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Abstract: We consider a market in which both suppliers and consumers compete for a product
via scalar-parameterized supply offers and demand bids. Scalar-parameterized offers/bids are
appealing due to their modeling simplicity and desirable mathematical properties with the
most prominent being bounded efficiency loss and price markup under strategic interactions.
Our model incorporates production capacity constraints and minimum inelastic demand require-
ments. Under perfect competition, the market mechanism yields allocations that maximize social
welfare. When market participants are price-anticipating, we show that there exists a unique
Nash equilibrium, and provide an efficient way to compute the resulting market allocation.
Moreover, we explicitly characterize the bounds on the welfare loss and prices observed at the

Nash equilibrium.
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1. INTRODUCTION

The distinction between consumers and producers in mar-
ketplaces is increasingly fading. In the retail electricity
sector, increased consumer participation—either as gener-
ation suppliers or price-responsive demanders—is driving
the emergence of a digital platform marketplace where
end-use customers can engage in transcations coordinated
via a central entity or market manager (see Tabors et al.
(2016)). Similar digital marketplaces have emerged in the
areas of ride-sharing (Uber, Lyft), lodging (Airbnb), on-
line retail and trading auctions (Amazon, Ebay) etc. A
common feature of these multi-sided marketplaces is a
collection of agents who can take up the mantle of being
suppliers or consumers while the market clears through a
centralized mechanism, often operated by a market man-
ager. Motivated by these transformations, in this paper we
study a two-sided market with a finite number of suppliers
that compete to supply a product to price-responsive con-
sumers. Our focus is on uniform price markets that clear
through a centralized mechanism that sets a single per-unit
price on the product for all participants. Every consumer
(supplier) expresses her willingness to buy (offer) via a
demand bid (supply offer) that fully characterizes her

demand (supply) quantity at a given market price. We
investigate the following market design question: What is
the right mechanism that allows market actors sufficient
flexibility to declare their willingness to offer/buy such
that it yields efficient allocations, i.e., an allocation that
maximizes social welfare?

The seminal work by Klemperer and Meyer (1989) demon-
strated that in the absence of uncertainty there exist an
enormous multiplicity of equilibria in supply functions.
Hence, there is a need to resort to stylized offer/bid
functions that appropriately restrict the family of supply
offers and demand bids which the market actors are al-
lowed to utilize. The well-known Bertrand and Cournot
competition models are examples of simple (degenerate)

Copyright lies with the authors

supply offer strategies in markets with uniform prices.
However, the Bertrand model typically assumes that each
participant is willing to supply the entire demand, which
may not be satisfied in a number of cases. Variations of the
Bertrand model with capacity constraints have been pro-
posed, however, in such settings pure Nash equilibria may
not exist (see Shubik (1959)). The Cournot model has a
number of appealing properties when studying oligopolies
in markets with relatively high demand elasticity. How-
ever, when demand elasticity is low Cournot competition
may exhibit arbitrarily high welfare loss (see Day et al.
(2002)). Furthermore, pure quantity or price competition
cannot adequately represent markets with more compli-
cated offer structures. An example of such markets are day-
ahead wholesale electricity markets that operate either
as pools or power exchanges. In these markets, power
producers submit offers to supply varying quantities at
succesively higher prices and the demand side specifies the
quantity willing to purchase at succesively lower prices.
Linear supply functions is another candidate family of
functions to model strategic interactions among suppliers.
However, it is not straightforward to incorporate capacity
constraints into linear supply offers (see Baldick et al.

(2004)).

In this work, we restrict our attention on a specific family
of supply offers and demand bids, referred to as scalar-
parameterized supply functions, studied by Johari and
Tsitsiklis (2003) and Johari and Tsitsiklis (2011) in mar-
kets with inelastic supply and demand respectively. The
specific family of offer/bid functions allows market actors
to have one-dimensional action spaces, when faced with a
single market price. Such market mechanisms are simple
to implement and are considered to be fair among market
participants. Moreover, the work of Johari et al. (2004)
and Johari and Tsitsiklis (2011) showed that such supply
offers possess a number of attractive properties including
bounded Price of Anarchy and price markups at the Nash
equilibrium. The family of supply functions considered
here is a capacitated version of those introduced by Johari
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and Tsitsiklis (2011) that have been studied by Xu et al.
2016) and Lin and Bitar (2017) under perfectly inelastic
emand. Such supply functions prohibit situations where
firms can offer in the market beyond their means. However,
both Xu et al. (2016) and Lin and Bitar (2017) focus only
on the supply side of the market, assuming the demand
sic}fz is perfectly inelastic and incapable of acting strategi-
cally.

In this paper, we aim to study the most general setting: a
two-sided market where both supply and demand compete
through supply offers and demand bids, which we present
in Section 2. In sections 3 and 4, we characterize the mar-
ket outcome in situations when all market actors are (i)
pure price-takers and (ii) price-anticipating. We show that
under perfect competition our market mechanism yields
allocations that maximize social welfare. When both sides
of the market are price-anticipating, the misrepresentation
of private information has the potential to induce market
allocations that are suboptimal to the efficient outcome.
However, our analysis in Section 5 indicates that both the
welfare loss and the price markup at the Nash equilibrium
are bounded. Numerical experiments in Section 6 illustrate
the main insights of the analysis. Section 7 concludes the

paper.

Notation: Let R denote the set of real numbers and

R, the set of non-negative real numbers. Denote the

transpose of a vector x € R” by x'. Let x~ ¢ =

(T1,. ., Ti1,Tis1, ..., Ty) € R" L be the vector including
all but the i*" element of x. Finally, denote by 1 the vector
of all ones with appropriate size.

2. THE MARKET MODEL

We consider a market with a finite number of M consumers
and N firms competing for a product. Denote the set
of consumers by M = {1,2,...,M} and the set of
suppliers by N = {1,2,..., N}. Let d; denote consumer
i’s quantity demanded, which must be greater than a
minimum inelastic demand level denoted by dy. Let s;
denote the quantity supplied by firm ¢ that must lie
below each supplier’s maximum capacity limit denoted by
ko. Each consumer receives utility U;(d;) for consuming
amount d; and each firm incurs costs C;(s;) for producing
quantity s;. We make the following assumption on the
utility and cost functions.

Assumption 1. For each i € M, U;(d;) is concave, strictly
increasing and continuously differentiable for d; > dy with
Ui(dg) = 0. For each i € N, C;(s;) is convex, strictly
increasing and continuously differentiable with C;(s;) >0
for s; > 0. Over the domain s; <0, C;(s;) = 0.

The aggregate welfare maximization problem is given by

M N
maximize S(d,s) := ; Ui(d;) — ; Ci(s;), (la)
M N
subject to Zdi = Z i (1b)
i=1 i=1
OSSigfﬁlo,Vizl,...,N, (10)
do<dy, Vi=1,... M, (1d)

Henceforth, we will refer to every allocation (d,s) that
solves (1) as efficient. In effect, such allocations can be
viewed as those determined by a central entity or market
manager that has perfect knowledge on the market and all
participants. However, U; and C; are generally not avail-
able to the market manager. Hence, is there a mechanism
that allows market actors to express their preferences in a

00 00
Py Pt p(si)
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N—7 6‘?5
Ko
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Fig. 1. Hlustrations of the demand bid (left) and supply
offer (right) structures.

way that it yields efficient market allocations? We consider
the following market mechanism for supply and demand
allocations. Let consumer i € M provide to the market
manager a parameter 6 > 0. Given price p > 0, the

consumer is willing to buy d; = D(65,p), where
; 0
D(0g, p) = do + ;d- (2)

The expression in (2) represents the quantity the con-
sumer is willing to buy, given the inelastic component
do, the market price p, and the parameter 0. The in-
elastic demand dy represents the minimum quantity the
consumer must be supplied while % /p represents the price-
responsive portion of her demand. Note that the demand
bid is decreasing in price, i.e., it is downward sloping. For
ease of exposition we consider equal minimum demand
among consumers in the market. The case with distinct
dy is straightforward to generalize. Note that this assump-
tion does not make the consumers homogeneous as each
consumer is described by a different utility function.

Let firm i € N submit to the market manager a parameter
s > 0. Given price p > 0, the firm is willing to supply
s;i = S(0%,p), where

i

S(0;,p) == Ko—;s. (3)

The supply offer (3) represents the quantity the firm is
willing to supply as a function of price. The supply offer is
further parameterized in the capacity kg, which represents
the supplier’s maximum production capacity. For ease of
exposition we consider equal capacities among firms in
the market. We refer to Figure 1 for illustrations of how
D(0},p) and S(6%,p) vary with price. Observe that as
the demand approaches dg, the consumer’s willingness to
buy approaches infinity. Similarly, as the supply quantity
approaches the firm’s maximum capacity the requested
market price grows large.

Let 84 = (95, . ,934) and 8, = (9;, ceey H;V) represent the
collection of demand bid and supply offer parameters, re-
spectively. The market manager chooses price p (84, 605) >
0 to clear the market such that supply equals demand, i.e.,

M N

Such choice is only possible when 178, + 178, > 0 in
which case the market price is given by

179, +176,

0,,0,) = ——.
p( ds b) NHO—MdO (5)
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Throughout the paper, we assume Mdy < Nk and thus
the market price is well-defined. In the case where 1704+

176, = 0, i.e., every market participant submits a zero
parameter, we adopt the following conventions
D(0,0) = dy and S(0,0) = ko.

For markets with a perfectly inelastic demand D, the
residual supply index (RSI) is often adopted as a suitable
indicator of market power. Precisely, the RSI of firm ¢ mea-
sures the capability of the aggregate market capacity—
excluding that of +—to meet demand D. In the model
considered here, the inelastic portion of demand is Mdj.
Mathematically, if

(N — 1),‘{0

Mdy
is strictly less than one, then firm ¢ is said to be pivotal.
See Newbery (2008) and Swinand et al. (2010) for further
details. As we show in Section 4, the presence of pivotal

suppliers is critical in the analysis of the market outcome
under strategic interactions.

RSI; :=

3. PERFECT COMPETITION

In this section, we study the market outcome assuming
all market participants are pure price-takers. We aim
to establish the existence and characterization of the
competitive market equilibrium taking into account the
profit-maximizing nature of market actors. Given market
price p > 0 each consumer maximizes the payoff

a0, 1) = Ui (D (63, 1)) — uD (03.12) , i € M. (6)
Similarly, each supplier maximizes

w08, ) = nS(6L, ) — Co(S(0%, ), i€ N. (T)

We now proceed with our first result which shows that

when consumers bid in (2) and firms offer in (3) the market
supports an efficient competitive equilibrium.

Theorem 1. Suppose Assumption 1 is satisfied. Then,
there exists a competitive market equilibrium (63, 07%, 1)
satisfying:

(07, p) > 70, 0), VO, >0andie M (8)
mo(0F 1) > 7 (0%, 1), VO, > 0andi e N (9)

w is given by (5). (10)

Moreover, the supply vector defined by s7 = S (07", 1) and

the demand vector defined by df = D (92; , p) is an efficient
allocation.

According to Theorem 1, under perfect competition, sup-
pliers and demanders maximize their payoffs and the re-
sulting market allocation is efficient. This implies that
given price pu, the firms have no incentive to deviate from
supplying s* and consumers have no incentive to deviate
from buying d*. Thus the competitive market allocation is
efficient and the market clearing price is the shadow value

of the constraint Zf\il d; = le s;. In other words, at u

1
the marginal social benefit of additional output equals the
marginal social cost. The preceding argument establishes
the first fundamental theorem of welfare economics: if the
price u and the allocation (d*,s*) constitute a competitive

equilibrium, then this allocation is efficient.
4. STRATEGIC SUPPLIERS AND DEMANDERS

In contrast to the price-taking model, we now con-
sider a model where the market participants are price-
anticipating. Price-anticipating suppliers and consumers
realize that the market price is a function of their actions

and adjust their payoff accordingly. The payoff for the
price-anticipating consumer i € M is

o ) 0 ,
w5(05,07°,0,)=U; | d —|—d>— 04,0,)dy— 0.
d( d Y4 ) (0 p(04,6,) p( d4,05) do ( d)

11

Note that the payoff of each consumer now depends on
the actions of all other market participants, that are
collectively incorporated in the market price. Similarly, for
each firm the payoff function depends on her action 6% and
the actions of all other market participants. Therefore, the
payoff of firm i € A is given by

o . i
e (05,0,",04) =p(04,05) k0 —0,—C; | ko — ———— | .
00,100 = p(04,0.) o (- g )

12
We define the game G with M U N denoting the(se‘z
of players with strategy spaces @; = R, and payoffs
given by (11) and (12). Our goal is to study the existence
(and uniqueness) of the Nash equilibria of G and provide
an efficient way to compute the equilibrium. A bid/offer

%

profile (éd,és) constitutes a Nash equilibrium if
70,0, ,8,) > 7(60,0,,8,), ¥ 0, >0 and i € M
76,0, ,0,4) > (01,0, ,04), V6. >0andicN.
We begin with the following result that illustrates how
certain market parameters influence the existence of a
Nash equilibrium of G.

Lemma 2. G does not admit a Nash equilibrium if a
pivotal supplier exists in the market.

In effect, Lemma 2 implies that when N — 1 firms cannot
supply the entire inelastic demand in the market, then
there exists a pivotal supplier that faces a non-zero in-
flexible demand that has infinite willigness to pay. This
makes the suppliers’ payoff grow unbounded with respect
their action 0. Hence, a Nash equilibrium cannot exist
in this case. As a consequence of Lemma 2, there cannot
exist a Nash equilibrium with N = 1 since, by definition,
the single supplier is pivotal. In view of the above Lemma,
we impose the following assumption.

Assumption 2. RSl; > 1 for each firm i € V.

Equipped with the previous observations, we present our
main result that explicitly characterizes the unique Nash
equilibrium of G.

Theorem 3. Suppose Assumptions 1-2 hold. G admits
unique Nash equilibrium in (éd, és) Moreover, the supply
profile

5= 5 (01.p(0.4.6.)) i € N
and the demand profile

di = D; (8i,p(64,0.)) i € M

are given by the unique solution of the following convex
program

M N
maximize S(d,s) == > Ui(di) = > Ci(si), (13a)
s =1 =1

s

M N

subject to Zdi = Z Si (13b)
i=1 i=1

0<s; <Kp, i €N, (13c¢)

where

17195



Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

7 dz A
Uilds) = <1 " Nro— (M- 1)d0> Ualds) 14
d;

1
* Nro = (M = g /d Ui(z)dz,

Sq

Cils) 1= (1 TN S Do = Md0> Ci(si)

1 8i
- (N = Tjrg 7Md0/0 Ci(z)dz.

Computing Nash equilibria is, in general, hard as shown by
Daskalakis et al. (2009). Theorem 3 establishes the compu-
tation of the market allocation at the Nash equilibrium—
and the Nash equilibrium itself—through the solution
of a convex program in (d,s) instead of solving M+N
problems in the actions (64,0), which can be cumber-
some depending on the structure of the utility and cost
functions. The crux of Theorem 3 is the construction of
an appropriate convex program that yields the market
allocation at the Nash equilibrium—a technique closely
related to the use of potential functions in characterizing
Nash equilibria (Monderer and Shapley (1996)). However,
the functions (14) and (15) are not potentials for G, since
they depend on the allocations and not on the players’
decisions. Hence, we cannot use these functions to conclude
anything about convergence of best response dynamics to
the Nash equilibrium. However, in the following section,
we exploit the structure of U; and C; to find bounds on
the efficiency loss and the markup of prices observed at
the Nash equilibrium.

(15)

5. EFFICIENCY LOSS AND PRICE MARKUPS

The structure of the modified utility and cost functions
allows us to make a number of interesting observations
about the behavior of strategic market actors. First, note
that since C;(s;) are assumed convex and increasing, it
follows that C;(s;) > Cy(s;), V s; > 0. Similarly, since
U;(d;) are concave and increasing, for each consumer we
have U;(d;) < Ui(d;), ¥V di > 0. In effect, strategic
suppliers misrepresent their costs functions through C;(s;),
which are greater than the true cost C;(s;) at every s;.
On the other hand, strategic consumers misrepresent their
utilities through U;(d;), which are smaller than the true
utility U;(d;) at every d;. Moreover, S(d,8) < S(d*,s*)
since the maximum value of S occurs at (d*, s*). However,
in our next result, we show that the social welfare at
the Nash is bounded below and can be relatively close
to the optimal value provided some minimum available
production capacity. In order to compute bounds on price
markups at the Nash equilibrium we utilize the Lerner
index ( see Lerner (1934)), which we define as

LI(B4,8,) = 1— ——— max {8‘1@ (S(ég,p(éd, és))) } .

p(odyes) g
(16)

The Lerner index measures a firm’s market power and
it varies from zero to one, with higher values indicating
greater market power. The following result summarizes
the efficiency loss at the Nash equilibrium and the price
markups.

Theorem 4. Suppose Assumptions 1-2 hold. Let (d*,s*)

be the socially optimal allocation from (1) and (d, §) be the
market allocation at the Nash equilibrium of G. It follows
that

M N g M oy 1Y
7 ~ * 0 *
Sovd =Y c = 1y v - (1-2) e,
i=1 1=1 =1 =1
(17)
where ¢ := Nxg — Mdy and ¢ € (ko, 00). Moreover, when
¢ € [4ko,00) we have

M N 3 N 4 N
DU =Y CilE) = [ Uid) = 5 Cilsh). (18)

=1 =1 =1 i=1
Finally, the Lerner index at the Nash equilibrium satisfies

LI(84,8,) < % <1 (19)

In effect, Theorem 4 provides a lower bound on the social
welfare at the Nash equilibrium and an upper bound on
the market price with respect to the true marginal cost
of suppliers. Notice that S(d,§) is in the worst case 3/4

of the aggregate utility less Cfm of the aggregate costs

at the efficient allocation. We do not claim this bound
is tight; there may exist an even tighter bound on the
social welfare the computation of which we relegate to
future work. Higher values of { yield values of the social
welfare at the Nash equilibrium closer to S(d*,s*). The

worst-case values for S(d, §) arise when { — kg, although
it never reaches it. Intuitively, when the aggregate pro-
duction capacity of supply is relatively close to the total
inelastic demand, then firms’ market power increases over
consumers, gradually inducing pivotalness as ( — Kog.
Specifically, for ¢ € (ko,2k0) the efficiency loss can be
arbitrarily high, similar to that derived by Xu et al. (2016)
for a market with capacity-constrained suppliers. When
¢ € [2kp,00) the worst-case aggregate cost coefficient in
(17) is equal to two and we recover the worst-case bound
of Johari and Tsitsiklis (2011) derived for uncapacitated
supply function competition. Moreover, (18) shows that
provided some minimum available production capacity, the
social welfare at the Nash equilibrium is no lower than 3/4
of the aggregate utility less 4/3 of the aggregate cost at the
efficient allocation, which is not much lower than S(d*, s*).
From (19) note that the Lerner index is strictly less than
one due to the non-pivotal supplier assumption. As ¢ grows

large, LI(84,05) goes to zero, indicating less market power
on the supply side. As Mdy approaches Nkg, the index
grows large implying high market power since there is little
available capacity to supply anything more than the total
inelastic demand.

6. ILLUSTRATIVE EXAMPLES

In this section we provide numerical experiments to il-
lustrate the behavior of the social welfare under perfect
competition and strategic interactions with respect to spe-
cific problem parameters. As shown in Section 5, the key
parameter that affects social welfare is the total flexible
capacity in the market (.

Consider a market with N = 6 and M = 5. Let each
consumer ¢ € M have utility

Ui(d;) = Bilog(d;), do = 1.
Note that the above utility function is strictly concave and
increasing and attains a minimum value U;(dy) = 0 for
every i € M. Moreover, every supplier j € N incurs costs
given by
L s
The modified utility for each ¢ € M at which the Nash
equilibrium can be computed via (13) is

Cj(sj) =
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2. Plot (a) shows values of the social welfare with respect to ¢ at the efficient and Nash equilibrium allocations.

In (b) we plot social welfare bounds for (strategic) price-responsive and perfectly inelastic demand. Plot (¢) shows
how the social welfare varies with respect to the number of consumers.

- d;
Bi
¢+do

Similarly, for each j € N the modified cost is given by

~ S; 1 1 Q;
Cj(Sj) = (1 -+ c ]R()) 56@‘5? — 6 <C JHO) S?

Figures 2a and 2b illustrate how social welfare under
perfect competition and at the Nash equilibrium varies
with respect to (. For the experiments we assumed that
the vector of utility coefficients f; is [1,1,1.5,2,2] and of
the cost coefficients «; is [0.1,0.2,0.3,0.4,0.5,0.5]. More
specifically, we start with a value of kg = 1.1—just
slightly higher than dy and to avoid pivotal suppliers—
and increase it gradually. Observe that the higher the

value of ¢ the closer S(d,8) is to S(d*,s*). On the other
hand, the smaller ( is, the higher the efficiency loss at the
Nash equilibrium. To gain additional insights, define the
following ratio

+

S(d, 8)
PS = Sar ey
S(d*, s*)
For the special case in which the market has perfectly
inelastic, non-strategic demand, we utilize the wost-case

market performance metric pc, which is adjusted from Xu
et al. (2016) and is given by

L min{no,Mdo}>. (20)
0

Pc_(1+<_ﬁ

Figure 2b demonstrates that the worst-case value of S(d, )
occurs when ¢ = 1.6 € (kg, 2ko) where the ratio pg = 0.4.
Immediately after ( € [2kg,0), the ratio pg jumps to
0.8 and stays above 0.9 after ( > 4kq. Note that pg lies
everywhere above po except when ¢ € (kg, 2kg) where pg
=pc. This implies that although consumers are strategic,
the market efficiency loss is lower-bounded by the worst-
case performance of a market with perfectly inelastic
demand. It remains to be shown whether this outcome
holds more broadly, for any choice of cost and utility
functions. Finally, increasing the number of consumers,
while keeping the production capacity constant, widens the
disparity between S(d, §) and S(d*, s*) as shown in Figure
2c. This illustrates the effect of increasing the inelastic
portion of demand and as such inducing higher market
power on the existing set of firms, which is also captured
by the Lerner index in (19).

7. CONCLUSION

We studied a market with N suppliers and M consumers
that compete in supply offers and demand bids for a
product. Our analysis showed that with a specific family of
scalar-parameterized offers/bids, the market supports an
efficient competitive equilibrium. Under strategic interac-
tions, we showed there exists a unique Nash equilibrium
and propose an efficient way of computing the induced
market allocation. Moreover, the welfare loss and the price
markups at the Nash equilibrium are bounded. Under-
standing how uncertainty on the supply capacity and min-
imum demand affects the market outcome is an interesting
direction for future research. Furthermore, a study of the
market competition and efficiency loss when only one side
(demand or supply) is strategic would complete the anal-
ysis of the deterministic model. The market mechanism
presented here has multiple interesting applications. For
example, owing to their simplicity, scalar-parameterized
offers/bids can be effectively utilized to model competi-
tion among retail electricity customers that are becoming
both consumers and producers, due to the proliferation of
distributed energy resources.
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