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Abstract: Critically ill patients frequently experience stress-induced hyperglycaemia. Glycaemic control 

(GC) with insulin therapy can improve patient outcomes, but effective GC is not currently well achieved 

in most critical care units.  STAR is a model-based decision support system, utilizing the ICING model, 

for glycaemic control in intensive care. Understanding model-based parameters and assumptions within 

their clinical context is important. The ICING model uses a population constant for endogenous glucose 

production (EGP), but EGP can vary considerably in patients during extreme stress and trauma.  This 

study uses data from 145 patients on the SPRINT protocol to explore the assumptions around the EGP 

parameter and estimate minimum EGP values when the model is constrained to a minimum insulin 

sensitivity (SI) value.  The model is frequently constrained when there is no nutritional input, 

highlighting the importance of the EGP parameter for glucose flux in the model equation.  Minimum 

EGP values were calculated when SI was less than or equal to 1e-5 L/mU/min and ranged from 1.16 

mmol/min to 2.72 mmol/min, where the median value is a 12% increase from the population value of 

1.16 mmol/min.  This analysis provides a relative indication of EGP changes in patients and supports the 

use of the EGP population value as only 2.3% of hours require EGP modification. 

Keywords: Physiological model, critical care, decision support and control, clinical validation, kinetic 

modelling and control of biological systems, EGP, glycaemic control 
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1. INTRODUCTION 

Critically ill patients, regardless of diabetic status, frequently 

experience stress-induced hyperglycaemia (McCowen et al., 

2001; Mizock, 2001) that results in a positive feedback loop 

of metabolic stress and inflammation.  High and low blood 

glucose levels, hyperglycaemia and hypoglycaemia, as well 

as glycaemic variability regardless of blood glucose level, 

have all been shown to be independent risk factors for 

increased mortality in critically ill patients (Bagshaw et al., 

2009; Krinsley, 2015, 2003).  Regulating glycaemic state 

through glycaemic control (GC) in the critically ill has been 

shown to improve patient outcomes (Chase et al., 2008b; 

Krinsley, 2004; Van den Berghe et al., 2006, 2001) and 

reduce costs (Krinsley and Jones, 2006). 

Safe, effective control is required to reduced glycaemic 

variability and mitigate the risk of hypoglycaemia, in 

particular, as one episode can significantly increase risk of 

death (Penning et al., 2015). It is also critical to obtain this 

level of control for virtually all patients to ensure the 

potential benefit is obtained (Chase et al., 2010). However, 

safe, effective GC can be difficult to achieve for many 

patients due to clinical limitations and, in particular, inter- 

and intra- patient variability (Chase et al., 2011; Dickson et 

al., 2014) and may be the reason other studies have not been 

able to show benefit (Arabi et al., 2008; Griesdale et al., 

2009; Preiser et al., 2009; The NICE-SUGAR Study 

Investigators, 2009; Wiener et al., 2008). 

Physiological models such as the Intensive Control Insulin-

Nutrition-Glucose (ICING) model (Lin et al., 2011) used in 

the STAR glycaemic control protocol (Evans et al., 2012; 

Fisk et al., 2012; Stewart et al., 2016) have demonstrated 

repeatable, replicable, safe and effective GC. Such model-

based methods can directly account for and use the inter- and 

intra- patient variability to guide control (Lin et al., 2006). 

The ICING model captures basic metabolic physiology well, 

and has been used in the design and implementation of 

glycaemic control protocols such as STAR  and SPRINT, to 

provide effective GC for virtually all patients (Chase et al., 

2010, 2008a; Stewart et al., 2016; Uyttendaele et al., 2017). 

However, there are limitations to the models, particularly the 

assumptions used around dynamics which are not easily 

measured at the bedside or are difficult to separate from other 

related dynamics. Endogenous glucose production (EGP) is 

one such important dynamic, particularly in the critically ill. 

EGP is very difficult and extremely invasive to measure 

directly, requiring arterial-venous balance or tracer methods 

(Rizza et al., 2016) for durations longer than 2.5 hours (Tigas 

et al., 2002), thus making its measurement both highly 

intensive and time consuming. EGP can be highly variable 

(Black et al., 1982; Chiolero et al., 2000; Shaw and Wolfe, 

1989; Tappy et al., 1997) and elevated due to stress-response 

(McCowen et al., 2001). Significant inter-patient variability 

in EGP measurements may reflect physiological responses or 

it may also reflect issues in clinical assessment of EGP.   
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Different attempts have been made to model EGP in critically 

ill patients, including as a function of plasma insulin 

(Hovorka et al., 2008), BG and insulin (Pielmeier et al., 

2010), and BG, insulin, and glucagon (Wendt et al., 2017).  

Many of these models fail to capture the complexity of EGP 

stimulus and suppression in stress hyperglycaemia and/or 

rely on additional blood measures, assays and/or procedures 

that are not available or clinically feasible to perform at the 

bedside. Hence, there is no accepted, proven, or ready way to 

model or assume a value of EGP in this cohort. 

Previous attempts at varying EGP dynamics resulted in 

unstable BG control dynamics (Dickson et al., 2013; Pretty, 

2012) using the ICING model. Currently, EGP is a 

population constant and error in this value is adsorbed as an 

offset on patient-specific, identified insulin sensitivity (SI). 

The stochastic modelling approach captures this variability 

and helps guide care (Le Compte et al., 2011; Lin et al., 

2008).  In extreme cases, when physiological EGP is much 

higher than the model population constant, negative SI values 

can be identified that are not physiologically possible, and 

this can skew care. 

This study uses the validated ICING model (Lin et al., 2011; 

Stewart et al., 2016) to assess model parameter values during 

low, identified SI events in critically ill patients. The aim is 

to quantify the frequency of these events and quantify a lower 

bound, by enhanced or higher EGP value during the events. 

The results can then be used to determine whether the impact 

influences care choices. 

2. METHODS 

2.1 Patient Demographics 

Study data comprises 145 patients on SPRINT GC (Chase et 

al., 2008a; Lonergan et al., 2006) in Christchurch Hospital 

ICU from June 2011 to May 2015.  Patients were on the 

protocol for a minimum of 24 hours and started GC within 12 

hours of ICU admission to ensure timing was the same.  The 

average patient length of ICU stay was 113 hours, with 83 

hours on SPRINT. Up to the first 72 hours on SPRINT was 

analysed for each patient, making 9,304 hours of GC in the 

data set. Demographic data can be found in (Uyttendaele et 

al., 2017). 

2.2 Model and SI 

The metabolic system dynamics of the ICING (Intensive 

Control Insulin Nutrition Glucose) physiological model are 

defined (Lin et al., 2011): 

 
(1) 

 
(2) 

 
(3) 

Where G(t) is blood glucose concentration (mmol/L), I(t) is 

plasma insulin concentration (mU/L), Q(t) is interstitial 

insulin concentration (mU/L), P(t) is plasma glucose from 

dextrose intake (mmol/min) and SI is insulin sensitivity 

(L/mU/min).  EGP is endogenous glucose production and has 

a constant population value of 1.16 mmol/min (Lin et al., 

2011), per values in (Chambrier et al., 2000).  Other rates and 

constants can be found in (Stewart et al., 2018). A detailed 

model description can be found in (Lin et al., 2011). 

 

 

Figure 1. Schematic representation of the glucose-insulin 

model showing endogenous and exogenous contributions. 

CNS Central nervous system, EGP Endogenous glucose 

production, PN Parenteral nutrition, SI Insulin sensitivity, u 

insulin, d glucose transport rate, pG non-insulin mediated 

glucose removal, n insulin diffusion/degradation rates. 

Patient metabolic ability for insulin mediated glucose uptake 

is captured using hour-to-hour relative changes in a model-

based insulin sensitivity (SI) value.  Hourly insulin sensitivity 

(SI) values based on clinical inputs of measured blood 

glucose, and insulin and glucose administration are identified 

using an integral based fitting method (Docherty et al., 2012, 

2011). 

2.3 Calculation of lower bound enhanced EGP 

An SI value of 1e-5 L/mU/min is taken to be reflective of the 

likely lower limit of physiological SI, and is around 100x 

lower than SI in individuals with diabetes (Lotz et al., 2010; 

McAuley et al., 2011). During periods when SI is identified 

at or below SI = 1e-5 L/mU/min, the model SI value can be 

constrained to 1e-5 L/mU/min, and a new augmented, but 

lower bound EGP value calculated directly. This calculation 

of EGP ensures model fit to clinical BG measures where non-

insulin mediated glucose uptake is higher than the modelled 

glucose sources in the G compartment of Equation 1. This 

calculated EGP value is a minimum or lower bound estimate 

of what the elevated EGP value at this time could be. A 

higher EGP value would result in SI >1e-5 L/mU/min, but is 

not identifiable without significant extra data and/or 

procedures. This lower bound enhanced EGP during hours 

with constrained SI is calculated: 
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Where GE is end blood glucose concentration (mmol/L) and 

GS is starting blood glucose concentration (mmol/L), and all 

other parameters are defined previously. Integrals are 

evaluated over the identified 1 hour period where SI is 

constrained at 1e-5 L/mU/min. 

Identified SI values that are negative indicate that the EGP 

value may need to be augmented. Constrained values are 

clear limit states and resulting BG error would be due to error 

in the assumed EGP population value as shown in Figure 2.  

The approach separates clear cases where the EGP value is in 

error, making this value identifiable. It is thus a minimal 

estimate of enhanced EGP level and incidence. 

 

Figure 2.  During stress response, EGP can be significantly 

elevated resulting in blood glucose (BG) model predictions 

(blue line) not matching actual BG level (red crosses). 

2.4 Analyses 

Time periods when EGP is significantly enhanced over 

assumed model values were identified by evaluating when SI 

was constrained to 1e-5 L/mU/min.  Time and length of 

events are tabulated and single 1-hour events are excluded in 

further analysis as they were found to be primarily due to 

data entry or sensor errors.  All events lasting 2 or more 

consecutive hours are further evaluated. 

The rate of EGP can be significantly increased over the 

constant population value due to stress response, particularly 

in the most critically ill ICU patients, and this increase can be 

a large contributor to glucose flux. EGP values were 

calculated for those hours when the identified SI values were 

less than or equal to 1e-5 L/mU/min.  The range, time, and 

frequency of EGP values were evaluated and compared to 

clinical observations and expectations. 

3. RESULTS 

3.1 Insulin Sensitivity (SI) and constrained events 

A total of 214 low SI hours were analysed.  The cumulative 

distribution function (CDF) of the calculated SI values, 

excluding 1 hour events, is shown in Figure 3 with 2.3% of 

values below or equal to the SI = 1e-5 L/mU/min minimum 

level.  Though relatively scarce by hour (2.3% of 9,304 total 

hours), 45.5% of patients have at least 1 event of constrained 

SI lasting 2 or more hours.  

3.2 Patient and care states during constrained events 

Table 1 shows the percentage of constrained events occurring 

during particular parameter states. Less than one-third of 

events occurred when no insulin was being administered, but 

more than 80% of constrained SI events occurred when 

nutrition was not being administered in the current hour. In 

particular, with no (or low) nutritional intake, the model 

relies excessively on the accuracy of the assumed EGP 

population parameter’s to capture incoming glucose flux 

(Chase et al., 2009).  It thus supports the choice of modifying 

the EGP parameter value in these cases and this analysis. 

 

 

Figure 3. Cumulative distribution function of model-

identified SI values.  Note that the x-axis is a log scale. 

 

Table 1. Input states when SI is less than or equal to 1e-5 

L/mU/min. 

Input condition % constrained SI hours 

No insulin in constrained hour 28.7% 

No nutrition in constrained hour 82.6% 

No insulin or nutrition in 

constrained hour 

24.6% 

No nutrition in previous hour 79.5% 

 

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

16378



 

 

     

 

 

Figure 4. Minimum EGP values calculated using SI = 1e-5 

L/mU/min during hours when SI is constrained.  The bar 

chart shows hourly incidence of minimum EGP values (left 

y-axis) and the solid line is the cumulative distribution (right 

y-axis) of minimum EGP values for all constrained hours. 

 

3.3 Calculated Minimum EGP Values 

During constrained events, when SI was less than or equal to 

1e-5 L/mU/min, a minimum EGP value was calculated from 

Equation 4 using the constrained SI value of 1e-5 L/mU/min. 

Minimum EGP values ranged from 1.16 to 2.72 mmol/min, 

with 50% of the values being above 1.31 mmol/min.  The 

median value is a 12% increase from the assumed population 

value of 1.16 mmol/min used in the model.  Five percent of 

values are greater than 1.88 mmol/min, representing a 62% 

increase from the assumed population value. 

4. DISCUSSION 

This analysis used a model-based approach to evaluate an 

increased lower bound enhanced EGP value in critically ill 

patients based on incidence, the time dependent nature and 

extent of lower bound, constrained SI values, and associated 

likely high EGP. This approach allows this lower bound EGP 

value to be directly identified by constraining SI to non-

negative values.  The range of SI values shown in Figure 3 

are 100x lower than a typical type 2 diabetic individual (Lotz 

et al., 2010; McAuley et al., 2011), which also captures and 

clearly shows the significant stress response insulin resistance 

seen in critically ill patients. 

EGP affects the glucose flux in Equation 1, but is difficult to 

measure directly (Rizza et al., 2016). It also increases 

significantly and variably during the stress response (Dickson 

et al., 2013; McCowen et al., 2001; Watters et al., 1997).  It 

thus, in part, affects the increased variability of insulin 

sensitivity in the initial stage of critical illness (Pretty et al., 

2012).  EGP can be significantly elevated early in the patient 

stay as part of stress response and these patients may require 

adjustment of the EGP value used, although the constant 

value of EGP=1.16 mmol/min chosen (Chambrier et al., 

2000; Lin et al., 2011) is suitable for the vast majority of 

patients at all time points. 

The range of 1.16 to 2.72 mmol/min found in this study is 

within other published ranges of trauma patients (Chiolero et 

al., 2000; Tappy et al., 1997; Wolfe et al., 1979). The 

reported range of enhanced lower bound EGP values reflects 

a minimum estimate of elevated EGP production in these 

incidences as it is calculated based as a lower bound, 

constrained SI value. Thus, the incidence and level of 

augmented EGP reported here are lower bounds and may be 

higher, but the conditions used here ensure identifiability of 

the problem so the results are robust. 

Parameter trade-off in the model can affect the incidence of 

low SI, and was considered in this analysis. The most likely 

parameter in this case is EGP because of the known 

physiological response, and because 80% of low SI 

occurrences happen when there is no exogenous nutrition 

being administered, as shown in Table 1.  The only other 

source of glucose to keep BG elevated is the much greater 

rate of appearance from exogenous sources, which Table 1 

shows are often not present in these instances, clearly 

highlighting the role of EGP physiologically and in the 

model. In this case, the results thus match clinical 

expectations and within the model, the error is amplified in 

the case of low to no exogenous nutritional input and it leaves 

only the EGP value as a cause of error. 

When there is a difference between the actual physiological 

EGP value and the model assumed term, the error is usually 

minimized because the patient is fed at much higher rates 

than the EGP term, thus minimizing EGP contribution 

overall. This implies that patients with low, but unconstrained 

SI could have higher EGP and higher peripheral SI, but are 

not detected. Currently, there is no known way to identify 

these patients at the bedside (Docherty et al., 2011), making 

implementation of variable EGP based on bedside measures 

less practicable at this time, especially because it can vary 

significantly due to stress response and over the wide range 

found here. 

The model used in this analysis has been proven both 

clinically and analytically (Chase et al., 2019; Lin et al., 

2011; Stewart et al., 2016) and used in a variety of contexts. 

The data set comprised a mixed cohort, single centre 

population, and as patients are variable, a larger cohort study 

in multiple centres would offer more insight into EGP 

variation. 

5. CONCLUSIONS 

Model-based insulin sensitivity was constrained to a 

physiologically realistic lower limit in 2.3% of patient hours 

on model-based glycaemic control. This constrained SI most 

likely represents model error in the EGP parameter in these 

cases, as most of the constraints occurred around low or no 

nutritional input periods. It also reflects the stress response, 

as the majority of constrained SI values occurred in the first 

12 hours of insulin therapy. Minimum EGP values calculated 

in the case of constrained SI varied from 1.16 to 2.72 

mmol/min, which are within reported ranges for this cohort 

and thus physiologically realistic, further validating the 

model and analysis. Overall, the current population value of 

1.16 mmol/min used in the model is justified given less than 
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2.5% of hours are constrained, representing a small subset of 

patients and hours with physiology that is not well-captured 

in the current model. 
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