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Abstract: The friction dependence between tire and road is highly nonlinear and varies heavily
between different surfaces. The tire friction is important for real-time vehicle control, but difficult
to learn with automotive-grade sensors as they only provide indirect measurements based on
sensing parts of the vehicle state. In this paper we leverage recent advances in particle filtering
and Gaussian Processes (GPs), to provide an online method for jointly estimating the vehicle
state and subsequently identifying the tire friction as a function of the wheel slip. The unknown
function mapping the wheel slip to tire friction is modeled as a GP that is included in a dynamic
vehicle model relating the GP to the vehicle state.We illustrate the efficacy of the method using
synthetic data on a snow-covered road.

Keywords: Automotive system identification and modelling; Learning and adaptation in
autonomous vehicles; Particle filter; Friction estimation; intelligent vehicles

1. INTRODUCTION

As there is an increased demand on technologies for en-
abling autonomous driving (AD), the sensing and esti-
mation algorithms are required to produce an increasing
amount of information about the vehicle and its interac-
tion with the environment to support the control algo-
rithms. For advanced driver-assistance systems (ADAS),
such as vehicle steering controllers, the main actuation is
done through the interaction between tire and road. Hence,
to further increase the AD capabilities in vehicles, it is
important to have reliable knowledge of the tire friction.

Various tire models describing the tire friction as a func-
tion of wheel slip (i.e., the tire-friction function) have
been reported in literature—for example, the Magic for-
mula (Pacejka, 2006), the Burckhardt model (Kiencke and
Nielsen, 2005), and the Brush model (Svendenius, 2007).
The parametrizations used vary across the different mod-
els, but the main characteristics are similar. Knowledge
of the tire friction over a range of slip values extending
into the saturated region of the tire-friction function is
important for AD and ADAS, since the prediction models
used in several of the recently proposed control methods
rely on such knowledge (Carvalho et al., 2015; Frasch et al.,
2013; Quirynen et al., 2018).

A difficulty when addressing the tire-friction estima-
tion problem using automotive-grade sensors is that the
amount of sensors is limited, and they are relatively low
grade (Gustafsson, 2009). Moreover, not only do the sen-
sors only provide indirect measurements of the friction,
they do not even measure the vehicle state, which is non-
linearly dependent on the tire friction and must therefore
be known for learning the tire friction. Also, it is worth
pointing out that few approaches so far target the estima-
tion of the full tire-friction function only using production-
grade sensors.

In this paper, we develop a method for jointly estimating
the tire-friction function and the vehicle state only using
sensors available in production cars, namely wheel-speed
sensors and inexpensive accelerometers and gyroscopes.
While our primary focus is the lateral dynamics, the
method developed here can be applied to either lateral
or longitudinal dynamics, or to the two combined. Our
approach is fully Bayesian and models the deviations from
a nominal tire-friction curve as a Gaussian process (GP)
with unknown and time-varying mean and covariance
function (Rasmussen and Williams, 2006), leading to a
GP state-space model (GP-SSM). GPs (Rasmussen and
Williams, 2006) are effective tools for nonparametric mod-
eling of static nonlinear functions and GPs have recently
been extended to modeling dynamical system behavior
(Frigola et al., 2014; Svensson et al., 2016). In particular,
we leverage a recently proposed method for real-time joint
state estimation and learning of the state-transition func-
tion (Berntorp, 2019a), where a reduced-rank formulation
(Svensson et al., 2016) of GP-SSMs is combined with
particle filtering (Doucet and Johansen, 2009) for jointly
estimating online the state and associated state-transition
function. Due to the nonparametric nature of the GP, the
method is not subject to specific modeling constraints that
various tire models impose. Still, the method is insensitive
to overfitting to the data.

The tire-friction identification approaches in literature
typically estimate parameters of specific models using
different techniques. Batch methods for identifying the
parameters of the Brush model based on nonlinear opti-
mization can be found in (Svendenius, 2007). The method
in (Goldfain et al., 2019) uses an unscented Kalman fil-
ter (UKF) approach that augments the vehicle state and
models the Pacejka parameters as random walk processes,
which are subsequently estimated in a recursive fashion.
The works (Lundquist and Schön, 2009; Lee et al., 2015)
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employ recursive least-squares for estimating the corner-
ing stiffness (the linear slope of the friction curve), and
(Garatti and Bittanti, 2009) performs estimation of the
Pacejka tire parameters by generating artificial data asso-
ciated with different tire parameters and solving for the
best fit to measured data. In (Ahn et al., 2012), the Brush
tire model and a nonlinear observer is used to estimate the
peak friction coefficient under different excitation levels,
and in (Berntorp, 2019b) we developed an offline method
by using the particle Markov-chain Monte-Carlo frame-
work (Svensson and Schön, 2017).

Notation: For a discrete-time signal x with sampling pe-
riod Ts, xk = x(tk) = x(kTs). Throughout, for a vector
x, x ∼ N (µ,Σ) indicates that x is Gaussian distributed
with mean µ and covariance Σ and xn denotes the nth
component of x. Matrices are indicated in capital bold
font as X, and the element on row i and column j is
denoted with Xij . With p(x0:k|y0:k), we mean the poste-
rior density function of the state trajectory x0:k from time
step 0 to time step k given the measurement sequence
y0:k := {y0, . . . ,yk}, and xi0:k is the ith realization of
x0:k. The notation f ∼ GP(0,κθ,f (x,x′)) means that the
function f(x) is a realization from a GP prior with a given
covariance function κθ,f (x,x′) subject to hyperparame-
ters θ, and IW(ν,Λ) is the inverse-Wishart distribution
with degree of freedom ν and scale matrix Λ. Similarly,
MN (M ,Q,V ) and T (M ,Q,V ) are the Matrix-Normal
and Matrix-t distribution, respectively, with mean M ,
covariance (scale) Q, and inverse covariance (scale) V .

2. MODELING AND PROBLEM FORMULATION

In this section we summarize the different models used by
the proposed learning method.

2.1 Chassis Modeling

We use a single-track chassis model that includes the
lateral velocity vY and the yaw rate ψ̇. Consequently,
in this paper we focus on the lateral dynamics, but the
method extends straightforwardly to also handle longitu-
dinal dynamics. The state vector is x = [vY ψ̇]T ∈ R2.
A single-track model is sufficiently accurate for purposes
where the tire friction reaches the nonlinear region but the
maneuvers are not aggressive enough to result in large roll
angles (Quirynen et al., 2018). The presented framework
can be extended to handle a double-track model, but it
increases computation time and modeling complexity.

The single-track mode lumps together the left and right
wheel on each axle, and roll and pitch dynamics are
neglected. Thus, the model has two translational and one
rotational degrees of freedom. The model dynamics are
given by

v̇Y + vX ψ̇ =
1

m
(F zf µ

y
f cos(δ) + F zr µ

y
r + F zf µ

x
f sin(δ)),

(1a)

Izzψ̈ = lfF
z
f µ

y
f cos(δ)− lrF zr µyr + lfF

z
f µ

x
f sin(δ),

(1b)

where µy is the lateral tire friction function and the
subscripts f, r stand for front and rear, respectively, m
is the vehicle mass, Izz is the vehicle inertia about the

vertical axis, and δ is the front-wheel steering angle. By
denoting the wheel base with l = lf + lr, the normal force
F z resting on each front/rear wheel is

F zf = mg
lr
l
, F zr = mg

lf
l
. (2)

2.2 Tire Modeling

The tire friction components µyi , i ∈ {f, r} are modeled as
static functions of the slip quantities,

µyi = fyi (αi(x)), (3)

α is the slip angle, which is defined as (Pacejka, 2006),

αi = − arctan

(
vy,i
vx,i

)
, (4)

where vx,i and vy,i are the longitudinal and lateral wheel
velocities for wheel i with respect to an inertial system,
expressed in the coordinate system of the wheel. The
wheel velocities can be computed from a transformation of
the longitudinal and lateral vehicle velocities. The lateral
velocity is estimated in the proposed method, whereas the
longitudinal velocity vX is determined from the measured
wheel-speeds {ωi}4i=1. For brevity, we define the vector
α = [αf αr]

T. We write (3) as

µ =
[
fyf fyr

]T
, (5)

and model the friction vector as a realization from a zero-
mean GP prior

µ(α) ∼ GP(0,κθ,µ(α,α′)), (6)

where the covariance function κθ,µ(α,α′) is chosen in ad-
vance. In this work the hyperparameters θ are determined
a priori and we refer inclusion of the hyperparameters into
the learning process as future work.

2.3 Estimation Model

After discretization with sampling period Ts and using
u = [δ vX ]T as the known input vector, the vehicle model
(1)–(6) can be written as

xk+1 = a(xk,uk) +G(xk,uk)µ(αk), (7)

where a(·) and G(·) are the (known) parts of the vehicle
model, and µ(·) is the unknown tire-friction function.

Our measurement model is based on a setup commonly
available in production cars, namely the lateral accelera-
tion aYm and the yaw rate ψ̇m, forming the measurement

vector y = [aYm ψ̇m]T. To relate yk to the vehicle state xk
at each time step k, note that aY can be extracted from
the right-hand sides of (1a), after dividing the vehicle mass
and shifting over the first terms on the right-hand sides.
The measurement ψ̇m is a direct measurement of the yaw
rate. We model the measurement noise ek as zero-mean
Gaussian distributed noise with covariance R according
to ek ∼ N (0,R). The measurement model is written as

yk = h(xk,uk) +D(xk,uk)µ(αk) + ek. (8)

The measurement model (8) is decomposed into known
parts of the dynamics, h(·) and D(·), and an unknown
part, µ(·). The measurement covariance R is assumed
known a priori. This is reasonable, since the measurement
noise can oftentimes be determined from prior experiments
and data sheets. In addition, when evaluating (8) we
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assume a prior knowledge of the friction, for example,
using the methods in (Berntorp and Di Cairano, 2018;
Berntorp and Hiroaki, 2019). This helps in reaching faster
convergence and also approximately decouples the motion
model and measurement model, and has been proven
to give adequate performance in system identification
(Svensson and Schön, 2017).

The estimation model consisting of (7) and (8) is a GP-
SSM where the tire friction is a GP. We rely on GP priors
for learning the tire friction function, where the covariance
function κ(x,x′) encodes the prior assumptions. A bot-
tleneck in some of the proposed GP-SSM methods is the
computational load. In this paper we use the computation-
ally efficient reduced-rank GP-SSM framework presented
in (Solin and Särkkä, 2014; Svensson and Schön, 2017).
For a thorough derivation and convergence proofs, see
(Solin and Särkkä, 2014). Following the notation in (Solin
and Särkkä, 2014), isotropic covariance functions (that
only depend on the Euclidean norm ‖x − x′‖) can be
approximated in terms of Laplace operators on the form:

κθ(x,x
′) ≈

m∑
j1,...,jd=1

Sθ(λj1,...,jd)φj1,...,jd(x)φj1,...,jd(x′),

(9)
where we for simplicity assume m basis functions for each
state dimension. In (9), Sθ is the spectral density of κθ
and

λj1,...,jd =

d∑
n=1

(
πjn
2Ln

)2

, (10a)

φj1,...,jd =

d∏
n=1

1√
Ln

sin

(
πjn(xn + Ln)

2Ln

)
, (10b)

are the Laplace operator eigenvalues and eigenfunc-
tions, respectively, defined on the intervals [−Ln, Ln]. For
brevity, we denote j1, . . . , jd with j. Note that according
to (9), (10), only the spectral density depends on the
hyperparameters θ. Furthermore, (9) can be interpreted
as an optimal parametric expansion with respect to the
covariance function in the GP prior (Svensson and Schön,
2017).

From the approximation (9) using Laplace operators,
(Solin and Särkkä, 2014) provides a relation between basis
function expansions of a function f and GPs based on
the Karhunen-Loeve expansion. Namely, with the basis
functions chosen as (10b),

f(x) ∼ GP(0, κ(x,x′))⇔ f(x) ≈
∑
j

γjφj(x), (11)

where

γj ∼ N (0, S(λj). (12)

For a state-space model xk+1 = f(xk) +wk, (11) implies
the reduced-rank GP-SSM

xk+1 =

γ
1
1 · · · γm1
...

...
γ1
d · · · γmd


φ

1(xk)
...

φm(xk)

+wk, (13)

where γjn are the weights to be learned, m is the total
number of basis functions (i.e., md in (9)), and wk is
zero-mean Gaussian distributed noise with covariance Q
according to wk ∼ N (0,Q). In Sec. 3, (13) in combination

with particle filtering forms the basis for our joint state
estimation and tire-friction learning method.

To get our vehicle model (7) on the form (13), note that by
manipulation of (7) and using the basis function expansion
approach (11), the model can be written on the form
(Berntorp, 2019b)

ζk+1 =

γ
1
1 · · · γm1
...

...
γ1
d · · · γmd


︸ ︷︷ ︸

A

φ
1(αk)

...
φm(αk)


︸ ︷︷ ︸

ϕ(αk)

+wk (14)

for some ζk = [ζ1,k ζ2,k]T. Hence, the original problem of
learning the friction function µ(·) has been transformed
to learning A in (14). The noise term wk accounts for
modeling errors and allows for more flexibility in the model
and is incorporated into the learning process.

2.4 Problem Formulation

We want to estimate both the nonlinear function µ(αk) ≈
Aϕ(αk) describing the tire friction and the vehicle state
xk online at each time step k. We approach this problem
as follows. Given the system model (7), (8), and a GP prior
(6) on the tire friction resulting in the GP-SSM (14), we
want to infer the posterior distribution of xk and A given
a set of measurement data y0:k,

p(xk|y0:k), (15a)

p(A|y0:k). (15b)

We also include Q in the learning process, and since the
tire-friction estimate will depend on the vehicle state, and
vice versa, we solve for (15) by approximating the joint
posterior

p(A,Q,x0:k|y0:k) (16)

at each time step k, from which we can extract (15).

3. JOINT VEHICLE STATE AND
FRICTION-FUNCTION LEARNING

The objective is to estimate the posterior distribution (15)
of the unknown function µ(αk) ≈ Aϕ(αk) and the vehicle
state xk at each time step k. To approximate (15), we
decompose (16) into conditional densities as

p(A,Q,x0:k|y0:k) = p(A,Q|x0:k,y0:k)p(x0:k|y0:k). (17)

In what follows, we describe how to recursively approxi-
mate the two densities on the right-hand side of (17).

3.1 State Estimation with Particle Filtering

We approximate the posterior of the state trajectory
p(x0:k|y0:k) in (17) by a set of N weighted state trajec-
tories as

p(x0:k|y0:k) ≈
N∑
i=1

qikδxi
0:k

(x0:k), (18)

where qik is the importance weight of the ith state trajec-
tory xi0:k and δ(·) is the Dirac delta mass. The particle
filter recursively estimates (18) by repeated application of
Bayes’ rule as

p(x0:k|y0:k) ∝ p(yk|x0:k,y0:k−1)p(xk|x0:k−1,y0:k−1)

· p(x0:k−1|y0:k−1). (19)

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

14138



In general, the particles are sampled from a user-designed
proposal distribution π(·) as

xk ∼ π(xk|x0:k−1,y0:k). (20)

Inserting (18) into (19) and accounting for the proposal,
importance weight qik is obtained as

qik ∝ qik−1

p(yk|xik)p(xik|xi0:k−1,y0:k−1)

π(xik|xi0:k−1,y0:k)
. (21)

In this work we choose the proposal as the predictive
density, π(xk|x0:k−1,y0:k) = p(xk|x0:k−1,y0:k−1), which
leads to the simplified weight update

qik ∝ qik−1p(yk|xik). (22)

The particle filter iterates between prediction and weight
update, combined with a resampling step that removes
particles with low weights and replaces them with more
likely particles.

3.2 Bayesian Learning of the Tire-Friction Function

The distribution of A and Q in (17) is computed condi-
tioned on the realization of the state and measurement
trajectories. For a realization xi0:k, the posterior density
of A and Q can be written into a likelihood and prior
according to Bayes’ rule,

p(A,Q|xi0:k) ∝ p(xik|xi0:k−1,A,Q)p(A,Q|xi0:k−1) (23)

The first term on the right-hand side of (23) is assumed
Gaussian distributed and the joint prior (i.e., the second
term on the right-hand side in (23)) is assumed MNIW
distributed with the hierarchical structure

MNIW(A,Q|0,V ,Λ0, ν0) =

MN (A|0,Q,V )IW(Q|ν0,Λ0). (24)

For a Gaussian joint likelihood, the joint prior (24) is a
conjugate prior (Dawid, 1981; Murphy, 2007; Svensson and
Schön, 2017). Hence, for any k = 1, 2, . . . , the posterior
(23) is MNIW distributed when conditioning on a real-
ization xi0:k and y0:k. In (24), V is a diagonal matrix with
entries S(λj), that is, V encodes prior knowledge of the
weights (12).

Furthermore, the posterior distributions of A and Q for
a model on the form (13) conditioned on trajectories x0:T

and y0:T are (Svensson et al., 2016; Svensson and Schön,
2017)

p(Q|xi0:T ,y0:T ) = IW(Q|T + ν0,ΛT ), (25a)

p(A|Q,x0:T ,y0:T ) =MN (A|MT ,Q, (ΣT + V )−1),
(25b)

where MT = ΨT (ΣT +V )−1, ΛT = Λ0 + ΦT −MTΨT
T ,

ΦT =

T−1∑
k=1

xk+1x
T
k+1, (26a)

ΨT =

T−1∑
k=1

xk+1ϕ(xk)T, (26b)

ΣT =

T−1∑
k=1

ϕ(xk)ϕ(xk)T. (26c)

To get recursive update equations suitable for online
learning using the model (14), we note that from (26),
we can write

Φk+1 = Φk + ζk+1ζ
T
k+1, (27a)

Ψk+1 = Ψk + ζk+1ϕ(αk)T, (27b)

Σk+1 = Σk +ϕ(αk)ϕ(αk)T. (27c)

Hence, the statistics necessary to determine (25) for the
model (14) can be recursively updated as measurements
arrive as

Mk|k = Ψk|k(Σk|k + V )−1, (28a)

Σk|k = Σk|k−1 +ϕ(αk−1)ϕ(αk−1)T, (28b)

Φk|k = Φk|k−1 + ζkα
T
k , (28c)

Ψk|k = Ψk|k−1 + ζkϕ(αk−1)T, (28d)

Λk|k = Λ0 + Φk|k −Mk|kΨ
T
k|k, (28e)

νk|k = νk|k−1 + 1, (28f)

with the statistics of the predictive distributions given by
the time-update step

Φk|k−1 = λΦk−1|k−1, (29a)

Ψk|k−1 = λΨk−1|k−1, (29b)

Σk|k−1 = λΣk−1|k−1, (29c)

νk|k−1 = λνk−1|k−1. (29d)

The scalar real-valued number λ ∈ [0, 1] provides expo-
nential forgetting in the data that allows the algorithm to
adapt to (slowly time-varying) changes in A and Q over

time, and also mitigates path degeneracy (Özkan et al.,
2013). To find the posterior distribution of A and Q, we
marginalize out the state trajectory as

p(A,Q|y0:k) =

∫
p(A,Q|x0:k,y0:k)p(x0:k|y0:k) dx0:k

≈
N∑
i=1

qikp(A,Q|xi0:k,y0:k), (30)

from where the tire-friction function can be extracted.

3.3 Noise Marginalization

We predict the state trajectory by sampling from the pre-
dictive density p(xk|xi0:k−1,y0:k−1), which depends on A
from (7). From marginalization of the unknown quantities,

p(xk|xi0:k−1,y0:k−1) =

∫
p(xk|A,Q,xik−1)

p(A,Q|xi0:k−1,y0:k−1)dAdQ. (31)

By assumption the second density in the integrand of (31)
is MNIW distributed and the first term is Gaussian,
which implies that (31) is MNT distributed. Using the
lemma on transformation of variables in probability den-
sity functions (Rao, 2001; Berntorp and Di Cairano, 2018),
we can generate states xik by sampling Ai

k−1 as

Ai
k−1 ∼MNT (νik|k−1 − 1,M∗,Λ∗,Σ∗), (32)

with

M∗ = Ψk|k−1(Σk|k−1 + V )−1,

Σ∗ = (Σk|k−1 + V )−1,

Λ∗ = Λ0 + Φk|k−1 −Ψk|k−1(Σ∗)−1Ψ>k|k−1.

The samples {xik}Ni=1 are then generated by inserting
Ai
k−1ϕ(αik−1) into (7). The resulting samples are used

to compute the weights (22) and to update the statistics
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(28). In the proposed method, each particle i retains its
own estimate of the unknown parameters Ai and Qi.
Algorithm 1 summarizes the proposed method.

Algorithm 1 Pseudo-code of proposed algorithm

Initialize: Set {xi0}Ni=1 ∼ p0(x0), {qi−1}Ni=1 = 1/N ,

{νi0,Λi
0}Ni=1, V

1: for k = 0, 1, . . . do
2: for i ∈ {1, . . . , N} do
3: Update weight q̄ik using (22):

q̄ik = qik−1p(yk|xik)

4: Update relevant statistics using (28).
5: end for
6: Normalize weights as qik = q̄ik/(

∑N
i=1 q̄

i
k).

7: Compute Neff = 1/(
∑N
i=1(qik)2)

8: if Neff ≤ Nthr then
9: Resample particles and copy the corresponding

statistics. Set {qik}Ni=1 = 1/N .
10: end if

11: Compute state estimate x̂k =
N∑
i=1

qikx
i
k.

12: Compute friction estimate µ̂k =
N∑
i=1

qikM
i
k|kϕ(αik).

13: for i ∈ {1, . . . , N} do
14: Predict relevant statistics using (29).
15: Predict xik+1 by sampling from (32) and insert-

ting into (7).
16: end for
17: end for

4. RESULTS PRELIMINARIES

We evaluate Algorithm 1 on simulated measurement data,
but with control inputs generated experimentally. We have
used a mid-size SUV to gather data and collected several
different data sets using the same vehicle setup on a
snow-covered track, all data sets roughly 250s long, and
the maneuvers are such that the nonlinear region of the
tire-force curve is excited at times. The parameters of
the vehicle model have been extracted from data sheets
and bench testing. In Sec. 5 we present the results of a
simulation using the experimental control inputs.

For generating synthetic data, we use a single-track model
with longitudinal velocity and steering angle as control in-
puts. The control inputs are from one of the experimental
test-drives. The single-track model and associated mea-
surement equation (8) use the Pacejka tire model Pacejka
(2006), with parameters from (Olofsson et al., 2013).

We use 10 basis functions each for the front and rear tire,
which gives m = 100 basis functions in total. The sampling
period is Ts = 40ms. The number of particles is N = 200.
We use a squared exponential covariance function (Ras-
mussen and Williams, 2006) κ(r) = sf exp (−r2/(2`2))

with spectral density S(s) = sf
√

2π`2 exp (−(π2`2s2)(2)),
where sf = 500, L = 30π/180, and ` = 2π/180. Prior
knowledge of the tire friction can be used to initialize the
algorithm and therefore improve convergence. Initializing
the estimate with µ(αk) = 0 can result in large transients
as there is no information incorporated the tire-friction
function. We can split up the friction function into two

parts, µ(αk) = µ̃(αk) + ∆µ(αk), where µ̃(αk) is the
prior information. In this paper we initialize µ̃(αk) using a
Pacejka model with parameters corresponding to a surface
with peak friction µmax = 0.05. The proposed method
is robust to the initialization, and it is merely there to
inform the estimator that the initial slope of the tire-
friction function is positive and crosses the origin.

5. SIMULATION RESULTS

Fig. 1 displays the results from our method for t =
4, 20, 40, 50s, respectively. The estimates converge as the
number of measurements increases and a larger region of
the state space is explored. Note that the times of the
snapshots do not imply anything about the convergence of
the algorithm. Rather, the tire-friction function estimates
are at all times very close to the true underlying Pacejka
model for the region in which data have been obtained.

6. CONCLUSION

We presented a method for jointly learning the nonlinear
function describing the dependence between wheel slip
and tire friction, together with the vehicle state. The
method is fully Bayesian and combines a truncated basis-
function formulation of Gaussian processes into a particle-
filter framework. This gives an online algorithm where
each particle retains its own estimate of the unknown tire-
friction function and vehicle state. A key feature is that
the method only uses sensors that are typically installed
in production vehicles.

The simulation results show that the method is capable of
accurately learning online the tire-friction function, but it
is future work to verify the method experimentally. More
interesting future work could be how to incorporate the
considered approach for providing less conservative vehicle
control.
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Fig. 1. The posterior estimates of our proposed method, for the simulated tire-road friction estimation example in Sec. 5.
The upper plots show the front tire friction and the middle plots show the rear tire friction. Estimated function
in black, true function in dashed red, posterior uncertainty in gray, and the initial estimate in black dash-dotted.
The lower plots display the accumulated data points of the underlying slip-angle for the front tire (not used in the
learning), and the green vertical dashed lines in the upper two plots indicate the range of the data.
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