
     

Data-Driven Modelling of the Nonlinear Cortical Responses Generated by 

Continuous Mechanical Perturbations 

Hasan A. Nozari*, Z. Rahmani*, Paolo Castaldi**, S. Simani***, S.J. Sadati* 

* Faculty of Electrical and Computer Engineering, Babol Noshirvani University of Technology, Babol, Iran 

(e-mail: hanozari@nit.ac.ir, zrahmani@nit.ac.ir, j.sadati@nit.ac.ir ) 

** Department of Electrical, Electronic and Information Engineering, University of Bologna, Via Fontanelle40, (FC), 47121, 

Italy Forlí  (e-mail: paolo.castaldi@unibo.it) 

***Department of Engineering, University of Ferrara, Via Sargat, IE-44122 Ferrara (FE), Italy (e-mail: 

ilvio.simani@unife.it) 

Abstract: Cortical responses to external mechanical stimuli recorded by electroencephalography have 

demonstrated complex nonlinearity with fast dynamics. Hence, the modelling of the human nervous 

system plays a crucial role in studying the function of the sensorimotor system and can help in 

disentangling the sensory-motor abnormalities in functional movement disorders. In this paper, a non-

parametric model is estimated based on locally-linear neuro-fuzzy structures trained by an evolutive 

algorithm relying on locally-linear model-tree. In particular, simulation model as well as a multi-step 

ahead predictor model is considered to describe the nonlinear dynamics governing the cortical response. 

The proposed modelling method is applied to an experimental dataset representing brain activities from 

ten young healthy subjects. These electroencephalography signals are recorded while robotic 

manipulations have been applied to their wrist joints. The obtained results are satisfactory and are also 

compared to those achieved with different modelling strategies applied to the same benchmark data. 

Keywords: Locally linear neuro-fuzzy network, locally linear model-tree, cortical response, 

electroencephalography signals. 

 

1. INTRODUCTION 

The neural control of healthy movement involves 

proprioceptive information from the periphery to reach the 

cortex; this sensory information is needed for creating 

internal models allowing accurate movement planning (feed-

forward control) and for generating suitable responses to 

disturbances (feedback control). It is well established that the 

link between a movement and the cortical reaction increases 

the understanding of the sensorimotor system and helps to 

solve sensorimotor problems in movement disorders (Vlaar et 

al., 2018). The analysis of the dynamics between the 

integration of sensory system and motor system allows to 

generate a continuous proprioceptive excitation. Moreover, it 

is widely available a high-precision technique for recording 

brain activities such as ElectroEncephaloGraphy (EEG) or 

magnetencephalography. To this end, external manipulation 

of wrist or finger as a continuous stimulus allows for steady-

state study of the nervous system since it is consistently 

involved in processing the sensory signals.  

Taking into account that human nervous system consists of 

multiple neuronal networks, this process is considered as a 

complex nonlinear closed-loop system with abrupt variation 

of its dynamics (Campfens et al., 2013 and Yang et al., 

2016a). Therefore, the use of linear modelling techniques 

(Campfens et al., 2013 and Vlaar et al., 2017) can provide 

only limited information on the behaviour of this system; as 

an example, the linear approach to model the relation 

between proprioceptive stimulus and evoked cortical 

response can only capture 10% of the brain activity (Vlaar et 

al., 2017. However, little research efforts have been devoted 

to nonlinear modelling of the cortical response. On the other 

hand, a few researches have employed nonparametric 

nonlinear modelling approaches based on Volterra series to 

capture the nonlinear dynamics of brain response to joint 

stimuli (Vlaar et al., 2018 and Tian et al., 2018). This strategy 

only explained around 40% of the measured EEG signals. 

The major drawback of the Volterra based methods is that the 

model output depends merely on the previous values of the 

process inputs. In order to manage this limitation, other 

works have considered Nonlinear AutoRegressive Moving 

Average with eXogenous inputs (NARMAX) prototypes to 

capture the dynamics of cortical response (Tian et al., 2018). 

It is worth noting the complex behaviour of the human 

nervous system that includes sub-harmonics, fast dynamics, 

bifurcations, and even chaos (Breakspear, 2017 and Yang et 

al., 2016b)- Therefore, the problem of nonlinear modelling of 

the human nervous system still requires more investigations. 

This study suggests employing Locally Linear Neuro-Fuzzy 

(LLNF) networks for capturing the nonlinear dynamics from 

the cortical response to the mechanical stimulations. The 

main goal is to extract as much information as possible about 

the system from given data, without using any prior 

knowledge. In this study, LLNF models are computed by 

using local AutoRegressive with eXogenous inputs (ARX), 

AutoRegressive Moving Average with eXogenous inputs 

(ARMAX), Output Error (OE), and Volterra structures 

(Nelles, 2001). It is worth noting that the transparent 

architecture of the LLNF models can enhance to understand 

he highly nonlinear relationship between the mechanical 

stimulus and cortical response. 
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The remainder of this paper is organised as follows. Section 2 

provides the overall description of the developed setup and 

the data acquisition system. In Section 3, the proposed 

nonlinear modelling approaches are presented. In particular, 

Section 3.1 introduces the proposed simulator and predictor 

models, whilst Section 3.2 addresses the structure of the 

LLNF system Section 4 presents the achieved simulation 

results and some related discussions. Finally, concluding 

remarks and open problems are drawn in Section 5. 

2. EXPERIMENTAL SETUP DESCRIPTION 

Ten physically healthy and right-handed young individuals 

aged between 22 and 25 years (5 males) were involved in the 

experiments. The experimental procedure was approved by 

the Human Research Ethics Committee of the Delft 

University of Technology (TU Delft), the Netherlands. All 

subjects provided written knowledgeable consent before 

participating in experiments. During the test, the subjects 

were sat with their right forearm placed on an armrest while 

their hand was fixed to the handle of a robotic manipulator 

(Wristalyzer, MOOG Inc., The Netherlands). Multisine 

perturbations were applied to the participants as flexion and 

extension stretches via the handle of the manipulator, thus 

representing the external inputs to the nervous system. 

Subjects were suggested to relax their arm and joints, and not 

react to the stimuli generated by robotic manipulator. 

These stimuli represent the sum of sinusoids with odd 

harmonics of the fundamental frequency of 1, 3, 5, 7, 9, 11, 

13, 15, 19, and 23Hz and with the period of 1 s. Therefore, 

seven different realizations of a multisine signal with similar 

frequencies were created. All perturbation signals have 

identical statistical distributions with the same root-mean-

square of 0.02 radians. The stimulation signals were applied 

to wrist joints as angular position perturbations; therefore, 

signal magnitude is expressed in radians. Moreover, these 

signals were designed to have similar power on the first three 

frequency components and a dwindling power spectrum 

(−20dB/decade slope) for higher frequencies. This choice 

represents a trade-off between the reduced predictability of 

the input signals (in order to prevent possible predictions by 

the subjects) and the capabilities of the wrist-manipulator 

system (Vlaar et al., 2017). Each signal was applied to 

stimulate the wrist joints for 7 trials of 36 s. 

The EEG response was measured from the human nervous 

system, using an EEG cap with 128 Ag/AgCl electrodes 

(arranged based on 5/10 system, WaveGuard, ANT Neuro, 

Germany). The cortical response was sampled at 2048Hz 

using a Refa amplifier (Twente Medical Systems 

International B.V., the Netherlands) and recorded for 

additional analysis. Three seconds were removed from the 

beginning and the end of each dataset in order to reduce the 

transient effects, thus resulting in 210 periods for each of the 

7 realizations (Vlaar et al., 2018). The dataset is provided in 3 

different sizes, namely small (<1MB), medium (around 

500MB), and large (around 60GB) and can be accessed 

through this website (http://www.nonlinearbenchmark.org/). 

As the first data set (the smallest one) was used in this work; 

the same dataset was also used for comparison purpose. 

 

3. NONLINEAR SYSTEM IDENTIFICATION  

3.1. Simulation and prediction Techniques  

Nonlinear dynamic system identification can be carried out 

by exploiting simulation and prediction model techniques 

(Nelles, 2002). The structure of the nonlinear predictor and 

simulator based on local ARX and ARMAX models is 

depicted in Fig. 1. The simulation model is fed by the past 

values of the process inputs and the past values of the outputs 

of the model itself, in order to simulate its future outputs., On 

the other hand, the one-step ahead prediction model uses  the 

past values of the process inputs and the past process outputs. 

Fig. 1 represents the structure of the prototype for the 

prediction and the simulation tasks. In this way, as 

highlighted in Fig. 1, the model dynamics are included into 

the nonlinear static approximator through a bank of external 

tapped delays. 
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Fig. 1. Nonlinear model with external dynamics for prediction and 

simulation purposes. 

For the identification of nonlinear dynamic systems based on 

simulation technique, the nonlinear OE structure is given as follows 

(Billings, 2013): 
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On the other hand, the NARX and NARMAX structures used 

for one-step ahead prediction are formulated as follows 

(Billings, 2013): 

( )
( ) ( ) ( )

( ) ( ) ( )

1 , 2 ,..., ,
(

1 , 1 ,...,
)

m

p p p

u k u k u k nu
y k f f

y k y k y k ny
X

− − −
=

− − −

 
=  

   (2) 

( )
( ) ( ) ( ) ( ) ( )1 , 2 ,..., , 1 ,..., ,

( 1 ), ( 2 ),..., ( )

p p

m

u k u k u k nu y k y k ny
y k f

e k e k e k ne

− − − − −
=

− − −

 
 
   (3) 

u is the system input, e  is the prediction error, 
py and 

my are 

the system and model outputs, respectively; nu , ny , ne  are 

the number of lags for input, output and the prediction error, 

respectively. Note that NARMAX model without output 

dynamics lead to the Volterra structure (Brockett, 1976). On 

the other hand, a long-term predictive model is characterized 

by its prediction capabilities over longer prediction horizons 

(i.e., h-steps ahead). Therefore, the structure of a long-term 

(multistep) predictor model is obtained by means of a series 
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connection of identical NARX models with the prediction 

horizon of h, as  illustrated in Fig. 2.  
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Fig. 2. Architecture of a multi-step NARX predictor model for 

prediction horizon of h. 

According to the structure of the multi-step NARX predictor 

model of Fig. 2, the h-step ahead prediction of the output for 

a NARX model can be computed as follows: 
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Moreover, the h-step ahead prediction using a NARMAX 

model is described as follows: 
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3.2. Locally linear neuro-fuzzy network 

The LLNF models allow to reduce the dimension of the 

nonlinear input space by using locally linear subspaces. The 

fuzzy validity functions define the effectiveness of each local 

linear model in its regions via fuzzy neurons. Each neuron 

represents a Local Linear Model (LLM), whose effectiveness 

is determined by its validity function. The LLNF model can 

be simply inferred as Takagi-Sugeno (TS) fuzzy model, 

whose rules are represented by neurons; the validity functions 

correspond to the rule premises, whilst the LLMs represent 

the rule consequents (Nelles, 2001). The structure of the 

LLNF model is shown in Fig. 3. 

As an example, the overall output of a multi-input single-

output LLNF model with NARX structure (i.e., in form of 

predictor/simulator model) for D inputs is represented as 

follows: 
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where
/p m

y denotes the system or the model output, 
i

jim
b  and 

jna  represent the numerator and denominator coefficients 

respectively, ξj is the offset of the LLMj. 
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Fig. 3 The general structure of the LLNF model. 

Furthermore, the function φj(X) represents the operating point 

dependent weighting factor. The parameter vector for the j-th 

LLM is  described by the following parameter vector: 
T

1 2 1, , , , , , ,j j j jm j jn jb b b aw a  =     (7) 

A weighted least-squares solution is employed to estimate the 

parameters for the j-th local output. It is noteworthy noting 

that a LLM is valid only in the region where the associated 

validity function is close to 1. That is, the validity functions 

of u are typically chosen as normalized Gaussian functions, 

such that the following relation holds: 
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The validity functions are chosen as normalized Gaussian 

functions: 
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where the parameters jic  and ji  represent  the centre and 

the standard deviation of the j-th LLM, respectively. 

The divide-and-conquer strategy is exploited for finding 

determining the optimal network structure as it represents the 

most powerful approach for the LLNF modelling approach. 

Moreover, the parameters of the validity functions are tuned 

by means of an evolutive algorithm, namely the LOcally 

LInear MOdel Tree (LOLIMOT), which divides the input 

space through axis-orthogonal splits (Nelles, 1996). This 

algorithm contains an outer loop, where the parameters of the 

validity functions are determined, and an inner loop, in which 

the parameters of LLMs are optimised by the weighted least 

square estimation (Nelles, 1996; Nelles, 2001).  The 
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following pseudo-code was proposed by the authors in order 

to implement the LOLIMOT algorithm (Nozari et al. 2014): 

c1←Minimum(X)+(Maximum(X)−Minimum(X))/2; 
σ1←Maximum(X) − Minimum(X)/3;

w1←Least Square (φ1, X, y);φ1←Calculate(c1, σ1,X) ,   

For =1 to i LLMmax
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4. RESULTS AND DISCUSSION 

 Since 7 multisine realizations are available in the data, initial 

training phases with cross-validation stages are iteratively 

carried out (Vlaar et al., 2018). 6 of these date-sets have been 

used for training (estimating) the model, whilst the remaining 

one has been exploited for validating the obtained structure. 

The cross-validation procedure (Stone, 1974) has been 

repeated 7 times, thus yielding to 7 models for each 

participant. Therefore, the average performance has been 

calculated through 7 repetitions for each participant, thus 

representing the overall performance of the proposed model. 

These performances have been evaluated by using the 

Variance Accounted For (VAF) index with a cross-validation 

test (Tian et al., 2018): 

var( - )
1 - 100

var( )

m p

p

y y
VAF

y
= 

 
 
 

                                                 

(10)
 

where 
m

y  represents the model output and 
py  represents the 

system output. Fig. 4 reports one period of the measured and 

estimated output signals for participant P1. The estimated 

output signals from the single-step and multi-step (i.e., three-

step and eleven-step) ahead predictions using the proposed 

LLNF-NARX and LLNF-NARMAX models are reported for 

comparison purpose. Besides, the behaviours of the simulator 

(NOE) and the Volterra models are also shown with respect 

to real output signal. Note that both the LLNF-NARX and the 

LLNF-NARMAX models exhibit good tracking capabilities 

for the one-step ahead prediction. However, as the prediction 

horizon increases, the performance of the LLNF-NARMAX 

model deteriorates, particularly during the eleventh-

prediction step. The performance of the Volterra and the 

NOE models cannot be compared to the predictor models in 

terms of tracking. 

 
Fig. 4 Performance of the proposed LLNF models for participant P1:(a) one-step ahead prediction by the LLNF-NARX model, (b) one-step 

ahead prediction by the LLNF-NARMAX model, (c) three-step ahead prediction by the LLNF-NARMAX model, (d) 11-step ahead prediction 

by the LLNF-NARMAX model, (e) Simulator and Volterra Models, (f) Power spectrum density of the one-step ahead prediction residual for 

the LLNF-NARMAX model. 

predictions using the proposed LLNF-NARX and LLNF-

NARMAX models are reported for comparison purpose. 

Besides, the behaviours of the simulator (NOE) and the 

Volterra models are also shown with respect to real output 

signal. Note that both the LLNF-NARX and the LLNF-

NARMAX models exhibit good tracking capabilities for the 

one-step ahead prediction. However, as the prediction 

horizon increases, the performance of the LLNF-NARMAX 

model deteriorates, particularly during the eleventh-

prediction step. The performance of the Volterra and the 

NOE models cannot be compared to the predictor models in 

terms of tracking. 

It is clear that the Volterra model estimates the output signal 

more accurately than the NOE model, as the former exploits 
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the feedback of the prediction error as input. On the other 

hand, the one-step ahead residual error for the LLNF-

NARMAX model is higher in the high-frequency 

components within the band of interest. This problem is 

probably due to the fast dynamics of the EEG oscillation, 

which can be considered as a measurement noise in the 

system. In addition, since the average behaviour of the 

residual error is constant, the residual error can be considered 

as white noise, thus proving the goof fit of the considered 

model. 
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Fig. 5 Prediction errors of proposed models for participant P1: (a) 

LLNF-NARX model (one step ahead), (b) LLNF-NARMAX model 

(one step ahead), (c) LLNF-NARMAX model(three step ahead), (d) 

LLNF-NARMAX model(eleven step ahead), (e) Volterra model, and 

(e) simulator model. 

Fig. 5 reports the variations of the prediction errors over one 

period for participant P1. As it can be seen, the prediction 

errors for the NARX and the NARMAX models are around 

zero, thus highlighting their capabilities to track the measured 

system outputs with good accuracy. Moreover, the prediction 

errors generated by the NOE and the Volterra models are 

significantly different from zero in some intervals, due to 

their limitations to emulate the EEG response signal. The 

structures of the proposed LLNF models for a typical tested 

participant (P1) are summarized in Table 1. The model 

structure has been obtained by performing an exhaustive 

search (Eduardo et al, 2001) among all possible model 

structures, and selecting the model which minimizes the VAF 

index.  
Table 1. Structures of the proposed LLNF-based models for 

participant P1  
 Fold1 Fold2 Fold3 Fold4 Fold5 Fold6 Fold7 

LLNF-NARX 
nu 2 5 6 2 4 10 2 

ny 10 10 10 5 10 5 10 

LLNF-

NARMAX 

nu 2 5 8 2 1 2 2 

ny 10 10 10 1 8 10 8 

ne 6 4 6 9 6 3 10 

LLNF-NOE 
nu 2 7 10 2 2 3 7 

ny 9 10 10 5 10 8 5 

LLNF-
Volterra 

nu 1 3 1 1 1 1 3 

ne 10 10 10 8 5 5 10 

The performances of the proposed models are reported in the 

Table 2 for all tested participants. As it can be seen, the 

LLNF-NARX (93.39% ± 1.71%) and LLNF-NARMAX 

(94.52% ± 1.45%) one-step ahead prediction  models provide 

the best results,  when compared to the LLNF-Volterra 

(91.27% ± 1.95%) and the LLNF-NOE (68.43 % ± 7.18%) 

models. Furthermore, as the prediction horizon increases up 

to 11, the LLNF-NARMAX (86.78% ± 4.50%) model 

provides better long-term prediction than the LLNF-NARX 

model (83.56% ± 3.89%). However, it can be noted that 

increasing the prediction step leads to reduce the prediction 

performances for both models. This can be due to the fact 

that the performance of the prediction model tends to those of 

the simulation model when the prediction horizon increases. 

It is also worth noting that the eleven-step ahead prediction 

forecasts 43ms ahead of the cortical response (based on the 

256Hz sampling rate), which seems sufficient for evaluating 

the performance of the proposed models due to the fast 

dynamics of the human brain. 

Table 2 Performances of the proposed LLNF-based models based on 

the VAF [%] index. 

 LLNF-NARX LLNF-NARMAX 
NOE Volterra. 

 Step-1 Step-3 Step-11 Step-1 Step-3 Step-11 

P1 95.49 95.06 88.27 96.22 95.68 83.73 77.95 94.15 

P2 92.94 92.05 80.64 93.67 92.79 86.55 62.81 90.68 

P3 93.52 92.59 76.85 94.47 93.93 89.23 64.05 90.66 

P4 91.82 90.92 84.55 93.55 92.39 87.80 63.29 88.53 

P5 94.86 93.38 81.11 95.72 94.98 91.41 73.44 92.54 

P6 93.60 93.39 84.58 94.63 91.90 84.70 74.04 92.10 

P7 94.49 88.63 82.12 95.74 95.36 91.73 74.52 92.26 

P8 90.10 89.55 84.30 91.85 89.75 78.73 55.92 88.78 

P9 91.98 86.75 82.66 93.19 92.57 81.94 64.40 90.53 

P10 95.12 93.10 90.55 96.14 94.88 92.03 73.92 93.46 

Mean 93.39 91.54 83.56 94.52 93.42 86.78 68.43 91.27 

Std. 1.71 2.56 3.89 1.45 1.88 4.50 7.18 1.95 

The one-sigma interval of the long-term prediction models 

for all participants is depicted in Fig. 6 with respect to the 

prediction steps (horizon). The standard deviation is 

computed for the participants with respect to the mean values 

for a given value of step ahead predictions. It can be noted 

that the predictions are quite smooth, and that the width of 

the interval gradually increases with the prediction step (i.e. 

toward the end of the prediction period). 

 
Fig. 7 One sigma interval for multistep LLNF-NARMAX prediction 

with respect to the prediction horizons for all participants. 

On the other hand, in order to investigate the performance of 

the proposed models, a comparison has been made with 

respect to the results of different nonlinear modelling 

methods available in the literature on this recently developed 

nonlinear system identification benchmark. To this aim, 
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Table 3 summarizes the results of nonlinear modelling 

methods proposed by Tian and his co-workers (Tian et al., 

2018), where a NARMAX framework based Hierarchical 

Neural Network (NARMAX-HNN), a Polynomial 

NARMAX (NARMAX-NP), and a Volterra models were 

exploited. As it can be seen, the proposed LLNF-NARMAX 

model (94.52% ±1.45%) generates better results when 

compared to both NARMAX-HNN (92.33% ±1.57%) and 

NARMAX-NP (93.91% ±1.54 %) for one-step ahead 

prediction. In addition, the long-term prediction results given 

by both LLNF-NARX and LLNF-NARX model are 

significantly better than the NARMAX-HNN (69.35% 

±11.90%) and the NARMAX-NP (47.09% ±13.28%) models. 

It is also worth highlighting that in contrast to smooth 

predictions resulted by the proposed LLNF models, abrupt 

changes   are observed with respect to forecasting period in 

the predictions generated by the NARMAX-HNN and the 

NARMAX-NP predictor models. Note also that no 

simulation results were presented by Tian and co-workers 

(Tian et al., 2018) and the proposed LLNF-based Volterra 

model greatly outperforms the corresponding structure 

presented in this work. 

Table 3. Performances for the NARMAX-HNN, the polynomial 

NARMAX (NARMAX-NP), and the Volterra models based on 

the VAF [%] index (Tian et al., 2018). 

 NARMAX-

HNN 

NARMAX- 

NP Volterra 

Step-1 Step-3 Step-1 Step-3 

P1 94.37 63.44 95.52 57.08 38.37 

P2 92.83 56.85 94.74 39.53 29.12 

P3 90.95 67.16 92.95 31.17 32.18 

P4 91.02 74.89 91.94 32.26 28.10 

P5 92.58 82.31 94.04 61.57 53.74 

P6 93.76 75.55 93.72 49.18 61.07 

P7 93.08 74.32 95.73 65.35 54.30 

P8 90.23 43.40 91.90 32.57 39.95 

P9 90.36 77.16 92.24 37.98 26.35 

P10 94.15 78.44 96.28 64.21 65.19 

Mean 92.33 69.35 93.91 47.09 42.84 

Std. 1.57 11.90 1.54 13.28 13.78 

5. CONCLUSION 

In this paper, an automatic procedure for the data-driven 

nonlinear modelling of neurobiological human nervous 

system on the basis of prediction and simulation techniques 

was presented. In particular, the local linear neuro-fuzzy 

architectures that were used to model the cortical response 

showed several and interesting advantages with respect to  

conventional black-box approaches, such as neural networks. 

Moreover, its transparent architecture allowed for more 

detailed interpretations of the highly nonlinear relationship 

between the mechanical stimulus and cortical response. The 

combination of prior knowledge about the human nervous 

system with measured identification data was also included. 

The local linear neuro-fuzzy structures of the presented 

prediction models also provided smooth predictions over 

forecasting period, when compared to neural network based 

models. Using the developed models for health 

monitoring/diagnostic of movement disorders and 

rehabilitation may constitute a worthwhile direction of future 

research. 
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