the roll gap
models are known precisely, h1 and F can be calculated.

0.6 0.7 h1 0.9 1

h1 [mm]

0

20
F
40

60

F
[k

N
]

FM (s0 = 0.5 mm)
F S (h0 = 0.9 mm)

Fig. 5. Nominal roll force, strip thickness diagram

4. SELF-CALIBRATION AND MODEL ADAPTATION

The process models described above are nominal models
of the process. They are crucially important for process
quality when used for strip thickness control. Hence, they
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have to be adapted during the process to account for wrong
calibration and model perturbations. Fortunately, both
models can be adapted independently from each other.
It is assumed that the roll stand characteristics as well as
strip parameters such as yield stress and friction in the roll
gap change much slower than the measurement transport
delay l1 of h1. Thus, the model is considered valid even if
a delayed h1 is used for model adaptation (see Fig. 2).

4.1 Roll stand estimation

Due to the progressive characteristics of the roll stand
starting with zero slope, it is difficult to determine the
offset of the mill modulus by means of a micrometer
and the initial point can easily be missed (see. Fig. 3).
Thus, the true neutral roll gap s0 is considered unknown.
Furthermore, the mill modulus may change after a change
of the roller pack or after grinding of the rolls. Thus, s0
has to be divided into a known and an unknown part:

s0 = s′0 + s0,p, (19)

where s′0 is the manipulated roll gap which can be sensed
and s0,p is the calibration offset. It is important to empha-
size, that only s′0 can be actuated. Assuming that rolling
only takes place in the linear part of the roll stand curve
it can be modeled by means of (17). Inserting (19) yields:

F = a1 · (h1 − (s′0 + s0,p)) + a0 (20)

Since neither the calibration offset, nor the linear offset are
known, only an accumulated quantity a∗0 can be estimated.

F = a1 · (h1 − s′0) + a0 − a1 · s0,p︸ ︷︷ ︸
a∗0

(21)

In such a way a∗0 includes both the linear offset as well
as any calibration offset regarding the roll gap. Thus, the
true neutral roll gap remains unknown. However, for a
given parameterization of {a1, a∗0} the function f : s′0 → F
is known. Thus, the generated force F can be calculated
depending only on the sensed roll gap size s′0. The roll
stand model is put into the shape shown in (22) in order
to be fit for Recursive Least Squares estimation:

ym = F ,

mT
k = [h1 − s′0 1] ,

Θ̂M = [a1 a
∗
0]

T
.

(22)

An initial guess Θ̂M can be obtained by means of a roughly
calibrated line e.g. (18). Since the RLS is valid only in the
linear part beyond F lim, it must be assured that enough
force is generated initially such that valid measurements
can be acquired. Since a static line is estimated, no
dynamics have to be considered. Hence, there is no need
to include consecutive time steps. This allows selection of
valid data whenever they occur.

The covariance of the parameters can be set according
to the initial trust in the parameters. From (21) it can
be seen, that a1 can be determined in advance since it
depends only on ∆s′. Hence, the covariance of a1 is chosen
very small while that of a∗0 is chosen higher:

P0 =

[
0.01 0

0 100

]
. (23)

In such a way, primarily a∗0 will be adapted. Since it is
likely that the mill modulus is stable over a very long time,

the forgetting factor is chosen negligible low: ρ = 1−10−8.
In order to avoid discontinuities in the roll gap controller
caused by sudden changes of the parameters, they are
passed through a rate limiter to the control loop.

4.2 Cold rolling model adaptation

The GPR methodology presented in section 2 is used
to adapt the rolling model. It considers n measurements
with inputs X where xi = [h0,i, h1,i] and targets Y where
yi = F . These measurements are used to predict the roll
force across the domain h0 = [0.98 mm, 1.02 mm] and h1 =
[0.88 mm, 0.98 mm]. The nominal force F S obtained from
Alexander’s model is chosen as the prior mean m(x, θm) of
the GPR model, where θm = ΘS. As described in section
2 GPR ensures that if no measurements are available in
a certain region of the h0 − h1 surface the predictive
mean tends towards the nominal model F S. Therefore,
the roll force is only adapted locally in an area where
measurements are available. As described in Section 2 an
isometric squared exponential kernel is used. A squared
exponential kernel with different length scales for each
dimension (SEARD) is not necessary, because variations in
h0 and h1 are expected to influence the prediction on the
same length scale with similar magnitudes. For the hyper
parameters of the GPR, ls = 0.028 mm, σn = 1.648 kN
and σ0 = 1 kN are chosen using domain knowledge i.e.
the expected mutual influence of the measured values is
adjusted based on the authors’ experience. 1

As can be seen from (12), the standard case GPR results
in a cubic time complexity problem regarding the number
of measurements due to the inversion of KY. This pro-
hibits recalculating the predictive mean f̄∗ and variance
Σf∗ of the GPR model in each time step for a growing
amount of measurements. Therefore, in order to limit the
computational cost, only 250 measurements are considered
for model adaptation. In order to minimize the information
loss when using only the latest measurements, a grid-based
heuristic is used to select suitable points for adaptation.
The selection heuristic aims at favoring recent observations
D over past ones while preserving a distribution within the
h0 − h1 domain. For this purpose, the h0 − h1 domain is
divided into a grid of 55 equally sized segments in which
the observations are assigned. In order to keep the number
of considered observations constant the oldest observation
in the segment with the most existing entries is discarded
when a new point is added to the grid.

The prediction is done for a map of a fixed range in the
h0−h1 domain instead of calculating a single point in every
time step. It is spanned by means of a 41 × 41 grid and
covers the range of h0 from 0.98 mm to 1.02 mm as well as
h1 from 0.88 mm to 0.98 mm. This results in the matrix of
multiple query points X∗ ∈ R1681×2 which contains every
grid point x∗ of the map f̄∗. It is calculated at discrete time
intervals of Ts = 2 sec and transferred to the controller
afterwards. Whenever the controller queries a particular
prediction of the force F̂S on the map, it is calculated by
interpolation in X∗.

1 Preliminary experiments have shown that choosing the hyper
parameters by maximizing the likelihood resulted in unsatisfactory
results. This can be explained by the fact that the data set was not
representative.
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5. REAL-TIME IMPLEMENTATION

5.1 Synchronization of measurement data

For all equations stated above it is assumed that all val-
ues are valid and present for calculation. In fact, they
are recorded simultaneously at different locations in the
rolling mill. Therefore, they need to be spatially syn-
chronized. This is done using several speed-independent
buffers (Wehr et al., 2018). The value of the gauge for
the incoming strip thickness h0,m is tracked to the roll
gap with speed v0 along distance l0. There, s′0 and F are
collected and tracked to gauge h1,m with strip speed v1
along distance l1 where h1,m is collected (recap Fig. 2). All
values are transported another 0.5 m beyond the position
of h1,m. In such a way spatial filtering as shown by Wehr
et al. (2018) can be done for all values. Here, a cutoff period
of Dc = 0.151 m is chosen. Since the filter removes periods
smaller than Dc, these inputs can neither be sensed nor do
they disturb the model adaptation in terms of noise. Once
all values are synchronized and filtered, they are processed
by the presented optimization algorithms.

5.2 Controller topology

The experiments are carried out on a dSPACE DS 1006
real-time machine. Online adaptation through machine
learning algorithms such as GPR may require a lot of com-
putational resources. Therefore, they are calculated using
a dedicated core on the real-time machine. Fig. 6 shows
the topology of three dedicated CPUs with all measured
quantities (Meas). Communication between the processors
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Fig. 6. Thickness control block diagram

is realized using inter processor communication (IPC).
CPU 1 performs the above mentioned model adaptation
and provides the estimated parameters Θ̂M and the cold
rolling map f̄∗ to the thickness controller running on CPU
2. The sample time of the GPR is set to Ts = 2 sec. A
major drawback is, that despite splitting the applications
to several cores, the calculation of (13) exceeds the mem-
ory on the machine due to large matrix multiplications.
Thus, no information on the process variance could be
generated within scope of this work. CPU 2 determines
a desired roll gap according to a buffered incoming strip
thickness trajectory using the adapted models. This is
done at Ts = 0.001 sec. CPU 3 receives the desired roll
gap size s′0,des and performs closed loop tracking of s′0 with
manipulated variable u at Ts = 0.001 sec.

6. EXPERIMENTAL RESULTS

In the experiment the nominal thickness of the incoming
strip is h0 = 1 mm. The desired thickness is h1 = 0.95 mm.
In order to guarantee valid values for the estimation al-
gorithms and to ensure safe operation of the rolling mill
within the process constraints from the very beginning,
the estimated parameters should be in the proximity of
the true parameters. This makes conscientious modeling
of the process indispensable yet leaves room for uncertain-
ties, model errors, and calibration offsets which can be
corrected by the online adaptation.

6.1 Adaptation of the mill housing parameters
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Fig. 7. Adaptation of the mill housing line

Fig. 7 depicts the result of the adapted mill characteristic
line. The blue dashed line is initially determined in (18).
The red line is found by the RLS algorithm yielding

Θ̂M =
[
128.60 kN mm−1 −27.59 kN

]
. (24)

By comparing the initial guess with the RLS solution
a significant error e in the offset a∗0 can be noted. The
difference between the initial and final values yields e =[
0.37 kN mm−1 −16.07 kN

]
. Thus the assumption of the

inaccurate calibration of a∗0 holds true while at the same
time it can be compensated by the estimation.

6.2 Adaptation of the cold rolling model

Fig. 8 depicts the result of the GPR model adaptation.
The blue plane shows the initial model while the red
one shows the latest adapted model. The yellow dots
show all available data points. Among those, the white
data points are chosen by the heuristic selector for data
set D. Initially, all points are located in the neighbor-
hood of (1.01 mm, 0.98 mm) due to wrong model cali-
brations. After the adaptation the points are accumu-
lated in the desired region (1.01 mm, 0.95 mm). Tab. 2
shows a numeric comparison of three exemplary points.
It can be seen that the model adaptation compensated
a model error of −1.97 kN at the desired strip thick-
ness pair (1.01 mm, 0.95 mm). In addition, the nominal
rolling model almost covered the measurements at the pair
(1.01 mm, 0.98 mm) that was initially hit. The third pair
shown is a point which is never reached by measurement
values (1.005 mm, 0.96 mm). However, the predicted force
lies in the proximity of the other points which suggests
that the extrapolated value is valid. Fig. 9 depicts the
section view of the models. The red lines show the nominal
(dashed) as well as the adapted cold rolling models for
h0 = 1.01 mm. The blue lines show the roll stand line for
the latest Θ̂M at different s′0. It can be seen that the initial
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(dashed) roll gap size s′0 is chosen too large which leads to
a small thickness reduction (as will be shown in Fig. 10).

Once Θ̂M is found the roll gap size is decreased leading to
a larger thickness reduction as depicted by the blue non-
dashed line. In order to achieve h1 = 0.95 mm, a roll gap
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Fig. 9. Roll force / strip thickness section view

size of s′0 = 0.595 mm is necessary. Fig. 9 shows a drawback
of the method. While the absolute force needed is tracked
up to a small deviation its derivative may deviate from
the nominal model significantly. This is due to the fact
that f̄∗ converges to the measurements where they are
available and to the initial model where no measurements
are available. Therefore, the resulting map f̄∗ needs to be
treated carefully when being derived for the use in e.g. a
state observer.

6.3 Strip thickness enhancement

Fig. 10 shows the first 5 m of the synchronized strip.
Initially both models calculate wrong values for F and s′0
due to inaccurate calibration. Thus, only little force is ap-
plied and strip thickness reduction is minimal. Once valid
values are processed by the synchronization the adaptation
algorithms start working. The algorithm detects that the

Table 2. Cold rolling model comparison

Pair (h0, h1) FS F̂S e

(1.01 mm, 0.95 mm) 19.92 kN 17.95 kN −1.97 kN
(1.01 mm, 0.98 mm) 12.69 kN 12.35 kN −0.34 kN
(1.005 mm, 0.96 mm) 16.49 kN 15.21 kN −1.28 kN
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Fig. 10. Strip thickness result

applied roll gap is too far open which impacts the applied
force. At about one meter the rate-limited adaptation
starts working. As a result the roll gap is closed slowly
which yields towards the desired strip thickness reduction.
At this point the cold rolling map determines rather too
much force. This is caused by the effect that the data
points in the neighborhood of (1.01 mm, 0.98 mm) are very
close to the model such that there is no need to further
reduce the level of f̄∗ around the desired thickness. This
leads to an undershoot of the strip thickness. At 3 m the
GPR adapts the cold rolling map in the desired region, too,
and the strip converges to the reference thickness. After
the models have converged at about 4 m it can be seen
that small deviations in h0 are compensated by changing
s′0. This leads to a more constant profile in h1.

7. CONCLUSION AND OUTLOOK

In this paper, a parametric online identification of the mill
housing characteristics and a non-parametric identifica-
tion of the rolling model were presented. Both aim at an
enhancement of the combined process model which could
be used for strip thickness control and thus strip quality
enhancement. It was shown that an adjustment of the roll
gap based on valid process models leads to the desired out-
coming strip thickness. Although the true roll gap remains
unknown the adaptation of the mill housing line could be
used to determine an actuation which delivers the required
force for tracking the reference thickness. Furthermore, the
adaptation of the cold rolling model was used in order to
determine the required force for the particular strip. In
such a way the control loop could be closed accounting for
long-term process behavior. This led to an improvement
of the previous work (Wehr et al., 2018). Due to conver-
gence to the nominal model in regions without data points
the model behavior is predictable. This favors application
in a productive environment. During the experiments it
turned out that the result strongly depends on the data
selection. For application in production a sophisticated
data selection method has to be used. In order to account
for short-term disturbances and roll eccentricities, a roll
gap observer has to be developed which uses the adapted
models for estimation of the outcoming strip thickness
based on the measured force. While not being able to
determine the process variance is not an issue within scope
of this work, it can be used to determine the validity of the
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adapted model in particular regions. This could be used
by e.g. further control loops. Thus, future work needs to
focus on efficient calculation of the process variance, too.
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