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1. INTRODUCTION

The first publications related to the speed-gradient type algo-
rithms appeared in 1978. The general formulations were pro-
posed simultaneously and independently by Alexander Fradkov
and Yuri Neimark in January, 1978 at the 9th All-Union school
on adaptive systems (Fradkov, 1979; Neimark, 1979).

Some related formulations for the identification problem were
suggested by Krasovsky (1976), who considered the following
plant model, known to within parameters

ẋ+ f (x,a,u,ξ ) = 0, (1)

where x, u are the state and control vectors, assumed to be
measured by the sensors or estimated; a denotes the vector of
unknown parameters; ξ = ξ (t) is the vector of disturbances,
measured with a certain accuracy. The following plant model is
taken

ẋm + fm(xm,am,u,ξm) = 0 (2)

with state-space vector xm(t), adjustable parameters vector
am(t) and estimated disturbances vector ξm(t). It is assumed
that in the case of the arguments equivalence, fm(·)≡ f (·). The
problem is considered of ensuring convergence of adjustable
parameters am(t) to “true” values a. Based on (Krasovsky,
1973), the following generalized performance criterion I, in-
cluding the integral quadratic state error xm(t)− x(t) and the
norm of the parameters adjusting speed ua ≡ ȧm(t) is used in
(Krasovsky, 1976)
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where Q(·) > 0; TQ, ka j are design parameters; functions V (·),
ua j opt are defined below. Based on the approach of (Krasovsky,
1973), for (2), (3), the following “optimal” (in the sense of (3))
identification algorithm is derived

ua j ≡ ua j opt =−k2
a j

∂V
∂am j

, (4)

where V is a solution to the following partial differential equa-
tion
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or, defining the linear operator Lt =
∂
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i=1 fmi

∂
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, one can

rewrite (5) as follows

(Lt −1/TQ) =−Q. (6)

Then its solution may be represented in the form V = TQ(1+
TQLt +T 2

QL2
T + . . .)Q. This leads to the following identification

algorithm

ȧm =−TQk2
a

∂

∂am

((
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QL2
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)
Q(xm− x)

)
. (7)

The simplified approximation of (7) may be written as follows,
see (Krasovsky, 1976)

ȧm = T 2
Qk2

a
∂ fm

∂am

∂Q
∂xm

, (8)

which coincides with some adaptive identification algorithms,
derived, particularly, by means of Fradkov (1980) SG-method.
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First (yet distinct) stability results were published in (Neimark,
1978) and in (Fradkov, 1980). Neimark (1978) considered the
system where the collective of automatons changes adaptively
adjustable parameters along the speed of decreasing some cost
function V . The plant model is taken in the form

ẋ = f (x,u), (9)
where x denotes the state-space vector, u stands for the vector of
adaptively adjustable parameters. It is assumed that f (0, ·) = 0
and f (·,u) is linear on u. Cost function V (x) is defined such that
V (x)>ϕ

(
‖x‖
)
> 0, where ϕ(ρ) is increasing on ρ function and

V (0) = 0. It is also assumed that for some u = u∗, σ > 0, M > 0
the following inequality is fulfilled

V̇
(
x(t)
)
≡ ∂V

∂x
f (x,u∗)<−min{σV (x),M}. (10)

The following Theorem is proven.
Theorem 1. (Neimark, 1978, Theorem 7.4). Let the adaptation
law be taken as

u̇ =−α∇u
∂V
∂x

f (x,u), α > 0. (11)

For all solutions of (9), (11) it is valid that x(t)→ 0, u(t)→ ū
as t→ ∞. Additionally

∞∫
0

V
(
x(t)
)

dt <
1
σ

V
(
x(0)

)
+

1
2α

(
u(0)−u∗

)2
,

and ū lies in the stability region of the closed-loop system
with the exception of the case when

(
x(0),u(0)

)
∈ S+p , where

S+p denotes the invariant sets of saddle equilibrium states for
system (9), (11).

In (Neimark, 1978) the case of stochastic disturbances x (t),
added to the right-hand side of plant model (9), is also dis-
cussed. For avoiding possible system instability in this case, the
modification of adaptation law (11) by introducing the penalty
function is suggested.

For the special case affine time-invariant controlled system ẋ =
f (x)+g(x)u and positive definite goal function V (x) the control
algorithm u = −LgV (x) was proposed by Jurdjevic and Quinn
(1978) It is sometimes called “LgV” or “Jurdjevic–Quinn”
control. Stability result in Jurdjevic and Quinn (1978) is related
to the case V̇ 6 0 and requires some detectability conditions
(so called “Jurdjevic-Quinn” conditions), cf. (Sepulchre et al.,
1997)).

Non-affine and time-varying case was first studied in (Fradkov,
1980) for differential form of SG-algorithms and in (Fradkov,
1985, 1986) for the finite form.

Various types of the speed gradient algorithms were proposed
as a set of designing schemes and their applicability conditions
by Alexander Fradkov in the framework of the unified Speed-
gradient method (the SG method). This method was origi-
nated in (Fradkov, 1980) as a universal approach for solving
various control problems, originally with a focus on design-
ing the adaptation and identification algorithms, cf. (Fradkov,
1980, 1985, 1986; Seron et al., 1995; Fradkov and Pogrom-
sky, 1998; Fradkov, 2007). The basic idea of the method is
expressed by Fradkov (1980) as follows: “The paper is con-
cerned with a scheme for design of adaptive control algorithms
whereby motion is organized in the space of parameters to
be adjusted along the gradient of the speed of change of an
evaluative functional.” During the subsequent years, the method

was further developed by for elaborating the various schemes of
adaptation, non-linear control, identification and synchroniza-
tion. This method has found application in the works by many
researchers worldwide. Jordán and Bustamante (2006) recog-
nized it as the method, which “enables a transparent trade-off
between control performance and design parameters. Further-
more the steps for controller design results are in general simple
. . . it has become widespread in other multiple successful appli-
cations in adaptive control mainly in Physics and Mechanics.”
The SG-methodology was extended to the speed-difference one
which allowed to relax the matching (attainability) conditions
in (Druzhinina and Fradkov, 1994).

During the last decade, the interest appeared to the SG method
as an efficient tool not only for solving the engineering prob-
lems, but also for understanding the laws of nature, such as eco-
logical systems dynamics, or fundamental laws of Physics. In
this interpretation this approach is known as the Speed-gradient
principle (Fradkov, 2007; Selivanov, 2011; Khantuleva and
Shalymov, 2017, 2018; Plotnikov et al., 2016).

The present paper is focused on the SG-method application to
adaptive control and identification problems. The rest of the
paper is organized as follows. The links between the SG method
and some general adaptation and identification schemes are
given in Sec. 2. Some results of the SG method application
to designing the adaptive and identification algorithms are
outlined in Sec. 3. Concluding remarks are given in Sec. 4.

2. GENERAL ADAPTATION AND IDENTIFICATION
SCHEMES IN THE SG FRAMEWORK

2.1 Model Reference Adaptive Control

Model Reference Adaptive Control (MRAC) algorithms for
solving the problem are obtained in the series of fundamental
works on the adaptive control theory, see e.g. (Landau, 1979),
where the plant and the reference model are taken as

ẋ = Ax+Bu, – plant
ẋM = AMxM +BMr(t) – reference model. (12)

The problem of asymptotical convergence of error vector e(t) =
x(t)− xM(t) to zero is posed. The adaptation algorithm has the
following form

∇∆Aω(x,θ , t) = Pe(t)x(t)T,
∇∆Bω(x,θ , t) = Pe(t)r(t)T.

(13)

Algorithms (13) can be inferred from the SG scheme by using
the target functional Qt := 1

2e(t)TPe(t); P = PT > 0 is n× n
matrix satisfying the Lyapunov equation PAM + AT

MP = −G
for some G = GT > 0. The vector of tunable parameters in
this case is a set of matrices ∆A(t), ∆B(t) elements and the
differential form of SG-algorithms (Andrievskii et al., 1988;
Fradkov, 1990) is used.

For preventing an unlimited growth of controller coefficients
under the action of disturbances, it is recommended to use
the regularized adaptation algorithm (Andrievskii et al., 1988;
Fradkov, 1990) of the form

d
dt ∆A(t) =−γ

(
Pe(t)x(t)T +α

(
∆A(t)−∆Â

))
,

d
dt ∆B(t) =−γ

(
Pe(t)r(t)T +α

(
∆B(t)−∆B̂

))
, (14)

where ∆Â,∆B̂ are some a priori estimates of tunable parame-
ters.
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2.2 Simple Adaptive Control with Implicit Reference Model

The Implicit Reference Model (IRM) approach was origi-
nated in (Fradkov, 1974), employed to adaptive tuning of PID-
conroller in (Andrievsky and Fradkov, 1994) and extended
to the synchronization problems in (Andrievskii and Fradkov,
2006). The IRM adaptive control laws may be derived with
the help of the SG method with local objective functional

Q =
1
2

xTPx, where x∈ Rn denotes the plant state vector, (n×
n) matrix P is positive-definite, P = PT > 0. The adjustable
control law in the “main loop” is taken as u = K(t)y, where u
is the control action, y is the measurable plant output, K = K(t)
are the controller gains, adjusted by means of the adaptation
algorithm

K̇(t)=−γδ (t)y(t), δ (t)=
l

∑
i=1

giyi(t), u(t)=
l

∑
i=1

θi(t)yi(t).

Adaptive Stabilization of LTI SISO Plants. Let LTI SISO
plant be modeled in the input-output form as

A(p)y(t) = B(p)u(t), t > 0, (15)
where u, y are scalar input and output variables, A(p) = pn +
an−1 pn−1 + · · ·+ a0, B(p) = bm pm + · · ·+ b0 are polynomials
in operator of differentiation on time p ≡ d/dt. Define k as
the relative degree of system (15), k = n−m > 0. Plant (15)
parameters ai, b j (i = 0,. . . ,n− 1, j = 1, . . . ,m) are assumed
to be unknown. Desired closed-loop system performance may
be expressed in the form of a certain “reference” differential
equation. In the classical MRAC this equation is explicitly
implemented in the adaptive controller by the Reference Model,
cf. (Landau, 1979). To describe the IRM adaptive controllers,
let us introduce an adaptation error signal σ(t) as

σ(t) = G(p)y(t), (16)

where G(p) = pl + gl−1 pl−1 + · · ·+ g0 is a given Hurwitz
polynomial in operator p≡ d/dt. Coefficients gi are the design
parameters; they are chosen based on the desired closed-loop
system dynamics. Degree l of polynomial G(p) is defined
below. Assuming that the adaptation law ensures tendency σ(t)
to zero let us notice that as σ ≡ 0, output y(t) satisfies the
following “reference equation”

G(p)y(t) = 0. (17)
This equation describes the reference model, but this model is
not implemented in the adaptive controller in the form of a
certain dynamical subsystem, but introduced implicitly via its
parameters gi (i = 0,1, . . . , l−1). Therefore it is called Implicit
Reference Model (IRM).

Let us choose the feedback control law in the following form:

u(t) =
l

∑
i=0

ki(t)
(

piy(t)
)
, (18)

where ki(t) i = 0, . . . , l are adjustable controller parameters. For
the considered case the HMP property leads to the following
adaptation law, see (Fradkov, 1974):

k̇i(t) =−γσ(t)piy(t), ki(0) = k0
i , (19)

where γ > 0 is the adaptation gain, k0
i are given initial values

of the controller gains, i = 0, . . . , l. Introducing row vector

G = [g0,g1, . . . ,1]∈ Rl+1 and plant (15) transfer function W (s)
from input u to output vector [y, ẏ, . . .y(l)]T ∈ Rl+1 as W (s) =
B(s)
A(s)

[
1,s, . . . ,sl

]T, s ∈C, in virtue of Passification Theorem by

Fradkov (1974) with respect to transfer function GW (s), one
may easily derive the following stability conditions of adaptive
controller (18), (19):

(1) polynomial B(s) is Hurwitz and b0 > 0;
(2) l=k−1, where k=n−m is a relative degree of plant model

(15).

Algorithm (19) usually ensures vanishing σ(t) essentially faster
than transients in the closed-loop. As a result, changing the
controller (18) gains is stopped and plant (15) output y(t) obeys
the IRM (17).

To avoid unlimited growth of controller (18) gains in the
presence of external disturbances and measured errors, the
following α-modification of (19) may be used, cf. (Ioannou and
Kokotovic, 1984; Andrievskii and Fradkov, 2006)

k̇i(t) =−γσ(t)piy(t)−α
(
ki(t)− k0

i
)
, k0

i = ki(0), (20)
where the parametric feedback gain α > 0 is introduced.

Adaptive Tracking Systems with IRM. Adaptive control law
(18), (20) may be straightforwardly extended to the solving the
tracking problem with the desired closed-loop system dynam-
ics, see (Andrievsky and Fradkov, 1994). To this purpose let
us introduce reference signal r(t) and define adaptation error
signal σ(t) as

σ(t) = G(p)y(t)−D(p)r(t), (21)
where polynomial G(p) is defined above, and operator polyno-
mial D(p) has the form D(p) = dq pq + · · ·+ d1 p+ d0. Signal
σ(t) may be treated as the discrepancy in the equation

G(p)y(t) = D(p)r(t), (22)
considering (22) as the IRM for the case of tracking.

By the analogy with (18) let us take the control action in the
form

u(t) = kr(t)
(
D(p)r(t)

)
+

l

∑
i=0

ki(t)
(

piy(t)
)
, (23)

where kr(t), ki(t) (i = 0, . . . , l) are tunable parameters. The
adaptation law is as

k̇r(t) = γσ(t)D(p)r(t)−α
(
kr(t)− k0

r
)
, k0

r = kr(0),
k̇i(t) =−γσ(t)piy(t)−α

(
ki(t)− k0

i
)
, k0

i = ki(0),
(24)

where γ > 0, α > 0 are design parameters; k0
r , k0

i are “guessed”
initial controller gain values, i = 0, . . . , l. It is worth mentioning
that both degree q of polynomial D(p) and its coefficients may
be chosen arbitrarily by the designer.

Signal-Parametric Adaptive Controllers with IRM. Let the
regulation goal limt→∞ x(t) = 0 for plant model

ẋ(t) = Ax(t)+Bu(t), y(t) =Cx(t), (25)
where x(t)∈Rn, u(t)∈Rm, y(t)∈Rm be posed. Following (Hsu
and Costa, 1989; Andrievskii and Fradkov, 2006) introduce an
auxiliary goal as ensuring the sliding mode motion along the
predefined surface, s.t. σ(t) ≡ 0, where σ(t) = Gy(y), G is a
given (l×n)-matrix. Let us use the following control law

u =−γsignσ , σ = Gy, (26)
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where γ > 0 is a controller parameter. It may be proved that
for system (25), (26) the posed control goal may be achieved if
there exist matrix P = PT > 0 and vector K∗ s.t. PA∗+AT

∗P < 0,
PB = GC, A∗ = A+BKTC. As follows from Passification The-
orem, the mentioned conditions are fulfilled iff: transfer func-
tion GW (s) transfer function GW (s) is HMP (where W (s) =
C
(
λ In−A)−1B); the sign of GCB is known (we assume that

it is positive). Under these conditions the goal limt→∞ x(t) = 0
is achieved for sufficiently large γ (with respect to the initial
conditions and actual plant parameters).

To avoid dependence of closed-loop system stability on ini-
tial conditions and plant parameters, the following “signal-
parametric”, or “combined” control law may be used instead
of (26):

u = KT(t)y(t)− γ signσ(y), σ(y) = Gy(t)
K̇(t) =−σ(y)Γy(t), (27)

where Γ = ΓT > 0, γ > 0 are matrix and scalar adaptation law
gains.
Remark 1. For the case of scalar control input the following
control law, inspired by papers (Levant et al., 2000; Shtessel
et al., 2012) may be used instead of (27):

u =−k(t)σ(t)− γσ sign
(
σ(t)

)√
|σ(t)|, σ(t) = Gy(t)

k̇(t) = γkσ(t)2.

This law produces more smooth control action than the “relay”
law (27).

Parameter Identification Let the plant with uncertain param-
eters be modeled as

ẋ(t) = A∗x(t)+B∗u(t), . (28)
with unknown constant matrices A∗, B∗, a certain Hurwitz
matrix G, and measurable state and input vectors x(t)∈ Rn,
u∈ Rm. For identification, introduce the following Adjustable
Model (Narendra and Kudva, 1974)

ẋM(t) = GxM(t)+
(
A(t)−G)x(t)+B(t)u(t), (29)

with state-space vector xM(t) ∈ Rn and matrices A(t), B(t)
which serve as estimates of A∗, B∗. In this case vector θ is
defined as θ(t) = col(A,B). Introduce the error signal e(t) =
xM(t)− x(t), and the goal function

Qt = 1/2e(t)TPe(t), whereP = PT > 0. (30)
Following the SG design procedure, one obtains

ω = Q̇t =1/2e(t)TP
(
Ge(t)+(A−A∗)x(t)+(B−B∗)u(t)

)
(31)

∇Aω = Pe(t)x(t)T, ∇Bω = Pe(t)u(t)T, (32){
Ȧ(t) =−γPexT, γ > 0,
Ḃ(t) =−γPeuT.

(33)

3. LAST YEARS APPLICATION RESULTS FOR
ADAPTIVE CONTROL

3.1 Adaptive Wing Rock Suppression

The wing rock phenomenon is a self-excitation of a swinging
motion in a strong attack angle. When a winge rock appears,
the roll angle undergoes oscillations of increasing amplitude,
asymptotically converging to a stable limit cycle (Ng et al.,
1991; Katz, 1999). The wing rock dynamics are represented
The wing rock dynamics are represented by a substantially

nonlinear model whose parameters vary over a wide range de-
pending on the flight conditions (height, Mach number, payload
mass, etc.) and attack angle.

Lee et al. (2016) proposed the SG adaptation algorithm in
the final form for the roll angle control, which simultaneously
suppresses the wing rock motion. The following model of the
roll angle dynamics is used:

ϕ̈ +a0ϕ +a1ϕ̇ +a2|ϕ̇|ϕ̇ +a3ϕ
3 +a4ϕ

2
ϕ̇ = bu, (34)

where ϕ denotes the roll angle, u is the control action (the
aileron deflection), ai = ai(α), b = b(α) > 0 are unknown
aircraft model parameters, depending on the angle of attack
α . The problem of roll angle ϕ tracking the reference variable
ϕ∗ is considered, which means bringing the system state to the
target manifold ψ(ϕ, t)≡ ė+λe = 0, where e = ϕ−ϕ∗(t).

For employing the SG design method, the objective functional
is taken as

Q =
1
2

∫ t

0

(
ψ̇(ϕ,s,θ)+ γ(ψ(ϕ,s,θ))

)2 ds (35)

where γ(ψ) = k1ψ + k2ψ3, k1,k2 > 0 are design parameters.
The adjustable control law in the main loop is chosen in the
form

u =−θ(t)T
χ(ϕ, ϕ̇, t). (36)

with function χ on [ϕ, ϕ̇, |ϕ̇|ϕ̇,ϕ3,ϕ2ϕ̇]T, subjected to determi-
nation, where θ(t)∈R5. Implementation of the consequent SG-
procedure steps leads to the following expressions: ω(·)≡ Q̇t =
1
2
(ψ +γ)2,

∂ω(·)
∂θ

=−b
(
ψ +γ(ψ)

)
χ(x, t). Then the following

finite-differential form of the SG-algorithm is obtained:
θ = Γ

(
θp +θI

)
, where (37)

θp(x, t) = ψ(x, t)χ(x, t)−Ψ(x, t), (38)

θ̇I(x, t) =−ψ

(
∂ χ

∂ t
+

∂ χ

∂ϕ
ϕ̇

)
+

∂Ψ

∂ t
+

∂Ψ

∂ϕ
ϕ̇ +ζ (ψ)χ, (39)

In (37), Γ = ΓT > 0 stands for the adaptation gain matrix;
∂Ψ

∂ ϕ̇
= ψ

∂ χ

∂ϕ
. In (Lee et al., 2016) is proved that ϕ(t), ϕ̇(t),

θ̃ Tχ(x, t) tend to zero as t→ ∞.

In (Lee et al., 2016) the comparative simulation results are
presented for the SG control law and the law obtained by
the I&I approach, see (Astolfi et al., 2008; Lee and Singh,
2014). Both the adaptation laws include an integral update rule
and an algebraic state-dependent vector function. Simulation
results showed that both the adaptive systems are capable of
suppressing the wing rock motion, despite uncertainties in the
model parameters at various angles of attack.

The similar control problem is considered by Andrievsky et al.
(2019). The aircraft roll motion is modeled by (34). For adap-
tive wing rock suppression, the simple adaptive control with
IRM, described in Sec. 2.2 is employed, which leads to the
following adaptive controller for the roll motion:

e(t)=ϕ(t)−ϕ
∗(t), ξ̇ (t) = e(t), ξ (0) = 0 (40)

σ(t)=τϕ(t)+ e(t) – adaptation error, (41)

u(t)=−
(
kiξ (t)+ kp(t)e(t)+ kd(t)ϕ(t)

)
, (42)

k̇p(t)=γσ(t)e(t)−λ
(
kp(t)−k0

p
)
, kp(0)=k0

p, (43)

k̇d(t)=γσ(t)ϕ(t)−λ
(
kd(t)− k0

d
)
, kd(0) = k0

d , (44)
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where ϕ(t) is the roll reference signal, τ > 0, γ > 0, λ > 0
are the design parameters; k0

p, k0
d denote initial values of the

tunable proportional and derivative gains, found based on the
available a priori information on plant model parameters (the
design parameters). If the a priori data gives no opportunity for
meaningful choice of k0

p, k0
d it is reasonable to pick up k0

p = 0,
k0

d = 0. It should be noted that integral gain ki in (42) is not
subjected to tuning.

3.2 Robust Control of Aircraft Lateral Movement

Robust output feedback continuous control design for time-
continuous linear plants under parametric uncertainties and
external bounded disturbance is considered in (Furtat et al.,
2014). The proposed algorithm tracks the output of the plant
to the reference output with the required accuracy. Application
of the algorithm to the control of lateral movement of an aircraft
under parametric and external disturbances is presented and
comparison of the proposed algorithm with H∞ and the SG
control is given. The simulation results illustrate the efficiency
and robustness of the suggested control system.

3.3 Airfoil Flutter Suppression by IRM Adaptive Controller

In (Andrievsky et al., 2018), the Simple Adaptive Control
scheme based on the IRM and the SG method is designed for
active suppressing the airfoil flutter. Two-dimensional wing,
oscillating in pitch and plunge is considered. The SG method
is applied for active suppressing the airfoil flutter. Pitch angle
α is a wing inclination with respect to the axis of elasticity. The
matrix-vector equation form for deflection and torsion of the
wing is taken as (Chen et al., 2012; Abdelkefi et al., 2013)[

Iα mwxα b
mwxα b mt

][
α̈

ḧ

]
+

[
cα 0
0 ch

][
α̇

ḣ

]
+

[
kα(α) 0

0 kh(h)

][
α

h

]
=

[
M
−L

]
, (45)

where mt is the total mass of the main wing and the support
structure, mw is the mass of the main wing, xα is the dimen-
sionless distance between the center of mass and the bending
axis; Iα is the moment of inertia; b is the average chord of
the wing; cα , ch are the coefficients of the damping by plunge
displacement and the pitch angle, respectively; kh(h) and kα(α)
are the spring stiffness coefficients for the displacement and
pitch angle, respectively, so that αkα(α) is a nonlinear term
αkα(α) = k1α + k2α2.

The following proportional-derivative IRM adaptive control
law is proposed for active flutter suppression system:

u(t) = kp(t)α(t)+ kd(t)α̇(t), (46)
σ(t) = α̇(t)+g0α(t), (47)

k̇p(t) = γσ(t)α(t)−λ
(
kp(t)− k0

p
)
, kp(0) = k0

p, (48)

k̇d(t) = γσ(t)α̇(t)−λ
(
kd(t)− k0

d
)
, kd(0) = k0

d , (49)

3.4 Angular Velocity Stabilization for a Spinning Satellite

Andrievsky and Guzenko (2014) considered the problem of
angular velocity stabilization for a spinning satellite, supplied
by and small resistojets and the damper, centered on the body
fixed X-axis and has a point mass m. That mass moves along an

axis perpendicular to X-axis at the some distance of the prin-
cipal axis Z. The following model by Meehan and Asokanthan
(2006) is used:{

(I+m(1−µ)y2)ω̇+2m(1−µ)yẏω−mbÿ=M(t),
m(1−µ)ÿ+cẏ+

(
k−(1−µ)ω2)y−bω̇ =0,

(50)

where ω , y are satellite angular velocity and damper mass
displacement; I, m, k c are the satellite moment of inertia about
Z-axis, damper mass, spring constant and viscous resistance
gain (respectively); µ = m/mT , where mT denotes a total mass
of the system. The external torque M(t) is a sum of excitation
torque ME(t) and control torque, i.e. MC(t) s.t. |MC(t)| 6 M̄.
Application of the energy-based GS design method gives the
following “proportional” and “relay” control laws:

MC =γ
(
Href−H(y, ẏ,ω)

)
·
(
ω + ˙̃y(Ĩ + ỹ2−1)−1),

MC =γ sign
(
Href−H(y, ẏ,ω)

)
· sign

(
ω + ˙̃y(Ĩ + ỹ2−1)−1),

where ỹ = (1− µ)b−1y, Ĩ = (1− µ)m−1b−2I are introduced.
These control laws can be directly implemented by means of
the on-off operating resistojets.

4. CONCLUSIONS

The present paper presents a historical overview of the SG-
method with the focus of its application to adaptive control and
identification problems. It is demonstrated that it is a useful
and an efficient tool for solving a wide range of engineering
problems, confirming that it “enables a transparent trade-off
between control performance and design parameters” (Jordán
and Bustamante, 2006). Today, after 40 years of development
the SG-method is used by many authors who employ it to tackle
various application problems of identification and control.
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