
Private Weighted Sum Aggregation for
Distributed Control Systems

Andreea B. Alexandru George J. Pappas

Department of Electrical and Systems Engineering
University of Pennsylvania, Philadelphia, PA 19104 USA

(e-mail: {aandreea,pappasg}@seas.upenn.edu)

Abstract: Data aggregation in distributed networks is a critical element in Internet of Things
applications ranging from smart grids and robot swarms to medical monitoring over multiple
devices and data centers. This paper addresses the problem of private weighted sum aggregation,
i.e., how to ensure that an untrusted aggregator is able to compute only the weighted sum of
the users’ private local data, with proprietary weights. We propose a scheme that achieves
the confidentiality of both the users’ local data and the weights, as long as there are at
least two participants that do not collude with the rest. The solution involves two layers of
encryption based on the Learning With Errors problem. We discuss how to achieve efficient
multi-dimensional data aggregation by using plaintext packing in the homomorphic crypto-
system used, such that the communication between the users and the aggregator is minimized.

Keywords: Data privacy, cryptography, distributed control, security, networked systems.

1. INTRODUCTION

In a plethora of applications such as learning patterns
over social networks, smart grid control and autonomous
vehicles coordination, there is a critical necessity of pri-
vately aggregating the distributed data. Apart from the
secure communication between the participants in the
computation, sophisticated methods are required to enable
the confidentiality of the private data, while dealing with
untrusted entities.

Recently, the area of encrypted control has gained a lot
of interest from works such as Kim et al. (2016); Freris
and Patrinos (2016); Farokhi et al. (2017); Schulze Darup
et al. (2018b); Alexandru et al. (2018). Our current work
presents further research developments in this area, focus-
ing on encrypted distributed control. The following exam-
ples of data aggregation provide motivation for privacy-
preserving methods in distributed control scenarios.

1.1 Motivating examples

Distributed control. In the context of cooperative con-
trol, the local states, system model and control gains are
privacy-sensitive quantities that can reveal confidential
data about the current state of an agent, as well as pro-
prietary information about the infrastructure, e.g., in au-
tonomous vehicle coordination and smart grids. Consider
a multi-agent system with local linear dynamics:

xi(t+ 1) = Aixi(t) + Biui(t), xi(0) = xi,0, (1)

where xi ∈ Rni and ui ∈ Rmi , for every i ∈ [M]. The
agents are part of a connected and undirected communi-
cation graph G = (V, E), with vertex set V = [M] and the
edge set E ⊆ V × V. The set Ni := {j ∈ V|(i, j) ∈ E}
represents the set of neighbors of agent i. A structured
local control law can be used to stabilize the systems (1):

ui(t) = Kiixi(t) +
∑
j∈Ni

Kijxj(t). (2)

The local control law (2) results from the design of a cen-
tralized linear controller that takes into account the struc-
tural constraints of the communication graph by requiring
Kij = 0 whenever j /∈ Ni ∪ {i} as in Lin et al. (2011).

The privacy of such cooperative decentralized control
schemes was recently considered in Schulze Darup et al.
(2018a) and Alexandru et al. (2019).

Graph neural networks. The powerful inference capabil-
ities of neural networks have been leveraged for comput-
ing controllers Hunt et al. (1992). Recently, graph neural
networks (GNN) were developed as a generalization of
convolutional neural network that operate with a fixed
local structure on a graph domain Zhou et al. (2018). One
popular GNN architecture has the hidden state h at one
node i at layer k described by:

hki = σ

(
Wi

k

∑
j∈Ni∪i

1√
|Ni||Nj |

hk−1
j

)
, (3)

where σ is a nonlinear activation function, such as sigmoid,
tanh, ReLU. GNNs have also been used to compute control
actions for flocking in a network, e.g. Tolstaya et al. (2019).

Oftentimes, the training is performed in a centralized
manner and the model is then encrypted for the online
inference step, while the hidden states at every node should
remain private. The literature concerning GNNs is very
recent and as far as the authors know, there are no works
on the private evaluation of a GNN.

1.2 Our contributions

In this paper, we propose a private weighted sum aggre-
gation (pWSA) scheme that uses Homomorphic Encryp-

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

Copyright lies with the authors 11232

tion and Augmented Learning with Errors. Our scheme
uses the same secret keys for all the time steps of the
computation and keeps the threshold of colluding agents
at the cardinality of participating agents minus two. In
order to make the scheme communication efficient, we use
packing, which compresses a vector of messages in one
plaintext, respectively one ciphertext. We show how to
astutely perform the operations on the packed ciphertexts
to reduce the computational and communication cost. The
capabilities of the scheme proposed in this paper could also
allow aggregation of nonlinear functions of private weights.

Notation. We use bold-face lower case for vectors, e.g.
x, and bold-face upper case for matrices, e.g. A. For a
positive integer n, let [n] := {1, 2, . . . , n}. Z denotes the
set of integers and Zq denotes the ring of integers modulo
q. E(pk, x) denotes an encrypted value x under public key
pk. A function η : Z≥1 → R is called negligible if ∀c ∈ R>0,
∃nc ∈ Z≥1 such that ∀n ≥ nc, we have |η(n)| ≤ n−c.

a
$← A means that a is drawn uniformly at random from

the distribution A.

2. PROBLEM STATEMENT

Notice that the computation of the control action at one
time step (2) and the evaluation of the hidden state at one
layer (3) can be interpreted as an aggregation operation
on weighted contributions. Specifically, consider a system
with M agents and one aggregator. Each agent has some
private data xi(t) ∈ Rn at time t and the aggregator wants
to compute an aggregate of the data xa(t) ∈ Rm:

xa(t+ 1) =

M∑
i=1

Wixi(t), (4)

where Wi ∈ Rm×n are constant weights corresponding to
each agent i. We will discuss the privacy solution of (4),
since extending it to (2) or (3), where each agent is the
aggregator of its neighbors, follows in a straightforward
manner. We assume that there exists a trusted dealer,
which, at the onset of the protocol, has to ensure the
distribution of the weights. Figure 1 depicts the schematic
representation of the weighted sum aggregation problem.

We would like a private weighted sum aggregation (pWSA)
scheme to achieve the following privacy requirements:

• the aggregator can compute only the aggregate xa(t)
at each time period, and nothing else about the data
of the agents xi(t), the corresponding weights Wi or
partial information such as Wixi(t);

• without the aggregator capability, the other agents can-
not learn anything about the private data and corre-
sponding weights of the other agents;

• if the aggregator colludes with a subset of the agents
(fewer than M − 1), it inevitably learns the sum of the
contributions of the remaining honest agents, but learns
nothing more about their individual private data.

In addition, we require the pWSA scheme to be commu-
nication and computationally efficient. Specifically:

• only one batch of messages should be sent between the
agents and the aggregator per time step.

Fig. 1. The agents measure their local data xi(t). The
weights are supposed to be concealed from all partici-
pants. The aggregator should only learn the weighted
sum of the agents’ data and nothing else.

The adversarial model we consider is semi-honest, which
means that an adversary wants to infer the private data
of the honest participants from the messages exchanged in
the protocol, without diverging from the established steps.

For simplicity, we consider the data and weights to be
scalars xi(t), wi ∈ R in Section 3. Then, in Section 4, we
show how to efficiently extend the scheme in Section 3 to
vector data xi(t) ∈ Rni and matrix weights Wi ∈ Rm×ni .

Related work. Schulze Darup et al. (2018a) introduced a
private computation and exchange of the “input portions”
from the local control laws in (2), equivalent to: vi(t) :=
Wixi(t). The aggregator would learn vi(t) for all i ∈ [M],
which reveals more than simply learning the desired aggre-
gate xa(t). Details about how much private information is
revealed can be found in Alexandru et al. (2019).

Alexandru et al. (2019) proposed a solution to the pWSA
problem as posed in this section using additive homomor-
phic encryption and secret sharing. In order to guarantee
privacy, the solution in Alexandru et al. (2019) required
fresh secrets at every time step. These secrets were gener-
ated either offline by a trusted dealer for a large number
of time steps or online, in a decentralized manner by the
agents at each time step. In the decentralized solution, the
cardinality of the set of colluding agents was reduced from
the number of neighbors of the aggregating agent to the
cardinality of the smallest intersection between the neigh-
bors of the aggregating agent and its neighbors’ neighbors.

Keeping the maximum number of colluding agents at
M − 1, reducing the involvement of a third party, as
well as reducing the amount of communication are in
general desirable traits of a scheme. Hence, in this work,
we focus on achieving a private weighted sum aggregation
scheme that does not require new correlated secrets at
every time step and only involves communication between
the agents and the aggregator, not also between the
“non-aggregating” agents, while maintaining the natural
threshold of colluding agents.

3. PRIVATE WEIGHTED SUM AGGREGATION

Private sum aggregation (pSA) allows an untrusted aggre-
gator to compute the sum of the private data contributed
by some users, without learning the individual contribu-
tions. pSA was investigated by Shi et al. (2011); Rastogi
and Nath (2010); Benhamouda et al. (2016); Bonawitz
et al. (2017); Becker et al. (2018). In particular, for the
scheme we described in Section 2, if the agents in the
network would have access to their corresponding weights
Wi, one could provide a private solution using pSA.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

11233

A private weighted sum aggregation (pWSA) scheme for
weights unknown to all participants is composed of the
algorithms pWSA = (Setup,Enc,AggrDec).

• Setup(1κ,M, {wi}i∈[M]): given the security parameter
κ, the participants and weights, generate the public
parameters param, the secret information ski(wi) for
i ∈ [M] and the aggregator secret information ska.

• Enc(param, ski(wi), xi(t)): Given the public parameters,
the secret key of agent i and a local private plaintext,
generate the corresponding ciphertext ci(t).

• AggrDec(param, ska, {ci(t)}i∈[M]): Given the public pa-
rameters, the aggregator’s secret key and the ciphertexts
from agents i ∈ [M], compute the weighted sum:

xa(t) =
∑
i∈[M]

wixi(t). (5)

3.1 Formal privacy definition

We give a description of the privacy definition from Sec-
tion 2 as a cryptographic game between an adversary and a
challenger, where the adversary A can corrupt agents. The
security game pWSAO (private Weighted Sum Aggregator
Obliviousness) was derived from Shi et al. (2011):

Setup. The challenger runs the Setup algorithm and gives
the public parameters param to the adversary.

Queries. The adversary can submit compromise queries
and encryption queries that are answered by the chal-
lenger. In the case of compromise queries, the adversary
submits an index i ∈ [M] ∪ {a} to the challenger and
receives ski, which means the adversary corrupts agent i
or the aggregator. The set of the compromised participants
is denoted by C. The cardinality of the compromised set
C has to be strictly less than M such that the M partici-
pants cannot retrieve the key of the M + 1’th participant,
including the aggregator. In the case of encryption queries,
the adversary is allowed one query per time step t and per
agent i ∈ [M]. The adversary submits (i, t, wAi , x

A
i (t)), for

constant wAi over the time steps, and the challenger re-
turns Enc(param, ski(w

A
i), xAi (t)). The set of participants

for which an encryption query was made by the adversary
at time t is denoted by E(t).

Challenge. The adversary chooses a specific time step t∗.
Let U∗ denote the set of participants that were not com-
promised and for which no encryption query was made at
time t∗, i.e., U∗ = ([M] ∪ {a}) \ (C ∪ E(t∗)). At this time
t∗, for each agent i ∈ U∗ \ {a}, the adversary chooses two

series x0
i (t
∗) and x1

i (t
∗), along with w∗,0i and w∗,1i , and

sends them to the challenger. If {a} /∈ U∗, i.e., the ag-
gregator has been compromised, then, the values submit-
ted by the adversary have to satisfy

∑
i∈U∗ w

∗,0
i x0

i (t
∗) =∑

i∈U∗ w
∗,1
i x1

i (t
∗). The challenger flips a random bit b ∈

{0, 1} and computes Enc(param, skj(w
∗,b
i), xbi (t

∗)), for all
i ∈ U∗, and returns the ciphertexts to the adversary.

Guess. The adversary outputs a guess b′ on whether b is
0 or 1. The advantage of the adversary is defined as:

AdvpWSAO(A) :=

∣∣∣∣Pr[b′ = b]− 1

2

∣∣∣∣ .
The adversary wins the game if it correctly guesses b.

Fig. 2. Schematic representation of a scheme that achieves
private weighted sum aggregation.

Definition 1. A scheme pWSA = (Setup,Enc, AggrDec)
achieves weighted sum aggregator obliviousness if no prob-
abilistic polynomial-time adversary has more than negli-
gible advantage in winning this security game:

AdvpWSAO(A) ≤ η(κ). �

3.2 Preliminaries to solution

The necessary steps to achieve the private weighted sum
aggregation are the following, represented also in Figure 2:

• wi should be encrypted with an additively homomorphic
encryption that the aggregator knows how to decrypt;

• the outer layer of encryption introduced in Enc should
be compatible with the inner homomorphic layer;

• the aggregator should not be able to decrypt the indi-
vidual contributions it receives from the agents, despite
having the secret key of the inner encryption scheme.

To avoid the trust and communication issues introduced
by successive symmetric keys, as used in Alexandru et al.
(2019), we use a public-key additively homomorphic cryp-
tosystem (as the inner encryption scheme) to encapsu-
late the message in a Learning with Errors ciphertext
(the outer encryption scheme). A pSA scheme based on
this idea was proposed in Becker et al. (2018) using the
Augmented Learning with Errors concept introduced in
El Bansarkhani et al. (2015). We present how to modify
the scheme in Becker et al. (2018) such that we obtain a
correct and private weighted sum aggregation scheme.

For the reader’s convenience, we provided details on the
Learning with Errors (LWE) problem in Appendix A.
The LWE problem essentially amounts to distinguishing
random linear equations perturbed by small amounts of
noise from uniform linear equations.

Let κ denote the security parameter, q = q(κ) a positive
prime, l = dlog qe and λ a positive integer, such that
λ/l ∈ Z. The Augmented Learning with Errors (A-LWE)
problem El Bansarkhani et al. (2015) encodes a message
in the error from an LWE term. An A-LWE term consists
of (A,bᵀ), with bᵀ = sᵀA + eᵀ ∈ Zλq , for a public

matrix A ∈ Zκ×λq , a secret key s ∈ Zκq and error term

e ∈ Zλq , which is sampled from a distribution related to
the message we want to encode, see Appendix A.

Specifically, let µ be a message and f(·) a function with the
property that its output is indistinguishable from random
(e.g., an encryption mechanism from a semantically secure

scheme). For y = f(µ) ∈ Zλ/lq and for a public matrix

G ∈ Zλ/l×λq , the error term e is sampled from a special
error distribution, defined by DΛ⊥y (G),σ, and satisfies Ge ≡
y mod q. The special error distribution DΛ⊥y (G),σ is a

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

11234

discrete Gaussian distribution with standard deviation σ
over a lattice determined by the matrix G and vector y,
see Definition A.1.

Informally, given an A-LWE term (A,bᵀ), one cannot
retrieve the secret key s and the message µ encoded in
the error term e, but, given s, one can efficiently recover
µ from e, see Definition A.2.

For the inner layer of encryption, we require a semantically
secure public-key additively homomorphic encryption that
allows plaintext-ciphertext multiplication and the operator
on the ciphertext space corresponding to addition is also
addition. We will call such a scheme Packed Additively
Homomorphic Encryption (PAHE) for reasons described
in Section 4. For the moment, we give a bare-bones
description, just to specify the compatibility with the
A-LWE outer ciphertext:

• Setup()→ prm.
• KeyGen(prm)→ (pk, sk).
• E(pk, µ)→ c.
• D(sk, c)→ µ.
• Add(c1, c2)← c ≡ c1 + c2.
• PMult(p1, c2)← c ≡ p1 · c2.

There is an encoding step in the encryption primitive
that transforms the given message into an appropriate
plaintext and a decoding step in the decryption primitive
that transforms the obtained plaintext into a message from
the desired domain. There exist transformations between
the ciphertext space, which is a ring of polynomials, and

Zλ/lq . So, for simplicity, we say c ∈ Zλ/lq .

3.3 Solution of pWSA problem

The idea of the scheme is as follows. The aggregator
generates a pair of PAHE keys. A third party (responsible
also for choosing the weights) encrypts the weights with
the public key and generates a set of M + 1 random keys
that sum to zero, then distributes them accordingly to the
agents and aggregator. Each agent computes the product
of the encrypted weight with its local data, which is
possible due to the homomorphic properties of the PAHE
cryptosystem. Then, it samples the error term according
to its local PAHE ciphertext, creates an A-LWE ciphertext
with its local key and sends it to the aggregator. The
aggregator sums all the A-LWE ciphertexts and obtains
the sum of the error terms, which is an encoding of the
sum of the PAHE ciphertexts. Using its PAHE secret key,
the aggregator proceeds to decrypt and obtain the desired
weighted sum of the data of the agents in the network.

• Setup(1κ,M, λ, q, σ, w1,...,M , T): Generate the public pa-

rameters At
$← Zκ×λq , for time steps t = 1, . . . , T .

Generate (pk, sk) ← KeyGen. For all agents i ∈ [M],

draw si
$← Zκq and let sa = −

∑
i∈[M] si. For all

agents i ∈ [M], encrypt their corresponding weights by
the public key E(pk, wi). Broadcast public parameters(
A1,...,T , q, κ, σ, λ,M, pk

)
. To each agent i ∈ [M], send

their secret key si and encrypted weight E(pk,wi). Send(
sa, sk

)
to the aggregator. Each agent and the aggrega-

tor computes the vector gᵀ =
[
1 2 . . . 2l−1

]
∈ Zlq. The

aggregator also computes G = Iλ/l ⊗ gᵀ ∈ Zλ/l×λq .

• Enc(At,g
ᵀ, pk, σ, si, xi(t),E(pk,wi)): Each agent i com-

putes yi(t) = PMult(E(pk, wi)), xi(t)) ∈ Zλ/lq and sam-
ples the noise term ei(t) ← DΛ⊥

yi(t)
(G),σ ∈ Zλq . Finally,

it computes ci(t) = sᵀiAt + ei(t)
ᵀ ∈ Zλq and sends the

ciphertext to the aggregator.
• AggrDec(At,G, sa, sk, c1,...,M (t)): The aggregator sums

the ciphertexts from all the agents c(t) =
∑
i∈[M] ci(t).

It then computes the aggregated error term e(t) = c(t)+
sᵀaAt. Finally, the aggregated sum of the agents’ data is
computed as xa(t) = D(sk,Ge(t) mod q).

Correctness: The aggregator obtains the following:

xa(t) = D
(
sk,Ge(t) mod q

)
(6)

= D
(
sk,G (c(t) + sᵀaAt) mod q

)
(7)

= D
(
sk,G

(∑
i∈[M]

ci(t) + sᵀaAt

)
mod q

)
(8)

= D
(
sk,G

(∑
i∈[M]

sᵀiAt + ei(t)
ᵀ + sᵀaAt

)
mod q

)
(9)

= D
(
sk,G

(∑
i∈[M]

ei(t)
ᵀ
)

mod q
)

(10)

= D
(
sk,

∑
i∈[M]

Gei(t)
ᵀ mod q

)
= D

(
sk,

∑
i∈[M]

yi

)
(11)

= D
(
sk,

∑
i∈[M]

E (pk,wixi(t))
)

=
∑
i∈[M]

wixi. (12)

The correctness of the result follows from construction:
(10) follows from (9) because the keys were selected such
that sa = −

∑
i∈[M] si, (11) follows from (10) due to the

linearity of G, and the correct transition from (7) to (12)
is allowed by the fact that the PAHE scheme satisfies
D(c1 + c2) = D(c1) + D(c2).

Theorem 1. The pWSA scheme achieves weighted sum
aggregator obliviousness w.r.t. Definition 1. �

The proof makes use of the semantic security of the PAHE
scheme and the hardness of the A-LWE problem and is
provided in Appendix B.

Compared to the solution in Alexandru et al. (2019), only
one set of secret shares of zero sa = −

∑
i∈[M] si have

to be generated for all the time steps. In this case, it is
reasonable to expect a trusted third party to generate
and distribute them offline or even for the agents and
aggregator to embark in an offline secure multi-party
computation algorithm to obtain them.

For the security of the scheme over multiple time steps,
we need to use different matrices A for each time step t,
otherwise the aggregator can obtain differences of mes-
sages at two time steps. These matrices At are public
and can be broadcasted or posted on a message board,
where each participant has access to. For better efficiency,
only smaller random seeds can be sent and stored, e.g.,
agree on a function that outputs a pseudorandom matrix
and feed in the time steps and a smaller seed. Only one
seed s0 should be sent at time zero, then the agents can
construct the seed for time t in a counter block cipher
mode st = s0 + t.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

11235

4. PACKED WEIGHTED AGGREGATION

In this section, we show how to extend in an efficient
way the scalar weighted sum aggregation scheme to multi-
dimensional data. Alexandru et al. (2019) used a naive ap-
proach where each scalar was encrypted in one ciphertext.

We require the packed additively homomorphic encryption
(PAHE) scheme to be semantically secure and to satisfy
the requirement from Section 3.3 of ciphertext summation.
This scheme should also allow packing and single instruc-
tion multiple data (SIMD) operations. We draw inspira-
tion from the packed additively homomorphic encryption
scheme used in Juvekar et al. (2018).

PAHE can be instantiated by schemes in e.g., Brakerski
and Vaikuntanathan (2011); Brakerski et al. (2014); Cheon
et al. (2017). The underlying hardness problem is Ring
Learning with Errors (R-LWE in Appendix A). The PAHE
construction is parameterized by the following constants:
the ring dimension N , the plaintext modulus p, the cipher-
text modulus q and the standard deviation σ of a discrete
Gaussian distribution. We can pack up to N values in one
ciphertext using the Chinese Remainder Theorem. Packing
can be thought of as the ciphertext having N independent
data slots. Using the notation in Section 3, N = λ/(2l).

The abstraction of the PAHE primitives are the fol-
lowing: PAHE.Setup, PAHE.KeyGen, PAHE.E, PAHE.D,
PAHE.Eval, with the same functionalities as mentioned in
the previous section. The operations that can be evaluated
during PAHE.Eval are SIMDAdd, SIMDPMult and Perm,
i.e. single instruction multiple data addition, element-wise
multiplication by a plaintext vector and slots permutations
that can achieve rotations:

• SIMDAdd(c1, c2) → c, such that, if ci = PAHE.E(µi),
i = 1, 2, then PAHE.D(c) = µ1 + µ2.

• SIMDPMult(c,ν) → c′, such that, if c = PAHE.E(µ),
then PAHE.D(c′) = µ◦ν, where ◦ denotes element-wise
multiplication.

• Perm(c, π) → c′, such that, for a permutation π and
c = PAHE.E(µ), then PAHE.D(c′) = [µπ(1), . . . ,µπ(n)].

The encryption PAHE.E endows the ciphertexts with a
fresh small noise η0. The operations in PAHE.Eval also
introduce an amount of noise in the ciphertext, which can
overflow and prevent the correct decryption. Denote by
η the noise level in a ciphertext c. A ciphertext resulted
from SIMDAdd has noise η1 + η2. A ciphertext resulted
from SIMDPMult has noise bounded by ηη×, where η× ≤
p
√
N . A ciphertext resulted from Perm has noise η + ηπ,

where ηπ is the noise of the permutation operation. The
multiplication introduces the largest noise. In terms of
computation cost, the addition is the cheapest, while the
rotation is the most expensive. The parameters of the
scheme are chosen such that the noise does not overflow.

4.1 Efficient homomorphic matrix-vector multiplication

In this section, we investigate the most efficient method
of performing the multiplication of an encrypted matrix
W ∈ Rm×n and plaintext x ∈ Rn, i.e., computing the
corresponding ciphertext version of y = Wx. For our
target applications of weighted aggregation, the goals of
the computation are, in order of importance:

• minimize the size of the encrypted output that contains
y, since this ciphertext has to be encoded in the noise term
and then sent over to the aggregator;
• minimize the noise growth, in order to reduce the
parameter size, which in turn also minimizes both the
computational cost and size of the communicated message;
• minimize the computational cost;
• minimize the input ciphertext that packs W.

Sequential SIMDPMult operations should be avoided be-
cause of the exponential growth in the noise. For the input
vector packing, we assume that m,n < N . For the input
matrix packing, we assume that nm < N or n2 < N . We
pad the rest of the slots up to N with zeros. If mn > N
(or n2 > N), then the number of input ciphertexts will be
dmn/Ne (respectively dn2/Ne). We show in Figure 3 the
schematic representations of the five methods considered
for computing a matrix-vector multiplication.

Naive method with each row packed in one ciphertext.
The output of a matrix-vector multiplication is given by:

yj = Wjx =

n∑
k=1

Wjkxk, j = 1, . . . ,m. (13)

If each row of the matrix W is packed and encrypted
in a ciphertext, and x is packed in a plaintext, then
the naive version involves m SIMDPMult operations. For
each resulting vector, we then need n − 1 Perm and
n − 1 SIMDAdd operations, which creates a ciphertext
j whose first slot contains yj . Using a tree structure to
perform these operations, we can reduce their number
to dlog ne Perm and dlog ne SIMDAdd operations. This
creates m output ciphertexts. In order to obtain only
one output ciphertext, we need m SIMDPMult to mask
the ciphertexts by [1|0|0| . . .], then m − 1 Perm and
m − 1 SIMDAdd operations. This sequence of operations
introduces a lot of noise, because of the two sequential
SIMDPMult operations.

Method with each column packed in one ciphertext. De-
note by Cj the j’th column of the matrix W, j = 1, . . . , n.

y =

n∑
j=1

Cjxj . (14)

If each Cj is packed and encrypted in a ciphertext, and
we pack m copies of xj in a plaintext, the product can be
achieved by n SIMDPMult, n − 1 SIMDAdd operations,
and no permutation, while outputting a single ciphertext.

Method with each diagonal packed in one ciphertext. In
the applications mentioned in the Introduction, the matrix
W usually satisfies m ≤ n. We pad the matrix with zeros
such that it becomes square W̄ ∈ Rn×n. We can pack
and encrypt every diagonal of the matrix, denoted by
dj , j = 1, . . . , n as a separate ciphertext. Let ρ(x, j) be
the rotation of x to the left by j elements. Then, we have:

y =

n∑
j=1

dj ◦ ρ(x, j − 1). (15)

If we rotate and pack the plaintext vector x, the product
can be achieved by n SIMDPMult, n − 1 SIMDAdd
operations, and no permutation, while outputting a single
ciphertext, the same as in the column method.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

11236

Fig. 3. Diagrams of the various matrix-vector multiplication schemes considered. The entries with the same outer
coloring are packed in the same ciphertext. The inner color is selected to aid with visualizing the rotations and the
corresponding element-wise slot multiplications.

Method with hybrid diagonal packing in a ciphertext. We
can combine the naive and the diagonal method by packing
into a ciphertext an “extended diagonal” of the rectangular
matrix W, which we denote d̄j for j = 1, . . . ,m. Then, the
product can be written as:

y =

dn/me∑
i=1

ρ
(m∑
j=1

d̄j ◦ ρ(x, j − 1),m(i− 1)
)
. (16)

This requires m SIMDPMult operations and dlog n/me
Perm and dlog n/me+m− 1 SIMDAdd.

Naive method with all matrix packed in one ciphertext.
Consider that W is packed and encrypted in one cipher-
text, row by row. Then we pack m copies of x in a plaintext
and perform one SIMDPMult operation to get:

[W1 ◦ x|W2 ◦ x| . . . |Wm ◦ x| . . .].
We only need to perform dlog ne Perm and dlog ne
SIMDAdd operations to obtain: [y1| ∗ | . . . | ∗ |y2| ∗ | . . . | ∗
|ym| ∗ | . . .]. Notice that this yields only one output cipher-
text, and no further masking is required as long as the
aggregator knows which slots to retrieve when decrypting.

Method with all diagonals packed in one ciphertext. Con-
sider that the n diagonals of W̄ ∈ Rn×n are packed and
encrypted in one ciphertext. Then we can also pack the n
rotated versions of x in a plaintext, and then perform one
SIMDPMult operation to get:

[d1 ◦ x|d2 ◦ ρ(x, 1)| . . . |dn ◦ ρ(x, n− 1)| . . .].
As before, we only need to perform dlog ne Perm and
dlog ne SIMDAdd operations to obtain: [y1|y2|ym|∗|∗| . . .].
Regardless of how we pack the matrix into one ciphertext
(column and hybrid packing too), the computational cost
and noise are the same. The advantage of using the
diagonal/column input matrix packing is that the elements
of the output vector will be in the first m slots of the
output ciphertext, rather than spread one every n slots.

Table 1 summarizes the number of operations, noise gain
and number of input and output ciphertexts of the meth-
ods we analyzed. These methods point out a trade-off
between memory and computation. The agents have to
perform as many multiplications as input ciphertexts (with
the exception of the naive method). At the same time,
the maximum number of input ciphertexts (n) required
in the diagonal/column methods does not require any
permutation and has the least amount of noise.

Making a decision between the available methods should
take into account the agents’ capabilities and the sizes of n
and m. Note that the weights are constant and transmitted
only once at the protocol’s initialization, hence the com-
munication overhead for the input transmission is not de-
cisive. For a square matrix W, the diagonal method is the
same as the hybrid one and is the default option, as is the
column method. For very large n and n >> m, the hybrid
method is preferable. For large n,m with mn comparable
to N , the input matrix packing is preferable.

Remark 1. When the number of items packed in a cipher-
text is less than N and rotations are performed, some slots
in the output ciphertext will reveal partial sums to the
decryptor. An inexpensive solution (one SIMDAdd) to this
issue is to add noise to the slots that are not of interest,
in order to prevent information leakage at the decryption.
The diagonal and column methods with input vector pack-
ing do not require the noise treatment. �

4.2 Solution to pWSA multi-dimensional problem

The Setup phase unfolds as in Section 3.3: the parameters
and keys are generated with respect to the PAHE crypto-
system and the weight matrices Wi are packed and en-
crypted corresponding to the chosen method from Table 1.

In the Enc phase, each agent packs its local vector xi(t) in
plaintext corresponding to the chosen method from Table 1
and performs that instead of PMult. Before sampling ei(t)
from yi(t), the agents add noise as indicated in Remark 1.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

11237

Table 1. Table with costs of different methods for computing a ciphertext matrix-plaintext vector
multiplication. η0 represents the noise of the corresponding fresh ciphertext.

Method Perm SIMDPMult SIMDAdd Noise # In ctx # Out ctx

Naive (input vector
packed)

mdlogne+m−1 2m mdlogne+m− 1
mη×(nη0η×+

(n− 1)ηπ) + (m− 1)ηπ
m 1

Diagonal/Column
(input vector packed)

0 n n− 1 nη0η× n 1

Hybrid (input vector
packed)

dlogn/me m dlogn/me+m−1 nη0η× + dlogn/m− 1eηπ m 1

Input matrix packed dlogne 1 dlogne nη0η× + (n− 1)ηπ 1 1

In the AggrDec phase, the aggregator takes the same
steps as in Section 3.3. Unlike the packed matrix-vector
multiplication at the agent’s side, the multiplication Ge(t)
is done as is. Although the size of the matrix can be large,
it is very sparse: G = Iλ/l⊗gᵀ, where gᵀ = [1, 2, . . . , 2l−1],
so we only need to multiply chunks of size l. These
multiplications can be efficiently obtained by bit shifting.

Correctness: The correctness of this modified scheme is
immediate, given correctly selected parameters such that
the noise does not overflow.

Theorem 2. The pWSA scheme for multi-dimensional
problems achieves weighted sum aggregator obliviousness
w.r.t. Definition 1. �

Proof sketch: The proof follows the same steps as the proof
of Theorem 1 and also incorporates the noise added at the
agents’ side such that there is no information leakage from
the partial sums obtained by the aggregator. �

5. CONCLUSIONS AND FUTURE WORK

We proposed a private weighted sum aggregation scheme
that involves one message batch communicated at each
online time step between the agents and the aggregator
and minimal involvement from a third-party in a prior
offline step. Moreover, we showed how to make use of
input packing in order to efficiently perform homomor-
phic matrix-vector operations. The final efficiency of the
scheme depends on the sampling scheme for encoding the
messages in the error term and on the judicious choice
of the parameters for the packed additive homomorphic
encrypted scheme to prevent noise overflow. In our ongoing
work, we are testing the proposed pWSA scheme for the
decentralized control of a network of agents.

The underlying homomorphic encryption scheme can sup-
port more complex operations, at the cost of larger param-
eters. More specifically, we could perform computations
such as:

xa(t) =
∑
i∈[M]

ϕ (Wixi(t)) ,

for a nonlinear function ϕ(·). Our future work will explore
the efficiency of such private nonlinear aggregation schemes.

REFERENCES

Alexandru, A.B., Schulze Darup, M., and Pappas, G.J. (2019).
Encrypted cooperative control revisited. In Proceedings of the
IEEE Conference on Decision and Control, 7196–7202.

Alexandru, A.B., Morari, M., and Pappas, G.J. (2018). Cloud-based
MPC with encrypted data. In Proceedings of the IEEE Conference
on Decision and Control, 5014–5019.

Becker, D., Guajardo, J., and Zimmermann, K.H. (2018). Revisiting
private stream aggregation: Lattice-based PSA. In Network &
Distributed System Security Symposium. Internet Society.

Benhamouda, F., Joye, M., and Libert, B. (2016). A new framework
for privacy-preserving aggregation of time-series data. ACM
Transactions on Information and System Security, 18(3), 10.

Bonawitz, K., Ivanov, V., Kreuter, B., Marcedone, A., McMahan,
H.B., Patel, S., Ramage, D., Segal, A., and Seth, K. (2017). Prac-
tical secure aggregation for privacy-preserving machine learning.
In ACM SIGSAC Conference on Computer and Communications
Security, 1175–1191.

Brakerski, Z., Gentry, C., and Vaikuntanathan, V. (2014). (Leveled)
fully homomorphic encryption without bootstrapping. ACM
Transactions on Computation Theory, 6(3), 13.

Brakerski, Z. and Vaikuntanathan, V. (2011). Fully homomorphic
encryption from ring-LWE and security for key dependent mes-
sages. In Annual International Conference on the Theory and
Applications of Cryptographic Techniques, 505–524. Springer.

Cheon, J.H., Kim, A., Kim, M., and Song, Y. (2017). Homomorphic
encryption for arithmetic of approximate numbers. In Interna-
tional Conference on the Theory and Application of Cryptology
and Information Security, 409–437. Springer.

El Bansarkhani, R., Dagdelen, Ö., and Buchmann, J. (2015). Aug-
mented learning with errors: The untapped potential of the error
term. In International Conference on Financial Cryptography and
Data Security, 333–352. Springer.

Farokhi, F., Shames, I., and Batterham, N. (2017). Secure and
private control using semi-homomorphic encryption. Control
Engineering Practice, 67, 13–20.

Freris, N.M. and Patrinos, P. (2016). Distributed computing over
encrypted data. In IEEE Annual Allerton Conference on Com-
munication, Control, and Computing, 1116–1122.

Genise, N. and Micciancio, D. (2018). Faster Gaussian sampling for
trapdoor lattices with arbitrary modulus. In Annual International
Conference on the Theory and Applications of Cryptographic
Techniques, 174–203. Springer.

Hunt, K.J., Sbarbaro, D., Żbikowski, R., and Gawthrop, P.J. (1992).
Neural networks for control systems–a survey. Automatica, 28(6),
1083–1112.

Juvekar, C., Vaikuntanathan, V., and Chandrakasan, A. (2018).
GAZELLE: A low latency framework for secure neural network
inference. In USENIX Security Symposium, 1651–1669.

Kim, J., Lee, C., Shim, H., Cheon, J.H., Kim, A., Kim, M., and Song,
Y. (2016). Encrypting controller using fully homomorphic encryp-
tion for security of cyber-physical systems. IFAC-PapersOnLine,
49(22), 175–180.

Lin, F., Fardad, M., and Jovanović, M.R. (2011). Augmented La-
grangian approach to design of structured optimal state feedback
gains. IEEE Transactions on Automatic Control, 56(12), 2923–
2929.

Lyubashevsky, V., Peikert, C., and Regev, O. (2010). On ideal lat-
tices and learning with errors over rings. In Annual International
Conference on the Theory and Applications of Cryptographic
Techniques, 1–23. Springer.

Rastogi, V. and Nath, S. (2010). Differentially private aggregation
of distributed time-series with transformation and encryption.
In ACM SIGMOD International Conference on Management of
data, 735–746.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

11238

Schulze Darup, M., Redder, A., and Quevedo, D.E. (2018a). En-
crypted cooperative control based on structured feedback. IEEE
Control Systems Letters, 3(1), 37–42.

Schulze Darup, M., Redder, A., Shames, I., Farokhi, F., and Quevedo,
D. (2018b). Towards encrypted mpc for linear constrained sys-
tems. IEEE Control Systems Letters, 2(2), 195–200.

Shi, E., Chan, H.T.H., Rieffel, E., Chow, R., and Song, D. (2011).
Privacy-preserving aggregation of time-series data. In Network &
Distributed System Security Symposium, 1–17. Internet Society.

Tolstaya, E., Gama, F., Paulos, J., Pappas, G., Kumar, V., and
Ribeiro, A. (2019). Learning decentralized controllers for robot
swarms with graph neural networks. In Proceedings of the
Conference on Robot Learning.

Zhou, J., Cui, G., Zhang, Z., Yang, C., Liu, Z., and Sun, M. (2018).
Graph neural networks: A review of methods and applications.
arXiv preprint arXiv:1812.08434.

Appendix A. LEARNING WITH ERRORS

Let κ denote the security parameter, λ be a positive
integer and q = q(κ) a prime. Consider the ring R =
Z[X]/〈Φ(X)〉, where Φ(x) = xd + 1 is a cyclotomic
polynomial with d = 2r, and the quotient ring Rq =
R/qR = Zq[X]/〈Φ(X)〉. An R-LWE term is composed of:

(ai,bi) ∈ Rq ×Rq, where bi = ai · s + ei, (A.1)

with ai
$← Rq a polynomial from Rq and the secret

si
$← Rq. The error term ei ∈ Rq is sampled independently

according to a discretized Gaussian distribution.

The decisional R-LWE problem states that given poly-
nomially many pairs (ai,bi), determine whether bi were
constructed as in (A.1) or were randomly sampled from
Rq. Informally, given these pairs, it is infeasible to recover
the secret s, see Lyubashevsky et al. (2010).

Definition A.1. [A-LWE distribution] Let κ, q, p, λ be in-
tegers and l := dlog qe. Let µ ∈ Zp be a plaintext and

f : Zp → Zλ/lq be a function with output indistinguish-
able from random. Define gᵀ :=

[
1 2 . . . 2l−1

]
∈ Zlq and

G := Iλ/l ⊗ gᵀ ∈ Zλ/l×λq . Sample s
$← Zκq and A

$← Zκ×λq .
A sample from the Augmented Learning with Errors dis-
tribution LA-LWE

κ,λ,q (µ) over Zκ×λq ×Zλq is obtained as follows:

Compute y := f(µ) ∈ Zλ/lq ; Sample e ← DΛ⊥y (G),σ ∈ Zλq ;

Return (A,bᵀ), with bᵀ := sᵀA + eᵀ. �

Let ρ : R → (0, 1] with ρσ(x) = exp(−x2/σ2). The dis-
crete Gaussian distribution over the integers DZ,σ samples
x ∈ Z with probability ρσ(x)/(

∑
y∈Z ρσ(y)). An efficient

sampling algorithm of the error term e from the discrete
Gaussian distribution DΛ⊥y (G),σ for a general q, is given

by Genise and Micciancio (2018).

Definition A.2. [Decisional A-LWE problem] Let κ, q, p, λ
be integers and let f be a function with output indistin-
guishable from random. The decisional A-LWE problem
asks to distinguish in polynomial time poly(κ) between
samples (A,bᵀ) ← LA-LWE

κ,λ,q (µ) and uniform random sam-

ples (Ā, b̄ᵀ)
$← Zκ×λq × Zλq . �

If the distribution of y is computationally indistinguish-
able from the uniform distribution on the same domain,
i.e., PAHE is semantically secure, then the decisional
A-LWE problem is hard El Bansarkhani et al. (2015);
Becker et al. (2018).

Appendix B. PROOF OF THEOREM 1

From the setup phase, the adversary learns the public
parameters At∈[T], q, λ, κ, σ,M,gᵀ, pk and constructed G.

We treat two cases: I, the adversary does not corrupt the
aggregator and II, the adversary corrupts the aggregator:

Pr[b′ = b] =
1

2
Pr[b′ = b|a /∈ C] +

1

2
Pr[b′ = b|a ∈ C].

From the compromise queries, the adversary holds the
following information:

I. a /∈ C. {si}i∈C , {E(pk,wi)}i∈C and
∑
i∈U si = −

∑
i∈C si.

II. a ∈ C. sk, {si}i∈C , {wi}i∈C and
∑
i∈U si = −

∑
i∈C si.

Because At is different at every time step, the adversary
cannot obtain meaningful information from ci(t1)−ci(t2).

From the encryption queries at time t, the adversary
knows {ci(t) = sᵀiAt+ei(t)

ᵀ}i∈E(t), such that Gei(t) mod

q ≡ E(pk,wAi x
A
i (t)) is satisfied for i ∈ E(t). Because

PAHE is not a deterministic encryption, the adversary
cannot recover information about si from computing
ci(t)−G†E(pk,wAi x

A
i (t)) 6= sᵀiAt.

In the challenge phase, the adversary chooses t∗ ∈ T and
a series of {x0

i (t
∗)}i∈U∗ and {x1

i (t
∗)}i∈U∗ , w∗,0i and w∗,1i .

II. a ∈ C.
∑
i∈U∗ w

∗,0
i x0

i (t
∗) =

∑
i∈U∗ w

∗,1
i x1

i (t
∗).

The challenger picks a random bit b and sends {ci(t∗) =

sᵀiAt∗ + ebi (t
∗)

ᵀ}i∈U∗ to the adversary, such that Gebi (t
∗)

modq ≡ E(pk,w∗,bi xbi (t
∗)) holds for i ∈ U∗. The adversary

does not have the individual secrets of the uncorrupted
agents so it cannot recover the individual error terms or
keys from {ci(t∗)}i∈U∗ due to the hardness of A-LWE.

The adversary can sum all the ciphertexts from the en-
crypted queries and uncompromised set at time t∗, along
with the keys from the compromised queries:∑
i∈E(t∗)

sᵀiAt + ei(t
∗)ᵀ +

∑
i∈U(t∗)

sᵀiAt + ebi (t)
ᵀ+

+
(∑
i∈C

si

)ᵀ
At∗ =

∑
i∈E(t∗)

ei(t
∗)ᵀ +

∑
i∈U(t∗)

ebi (t)
ᵀ.

(B.1)

Multiplying by G, the adversary obtains:

y = E

(
pk,

∑
i∈E(t∗)

wAi x
A
i (t∗) +

∑
i∈U(t∗)

w∗,bi xbi (t
∗)

)
. (B.2)

II. a ∈ C. The adversary uses the aggregator’s key sk to
decrypt (B.2) and obtains p(t∗) =

∑
i∈E(t∗) w

A
i x
A
i (t∗) +∑

i∈U(t∗) w
∗,b
i xbi (t

∗). Because
∑
i∈U∗ w

∗,0
i x0

i (t
∗) =∑

i∈U∗ w
∗,1
i x1

i (t
∗), p(t∗) does not reveal any information.

Then, for both I and II, the probability that the adversary
wins is the probability that it solves the A-LWE problem:

Pr[A solves A-LWE problem] ≤ η(λ),

Pr[b′ = b|i /∈ C] ≤ 1

2
+ η(λ), Pr[b′ = b|i ∈ C] ≤ 1

2
+ η(λ).

where η(λ) is a negligible function, according to Theorem 2
in El Bansarkhani et al. (2015), Theorem 1 in Becker et al.
(2018) and the semantic security of the PAHE scheme.

This results in AdvpWSA(A) ≤ η(λ). �

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

11239

