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Abstract: Synchronized phasor measurements in power transmission and distribution networks
enable real-time monitoring of voltage and currents. Such measurements can be used to monitor
power flow, but also to monitor important electric parameters of the network. In this paper, it is
shown how synchrophasor measurements can be used for real-time monitoring of the admittance
of the connections between buses in a power network, typically the three-phase transmission or
distribution lines. The objective is to formulate admittance monitoring capabilities in which
changes in three-phase line admittance can be monitored in real-time and achieved by the
formulation of synchrophasor-based recursive estimation techniques over short time intervals.
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1. INTRODUCTION

Reliability of the modern AC power system requires ade-
quate flexibility to address variability and uncertainty in
both demand and generation resources to main voltage and
frequency within acceptable ranges (US Department of En-
ergy, 2016). An important aspect in reliability assessment
is the transmission and distribution system used for power
delivery (Abunima et al., 2018). Consequently, the ability
to detect abrupt changes in line impedance in a power
network is an important task in maintaining reliability of
the power network.

The idea of monitoring three phase impedance or ad-
mittance is not new: well-known steady-state algorithms
include the Détection Sélective par les Intensités Résiduels
(DESIR) (Griffel et al., 1997) and Detection Differential by
using the total phase-to-ground Admittance (DDA) (Wel-
fonder et al., 2000). Both DESIR and DDA are inherently
static analysis methods and carry the disadvantages of
selecting threshold values that must allow for three phase
asymmetry and measurement noise (Chilard et al., 1997).
Dynamic extensions and improvements for DESIR and
DDA have been proposed to resolve these issues, including
but not limited to the work by Zamora et al. (2007)
and Sagastabeitia et al. (2011) to detect high-resistance
ground faults in medium-voltage (MV) power distribution
networks and more recent approaches to detect a single
phase to ground can be found in the work by Liu et al.
(2019).

The proliferation of phasor measurement units (PMUs) to
measure three phase voltage and currents have improved
signal-to-noise and real-time monitoring capabilities of
the power network (Phadke, 2002). Novel approaches to
detect faults in a network using synchrophasor data and
state estimation (Pignati et al., 2017) rely on network
information in the form of a network admittance matrix,

commonly seen in network modeling (Newman, 2010) and
the estimation of topology of networks (Materassi and
Innocenti, 2010) and physical networks (Ardakanian et al.,
2019; Kivits and Van den Hof, 2019). As the entries of the
network admittance matrix are the admittance/impedance
connection between buses, measurement of three phase
voltage and current signals can be used to characterize
the significant components (Choqueuse et al., 2019) of
the three phase power flow. Such a data driven approach
will facilitate event detection (Zhou et al., 2019) but also
detailed information on three phase impedance changes in
the network.

Synchrophasor measurements are used in this paper to
present a data-driven approach to recursively estimate the
three phase admittance connections in a power network.
Relatively less literature is available on using complex
PMU data of all three phases of a line to detect phase im-
balance and estimate the three phase admittance. Unlike
the contribution in Ardakanian et al. (2019), the approach
presented here assumes the topology of the network to
be known due to the physical location of transmission or
distribution lines.

The contribution of this paper is the development and
testing of a recursive estimation over short time intervals
to be able to detect abrupt changes in the three phase
line admittance. The notion of a zero sequence voltage
and residual current as proposed in Liu et al. (2019) will
also be used in this work, but extended to the detection
of three phase admittance changes. The singular value
decomposition approach as proposed in Zhou et al. (2019)
will be used to address the identifiability the three phase
impedance over short time intervals. The approach will
be illustrated on actual three phase synchrophasor mea-
surements obtained from a distribution circuit. This paper
states the least number of phasor measurements required
to estimate the admittance parameters. This is done by
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formulating a Least Squares estimation problem and spec-
ifying the condition of invertability of the regressor matrix
used in the estimation.

2. NOTATION AND NETWORK TOPOLOGY

For illustration of the methodology presented in this paper,
a small power network of five buses with three phase
line connections between the buses as given in Fig.1 is
considered. From a topology point of view, the distribution
network has a know topology (Ardakanian et al., 2019) but
with unknown 3× 3 admittance values between the buses.
From a physical network point of view (Kivits and Van den
Hof, 2019), the buses are considered the nodes of the
network. The nodal three phase voltages are considered as
the node signals whereas the three phase branch currents
are the external input signals used for estimation of the
3× 3 admittance.

Fig. 1. A sample network with 3 phase admittance con-
nections Yij between the buses.

Since the current and voltage at each node are linearly
related and there is no intrinsic relation between current
and voltage at each node, the equation given in Kivits and
Van den Hof (2019), can be written as∑

k∈Nj

Ajk[Vj(t)− Vk(t)] = Ij(t)

Vj(t), Vk(t), Ij(t) ∈ C3×1
(1)

where Nj denotes the node number present in the network.
Here Ajk is the element of Laplacian matrix A. It should
be noted that each entry Ajk of the Laplacian matrix
A has size 3 × 3, reflecting the three phase admittance.
Furthermore, we assume the power network only provides
synchrophasor information of voltages and currents at each
time instance t. In polar coordinates, the synchrophasor
information consists of the sine voltage/current magnitude
and phase shift but essentially reflect complex numbers
Vj(t), Vk(t), Ij(t) ∈ C3×1 at each time instance t of the
(linear) dynamics of Ajk at the main AC frequency of the
grid. As a result, the admittance to be estimated is simply
a complex matrix Ajk ∈ C3×3, making A a block Laplacian
matrix.

With the known topology of a power network but connec-
tions (i.e. admittance between two buses) to be unknown

and 3 dimensional, this paper formulates the recursive es-
timation of the individual connections between two nodes
and parametrized as 3× 3 admittance matrix entries Ajk.
The recursive estimation must be done over short time
intervals, preferably using only three distinct time intervals
for Vj(t), Vk(t), Ij(t) ∈ C3×1, to be able to detect abrupt
changes in the three phase line admittance. In the network
given in Fig.1 the currents and voltages between any two
buses can be related using Ohm’s law

I12 = −I21 = Y12[V1 − V2] (2)

where subscript ij denotes that the parameter belongs to
the connection between ith bus (node) and jth bus (node).
Hence Iij is the current and Yij is the admittance of the
connection between ith node and jth node whereas Vi is
the voltage at the ith node. The input signal current in
(1) can be written as the sum of its components as∑

k∈Nj

Ijk(t) = Ij(t) (3)

where
Ajk[Vj(t)− Vk(t)] = Ijk(t) (4)

Combining (2) and (4) leads to a physical network estima-
tion problem where Ajk = Yjk in (1). More importantly,
the complex matrix Ajk ∈ C3×3 has a symmetric structure
that can be exploited during the estimation of the three
phase admittance.

The current Iij is 3 phase vector and can be written in
matrix form by reformulating (4) into

I12 =

IA12IB12
IC12

 =

 Y A12 Y AB12 Y AC12

Y AB12 Y B12 Y BC12

Y AC12 Y BC12 Y C12

V A1V B1
V C1

−
V A2V B2
V C2


(5)

where Y xij is the admittance of phase x with x ∈ {A,B,C}
and Ixij , V xij are the phase currents and voltages. To
simplify notations, we drop the node i and j dependency
and simplify the notation of (5) to

I = Y V, with

Y =

 Y A Y AB Y AC

Y AB Y B Y BC

Y AC Y BC Y C

 , I =

IAIB
IC

 , V =

V AV B
V C

 (6)

for the problem of estimating admittance between two
nodes. For the sign convention, I in (6) is considered to be
the current flowing into the node, whereas V is the voltage
at the node, and Y is the equivalent Thevenin admittance
at the node or between nodes.

3. ESTIMATION OF NETWORK ADMITTANCE

3.1 Three Phase Admittance Estimation

The admittance matrix Y with its symmetric structure
given in (6) can be estimated by rewriting I, Y and V in a
linear regression equation and minimizing the error using
a standard Least Squares (LS) problem. Exploiting the
symmetry of Y in (6), the parameters of the admittance
matrix Y are given by the vector

θY =
[
Y A Y AB Y AC Y B Y BC Y C

]T
(7)

and (6) evaluated at a single time stamp can be written
in terms of θY as

I(t) = ΨV (t)θY (8)
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where

ΨV (t) =

V A(t) V B(t) V C(t) 0 0 0
0 V A(t) 0 V B(t) V C(t) 0
0 0 V A(t) 0 V B(t) V C(t)

 (9)

and I(t) =
[
IA(t) IB(t) IC(t)

]T
. With the vectorization

of the 3× 3 symmetric admittance matrix in (7), a linear
regression equation for the estimation of θY is of the form

I = ΨV θY + e(t, θY ) (10)

where

ΨV =

ΨV (t1)
ΨV (t2)

.
ΨV (tN )

 , I =

 I(t1)
I(t2)
.

I(tN )

 (11)

To estimate a value for the the complex vector θY , the
complex equation error e(t, θY ) can be minimized using a
LS problem of the form

θ̂Y = arg min
θY
|e(t, θY )|22 = arg min

θY
e(t, θY )e∗(t, θY ) (12)

where e∗(t, θY ) denotes the complex conjugate transpose
of e(t, θY ). The analytic solution to the LS problem (12)
can be written in terms of the normal equations[

1

N
Ψ∗

V ΨV

]
θ̂Y =

[
1

N
Ψ∗

V I

]
(13)

and can be solved uniquely if ΨV has full column rank.
Non-singularity of the product Ψ∗

V ΨV highly depends on
the information content of the voltage signals included in
the regressor defined in (9).

3.2 Requirements on Excitation

Clearly, a unique solution θ̂Y to (13) exists if and only if
rank(ΨV) = 6. For the specific situation of synchrophasor
data of a possibly balanced three phase AC power network,

conditions on the rank of ΨV and the identifiability of θ̂Y
can be formulated and are summarized in the following.

Proposition 1. with ΨV (t) be given in (9), rank(ΨV (t)) =
3 if and only if V A(t) 6= 0 or V B(t) 6= 0 or V C(t) 6= 0.

Proof. Assume, there exists an arbitrary vector λ =
[λ1 λ2 λ3] such that

λΨV (t) = [0 0 0 0 0 0] , λ 6= [0 0 0] (14)

Suppose V A 6= 0, V B = 0 and V C = 0 , then

ΨV (t) =

V A(t) 0 0 0 0 0
0 V A(t) 0 0 0 0
0 0 V A(t) 0 0 0

 (15)

The only λ satisfying (14) is λ = [0 0 0]. The same can
be said when only V B(t) 6= 0 and V C(t) 6= 0. Hence
rank(ΨV (t)) = 3 when only one of the phase voltages is
non zero. The same conclusion can be drawn when only one
of the phase voltages is zero and the rest two are non-zero.
Conversely, for V A(t) 6= 0, V B(t) 6= 0, and V C(t) 6= 0,
the equation for the first, fourth and sixth column of (14)
implies

λ1V
A(t) = 0, λ2V

B(t) = 0, λ3V
C(t) = 0

=⇒ λ = [0 0 0]

Therefore, there is no vector which satisfies (14), hence
rank(ΨV (t)) = 3. Finally, given rank(ΨV (t)) = 3, it
is easy to conclude that at least V A(t) 6= 0, since if
V A(t) = V B(t) = V C(t) = 0 then rank(ΨV (t)) = 0. �

It is worth noting that in the situation of a balanced three
phase circuit and defined by

V A(t) + V B(t) + V C(t) = 0 (16)

the rank of ΨV (t) remains 3, as the voltages of the three
phases are linearly dependent as given in (16).

Conjecture 2. Let V A(t) + V B(t) + V C(t) = 0 with
V A(t) 6= 0 =⇒ rank(ΨV (t)) = 3

To facilitate fast detection of admittance changes, it may
be tempting to conclude that at least 2 independent
measurements of a complex 3 phase voltage phasor should
suffice to estimate the 6 dimensional complex admittance
parameter θY . However, such measurements still do not
provide enough excitation as summarized in the following
result.

Proposition 3. Consider ΨV (t1),ΨV (t2) given in (9) with
rank(ΨV (t1)) = 3 and rank(ΨV (t2)) = 3 whereV A(t2)

V B(t2)
V C(t2)

 =

[
CA 0 0
0 CB 0
0 0 Cc

]V A(t1)
V B(t1)
V C(t1)

 (17)

and CA 6= CB 6= CC 6= 0 where CA, CB and CC are

complex valued constants, then Rank(

[
ΨV (t1)
ΨV (t2)

]
) = 5

Proof. Given the definition in (11) to define

ΨV =

[
ΨV (t1)
ΨV (t2)

]
(18)

and consider a vector U = [u1 u2 u3 u4 u5 u6]T which
spans the right nullspace of ΨV which implies

ΨV (λU) = 0, λ ∈ C (19)

Since ΨV in (19) is a sparse matrix, dropping the elements
from ΨV which are zero will result in

ψV U1 = 0, ψV U2 = 0, ψV U3 = 0 (20)

where

ψV =

[
V A(t1) V B(t1) V C(t1)

CAV
A(t1) CBV

B(t1) CCV
C(t1)

]
(21)

and U1 = [u1 u2 u3]
T

, U2 = [u2 u4 u5]
T

, U3 =

[u3 u5 u6]
T

. Since rank(ψV ) = 2, only a unique vector
spans the right nullspace of ψV which implies

U2 = αU1, U3 = βU1, with α, β ∈ C. (22)

From (22), it can be observed that the vector U is
unique. Since there is a single vector which spans the right
nullspace of ΨV and Proposition 3 holds true. �
Remark 4. It is clear that if CA = CB = CC = 0 then for
ΨV in (18), rank(ΨV ) = 3.

From Proposition 3 it can be inferred that even 2 measure-
ments of a 3 phase vector are not sufficient to estimate the
values of the 6 dimensional θY .

Proposition 5. Consider ΨV given by

ΨV =

[
ΨV (t1)
ΨV (t2)
ΨV (t3)

]
(23)

such that rank(ΨV (t3)) = 3. If rank(ψV ) = 3 where ψV

is given as

ψV =

V A(t1) V B(t1) V C(t1)
V A(t2) V B(t2) V C(t2)
V A(t3) V B(t3) V C(t3)

 (24)
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then Rank(ΨV ) = 6

Proof. Consider a vector U = [u1 u2 u3 u4 u5 u6]T which
spans the right nullspace of ΨV which implies ΨV (λU) =

0, λ ∈ C. Let U1 = [u1 u2 u3]
T

, U2 = [u2 u4 u5]
T

,

U3 = [u3 u5 u6]
T

. Then ψV U1 6= 0, ψV U2 6= 0, ψV U3 6=
0 since rank(ψV ) = 3. This implies ΨV (t1)U 6= 0,
ΨV (t2)U 6= 0 and ΨV (t3)U 6= 0. Hence there exists no vec-
tor in the right nullspace of ΨV . Therefore, Rank(ΨV ) =
6. �

The above proposition indicates that if three measure-
ments of the three phase line voltage V (t1), V (t2) and
V (t3) are linearly independent then rank(ΨV ) = 6 where
ΨV is given in (23).

4. BALANCE CALIBRATION

4.1 Phasor Calibration

The assumption that a circuit is balanced at time t given
in (16) may be violated due to unbalanced loading of
the circuit. In addition, (16) may also not hold in case
of calibration or measurement errors in the Potential
Transformers (PTs) used to measure the actual voltage. To
allow calibration of voltages to satisfy (16), the complex
voltages V B and V C can be scaled with respect to V A

so that the negative sequence voltage (error) Ve at time t
given by

Ve(t) = V A(t) + V B(t) + V C(t) (25)

is minimized. This is done by a multiplication similar to
(17) and given byV A(t1)

V̂ B(t1)

V̂ C(t1)

 =

1 0 0
0 CB1 0
0 0 CC1

V A(t1)
V B(t1)
V C(t1)

+

 0
CB0
CC0

 (26)

where the scaling on V A is normalized and V̂ B(t1) and

V̂ C(t1) are the calibrated estimates of V B(t1) and V C(t1).
Minimization of the calibration error

ε(t, θV B , θV C ) = V A(t) + V̂ B(t) + V̂ C(t) (27)

as a function of the calibration parameters

θV B =
[
CB1 CB0

]T
θV C =

[
CC1 CC0

]T
(28)

can also be done via a LS minimization problem

1

N

N+p−1∑
t=p

ε(t, θV B , θV C )ε∗(t, θV B , θV C ) (29)

It should be noted that the minimization in (28) is formu-
lated over a moving time horizon to allow for continued
adjustment of the calibration over a longer a time horizon
of N samples. The time horizon of N samples is much
longer than the number of samples used for the recursive
admittance estimation to still facilitate fast detection of
admittance changes.

The parameters CB1 , CC1 , CB0 and CC0 can be estimated by
considering the following vectorized data

V B = CB1 V
A × ej2π/3 + CB0 × 1N

V C = CC1 V
A × e−j2π/3 + CC0 × 1N

(30)

where

V i =


V i(t1)
V i(t2)
· · ·

V i(tN )

 , ∀i ∈ {A,B,C}
and 1N is a column matrix of size 1×N with each element
being 1. A regression equation similar to (10) of the format

V B =
[
V A × ej2π/3 1N

]
θV B + ε(t, θV B )

V C =
[
V A × e−j2π/3 1N

]
θV C + ε(t, θV C )

(31)

can be used to find calibration coefficient estimates

θ̂V B = (
1

N
Φ∗

V AΦV A)−1
1

N
ΦV AV B

θ̂V C = (
1

N
Φ∗

V AΦV A)−1
1

N
ΦV AV C

(32)

where ΦV A =
[
V A × e−j2π/3 1N

]
and minimize the LS

error in (13). Equations similar to (26), (31) and (32) are
used to estimate the calibrated phase B and C currents,
ÎB and ÎC .

4.2 Illustration of Phasor Calibration

For the illustration of the need to calibrate voltage phasor
data, experimental data sampled at 60 Hz from a 3 phase
distribution circuit located in Southern California is used
to estimate the calibration coefficient in (28). The circuit
has a format similar to Fig. 1, where voltage differences
between 2 buses, and a branch current between the same
buses is used for estimation of admittance. A plot of the
normalized three phase voltage of the distribution circuit
is given in Fig. 2 in the normalized units of (Vu). The
bottom figure shows the negative sequence

Vneg(t) = V A(t) + V̂ B(t) + V̂ C(t) (33)

that ideally should be 0 if the circuit is balanced and
voltages are calibrated. It could be observed from the
experimental data voltages at each phase are not the same,
while also a large perturbation in the negative voltage
Vneg(t) is observed during the experiment.

0 50 100 150 200 250 300

time [sec]

0.99

0.995

1

V
 [
V

u
]

phase A voltage

phase B voltage

phase C voltage

0 50 100 150 200 250 300

time [sec]

0

2

4

V
n
e
g
 [
V

u
]

10
-3

Fig. 2. Three phase uncalibrated RMS voltage difference
(top) and the negative sequence of voltage (bottom)
sampled at 60 Hz over 300 seconds.
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After an initial window of N data points, the calibration
parameters are estimated every 1/60th of a second. The
calibration parameters are then used to find the calibrated
phase voltages and currents using (26). A plot of the cali-
brated normalized three phase voltage of the distribution
circuit is given in Fig. 3 in the normalized units of (Vu). It
is clear that Vneg(t) is indeed close to zero, except during
the time of a large perturbation in the negative voltage
Vneg(t) providing a clear indicator of the circuit being
unbalanced.

0 50 100 150 200 250 300

time [sec]

0.994

0.996

0.998

1

V
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V

u
]

Phase A voltage

Phase B voltage

Phase C voltage

0 50 100 150 200 250 300

time [sec]

0

2

4

V
n
e
g
 [
V

u
]

10
-3

Fig. 3. Three phase calibrated RMS voltage difference
(top) and the negative sequence of voltage (bottom)
sampled at 60 Hz over 300 seconds.

5. ADMITTANCE ESTIMATION

5.1 Validation

Although Fig. 3 now shows the balanced voltage signals,
much harder to observe is the presence of an actual volt-
age disturbance that temporarily unbalanced the circuit.
As explained in section 3.2, for estimation of the three
phase admittance, it is necessary to have an excitation in
the voltage signal that temporary violates the balanced
situation by by having voltage relation given in (17).
One way to detect the temporary unbalance of voltage
signals is to plot the normalized signal

RV (t) =
|Vneg(t)|
|Vpos(t)|

× 100% (34)

where Vneg is given in (33) and Vpos(t) = V A(t)+ V̂ B(t)×
e−j2π/3 + V̂ C(t) × ej2π/3. The signal RV (t) is used to
see what the relative effect of Vneg is to Vpos. The plots
in Fig. 4 show that when the magnitude of RV (t) is
significantly different from 0, the rank of the regressor
ΨV as in (23) is 6. This change in rank is caused when
the phase voltages are not balanced. In practice, the size
of the regressor ΨV is chosen to be larger than 3. For
fast detection of line admittance changes, the size of the
regressor ΨV in (11) should be chosen to be as small
as possible for early detection of faults and changes in
admittance. For the results of Fig. 4, ΨV has size 10. The

fact that ΨV in (23) has rank 6 instead of the default rank
5 by Proposition 5 can be validated by evaluating the ratio

SΨ =
σ(ΨV )

σ(ΨV )
× 100% (35)

where σ(ΨV ) is the smallest singular value of ΨV and
σ(ΨV ) is the largest singular value in ΨV , as done in
Fig. 4 at the bottom.

0 50 100 150 200 250 300

time [sec]

0

0.05

0.1

0.15

0 50 100 150 200 250 300

time [sec]

0

0.02

0.04

0.06

cm.

Fig. 4. Evaluation of RV in (34) (top) and SΨ in (35) at
60 Hz over 300 seconds.

To validate the admittance estimation, a simulation with
a known admittance matrix

Y =

[
1.000 + 0.010i 0.010− 0.012i −0.200 + 0.030i
0.010− 0.012i 1.100 + 0.400i 0.300− 0.027i
−0.200 + 0.030i 0.300− 0.027i 0.900 + 0.300i

]
is used to generate the phase currents I = Y V + In,
where In is an independent white noise perturbation on
the current measurement. Using the phase voltages and
the simulated phase currents, I and ΨV given in (11) are

used to estimate the parameter vector θ̂Y using (13). The

resulting estimated parameter θ̂Y is given by

θ̂Y =


1.0000 + 0.0100i
0.0100− 0.0120i
−0.2000 + 0.0300i
1.0894 + 0.3980i
0.2964− 0.0371i
0.9109 + 0.2912i

 (36)

and closely resembles the imposed admittance values.

5.2 Experimental Results

For the experimental results, the data of one of the branch
currents of the network in Fig. 1 is used along with the data
of the calibrated voltage differences. The data is collected
from a distribution circuit in southern California. Similar
to the procedure done for balancing the three phase
voltages in (28), (30) and (32), the three phase currents are
balanced and a figure of the normalized balanced current
and the negative sequence current is depicted in Fig. 5
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Fig. 5. Three phase calibrated RMS current (top) and the
negative sequence of current (bottom) sampled at 60
Hz over 300 seconds.

The admittance parameter θY given in (7) is estimated as

θ̂Y =


0.0034− 0.0004i
0.0001− 0.0003i
−0.0000 + 0.0001i
0.0039− 0.0003i
−0.0001 + 0.0003i
0.0034− 0.0001i

 (37)

The parameters now indicate the effective admittance seen
between the voltage nodes and the branch currents in the
network. The values are consistent with the impedance
information obtained from the actual lines of the network.
More importantly, both phase admittance and phase-to-
phase admittance were estimated during the time period
at which there was a presence of an actual voltage distur-
bance that temporarily unbalanced the circuit.

6. CONCLUSION AND FUTURE RESEARCH

A least squares approach for calibrating voltage and cur-
rent measurements is combined with a recursive Least
Squares (LS) approach to estimate the three phase ad-
mittance of physical line connections between buses in a
power network. Specific conditions on the excitation of
the voltage signals are formulated to guarantee a unique
solution to the LS optimization to estimate the three phase
line admittance. The excitation conditions for estimation
are monitored in real-time via a singular value decompo-
sition of the regressor matrix used in the LS optimization.
Simulation and experimental results on actual synchropha-
sor data validate the estimation results. Future work will
focus on developing a real-time fault detection and fault
identification algorithm from the estimated admittance
variations.
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