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Abstract: Inspired by generative adversarial network (GAN), we propose a novel unsupervised approach 

for loop closure detection in autonomous unmanned systems. A binary GAN model dedicated to mobile 

application scenarios is designed to obtain binary feature descriptors, which are further incorporated into 

the most commonly used Bag of Visual Words (BoVW) model for loop closure detection. Compared 

with those hand-crafted features like SIFT and ORB, the performance of loop closure detection in 

complex environments with strong viewpoint and condition changes can be greatly improved. Compared 

with existing supervised approach based on convolutional neural network like AlexNet and AMOSNet, 

the cost-expensive task of supervised data annotation is totally avoided, which make the proposed 

approach more practical. 
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1. INTRODUCTION 

Research on visual SLAM (vSLAM) is blooming due to its 

importance in tremendous autonomous systems such as 

mobile robots and automatic driving. A standard vSLAM 

system consists of the following modules: visual odometer, 

back-end graph optimization, loop closure detection and 

mapping. Due to the cumulative error of the visual odometer 

in the vSLAM, the map obtained when the robot moves back 

to the starting point is not consistent.  

Loop closure detection in vSLAM is a challenging problem. 

A good method should provide key constraints for the back-

end pose graph optimization (Kummerle et al. (2013)) and 

eliminate the cumulative error in the mapping process. In 

most cases, the image dataset is very large and the time for 

feature matching is limited due to the limited computing 

resources. Moreover, the appearance of the surrounding 

environment may change greatly, e.g. viewpoint changes and 

condition changes in season, illumination and dynamic 

objects (Zaffar et al. (2019)). 

In traditional loop closure detection, Bag of Visual Words 

(BoVW) is the most widely used method, and its core is to 

extract the local feature descriptors by hand-crafted feature 

extraction methods, such as scale-invariant feature transform 

(SIFT) (Lowe et al. (2004)), speeded-up robust feature 

(SURF) (Bay et al. (2006)), oriented features from 

accelerated segment test, rotated binary robust-independent 

elementary feature (ORB) (Rublee et al. (2012)) etc. These 

local feature descriptors can be clustered by the K-means 

algorithm in an N-dimensional feature space. Each cluster 

center is called a visual word. All visual words make up a 

vocabulary, which can be represented by a k-d tree. In the 

testing process, BoVW method extracts the local feature 

descriptors and assigns each descriptor to the closest visual 

word from the vocabulary. Then, the method can obtain a 

feature histogram called the BoVW vector. The Term 

Frequency-inverse Document Frequency (TF-IDF) algorithm 

could be used to evaluate the importance of each visual word 

and give each visual word a different weight. At last, the 

method uses the BoVW vector and the weights to score the 

similarity between two images. The overall process of the 

BoVW model is shown in Fig. 1.  

...

...

... k
d

Extract Keypoints Feature Descriptors Clustering Vocabulary

(a)
Extract Keypoints Feature Descriptors Feature Histogram

...

BoVW Vector

(b)

Similarity

Metric
...

 
Fig. 1. BoVW model. (a) Training, (b) Testing. 

However, the traditional BoVW model relies on hand-crafted 

features like SIFT, SURF and ORB which are not effective in 

complex environments with strong viewpoint and condition 

changes. In recent years, deep learning has become a new 

technology to extract more comprehensive features from 

images. In literature, deep neural networks used in loop 

closure detection problems have shown better results than 

those hand-crafted feature methods. Hou et al. (2015) used 

the Places-CNN model trained on the large-scale scene 

classification dataset to explore the performance of different 

layers of CNNs for loop closure detection in vSLAM. He 

found that compared with the traditional hand-crafted 

features, the features extracted by the CNN model can 

achieve better results under complex appearance changes. 

Sunderhauf et al. (2015) studied the performance by using 
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AlexNet (Krizhevsky and Hinton (2012)) for loop closure 

detection. Chen et al. (2017) used AMOSNet and HybridNet 

models which were trained on the large-scale scene 

classification dataset to extract the deep features of images. 

Olid et al. (2018) used a triplet loss scheme to train CNN 

models to extract features. Compared with the BoVW model, 

the deep learning based methods are superior in feature 

extraction, and can greatly improve the ability of loop closure 

detection in complex environments. However, most of these 

deep learning based method are supervised approaches, 

which need a large amount of labeled data for training. This 

is cost-expensive and not practical for real applications.  

Therefore, it is of great significance to have an unsupervised 

approach for loop closure detection which is still rare in 

literature. Gao and Zhang (2017) used a stacked denoising 

autoencoder (SDA) method to support unsupervised feature 

extraction for loop closure detection. However, this method 

was an offline method and it was only verified when the 

training set and the test set were the same. Recently, 

generative adversarial network (GAN) is also introduced into 

unsupervised loop closure detection problem (Shin et al. 

(2019)). But the extracted feature descriptors are high-

dimensional and take up more memory that would not make 

any contribution to the mobile applications. 

In this paper, we propose a novel approach for unsupervised 

loop closure detection in vSLAM. A binary GAN model is 

designed to obtain binary feature descriptors of the images. 

These local features are more distinctive than those hand-

crafted features. Therefore, the performance of loop closure 

detection in complex environments can be greatly improved. 

The binary GAN model is trained in an adversarial learning 

manner without any labelled data. Moreover, we customized 

two additional loss functions for loop closure detection, i.e. 

the binarization representation entropy (BRE) loss function 

(Cao et al. (2018)) and the distance propagating (DP) loss 

function. As a result, the local feature descriptors extracted 

by our approach are binary and more discriminative than 

those nonbinary descriptors. The results show that the 

approach is not only more sensitive to strong variations in 

condition and viewpoint, but also efficient and more suitable 

for mobile applications like autonomous driving with limited 

computing resource and storage space. 

2. THE APPROACH 

2.1 Overall Process 

Fig. 2. shows the overall framework of our proposed 

approach for unsupervised loop closure detection based on a 

binary GAN model. It is mainly divided into two parts: 

model training process and loop closure detection process. 

During the model training process, we first input training 

images which are unrelated to any scene that the loop closure 

detection process may encounter. Then, we construct the 

local image patches by the method described in part 2.4. 

Subsequently, we carry out unsupervised learning to train the 

binary GAN model. Then, we use the K-means algorithm to 

cluster the derived descriptors by GAN model and build the 

vocabulary tree that are similar with the original BoVW 

method. In the loop closure detection process, the current 

frame acquired by the robot in real time is taken as input. We 

use the well trained binary GAN model to extract the image 

features from the local patches. Finally, loop closure 

detection can be carried out by the BoVW model. 
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Fig. 2. The overall framework of the proposed approach. 

Instead of using traditional hand-crafted feature extraction 

methods, the kernel of our approach is using a binary GAN 

model to extract binary local feature descriptors. In the 

following sections, we first briefly review the GAN. Then, 

we discuss the details of the binary GAN model for loop 

closure detection. Subsequently, we describe the image patch 

construction method from the training image dataset. More 

implementation details are outlined at the end of this part. 

2.2 The GAN Model 

GAN is composed of two competing networks, i.e. generator 

G and discriminator D as shown in Fig.3. The generator G is 

trained to sample from the data distribution Pdata(x) by 

transforming the random noise z. The discriminator D is 

trained to distinguish whether the input samples are generated 

by the generator or from the real data distribution Pdata(x). 

The training problem can be formulated as follows: 

~ ( )

~ ( )

min max ( , ) [log( ( ))]

[log(1 ( ( )))]

data

z

x P x
G D

z P z

V D G E D x

E D G z



 
 

 

(1) 

where x represents a real sample. D(x) represents the 

probability that the discriminator D judges that x is a real 

sample. z represents the input random noise. G(z) represents 

the sample generated from the noise z by the generator. 

D(G(z)) represents the probability that the discriminator D 

judges that G(z) is a real sample. The goal of generator G is 

to make the generated sample as close as possible to the real 

sample. The closer D(G(z)) is to 1, the smaller V(D, G) will 

become. The goal of discriminator D is to make D(x) close to 

1 and D(G(z)) close to 0.  
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Fig. 3. Structure of the GAN. 

In recent years, GAN has gained a significant amount of 

attention in image generation, image restoration and image 

classification. GAN can also be used to extract features, 

which was initially discussed in (Radford et al. (2016)), i.e. to 

use the discriminator D as a feature extractor. During the 

training process, the discriminator D is trained to extract 

more diverse and essential features. The training goal of 

generator G (Salimans et al. (2016)) is, 

2

~ ( ) ~ ( )
2

( ) ( ( ))
data zG x p x z p zL E f x E f G z   (2) 

where f(x) represents the feature descriptors obtained. 

Radford et al. (2016) showed that the best feature 

representations in GANs are extracted from the intermediate 

layer of the discriminator, and they are high-dimensional. 

Consider the problem of loop closure detection, however, it’s 

expected to use more discriminative low-dimensional feature 

descriptors to accommodate the limited computing resource 

in embedded systems. Hence, it is encouraged to adopt binary 

descriptors if possible, which have several attractive 

properties, e.g. compactness, fast implementation, etc. In 

order to meet these requirements, in this paper, we adopt the 

BRE loss function and DP loss function to convert the high-

dimensional feature descriptor in intermediate layer of the 

discriminator into low-dimensional binary representation. 

The above idea is realized through the adversarial training 

based on a binary GAN model described below. 

2.3 Binary GAN model 

The structure of the binary GAN proposed is illustrated in Fig. 

4. The discriminator of binary GAN consists of 7 convolu-

tional layers, two network-in-network (NiN) layers (Lin et al. 

(2013)) and one discriminative layer. For the convolutional 

network, the size of the kernel is 3x3 and the stride is [1, 1, 2, 

1, 1, 2, 1], and the channel number is [96, 96, 96, 128, 128, 

128, 128] for each layer. In our approach, we define the first 

NiN layer composed of 256 neurons as the low-dimensional 

feature and define the last convolutional layer composed of 

9216 neurons as the high-dimensional feature. The generator 

of binary GAN consists of one fully connected layer and 

three deconvolutional layers with a kernel size 3×3, and the 

channel number is [256, 128, 3] for each layer. 

In the proposed binary GAN, the definition of the loss 

function is crucial for adversarial training and should reflect 

the nature of the loop closure detection problem. Binary 

feature representations are more efficient and more suitable 

for embedded AI applications. In the problem of loop closure 

detection, it is expected to extract more discriminative low-

dimensional binary feature descriptors This is important to 

enable a fast and stable detection under viewpoint changes 

and condition changes. However, the high-dimensional 

feature descriptors are more discriminative and reliabable for 

feature representation (Radford et al. (2016)). For this 

purpose, the Hamming distance can be propagated from the 

high-dimensional feature space to the low-dimensional 

feature space, while their distance relationship remains the 

same. These binary descriptors can be obtained from the 

original feature descriptors by using the following binary 

activation function (Dong et al. (2018)). 
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Fig. 4. Structure of the binary GAN. 

( ) ( ( ) 0.5)BAF x u x   (3) 

where ( )u   denotes the step function and ( )   is the sigmoid 

function. In this way, we can turn a tensor whose values are 

in [0,1] into a tensor with values in {0,1}. We use the 

derivative of the sigmoid function in the backward pass. 

Let L(x) and H(x) represent the feature descriptors extracted 

from the low-dimensional and high-dimensional intermediate 

layer of the discriminator with the number of neurons K and 

M, respectively. They can be further converted into binary 

descriptors bL and bH using the binary activation function. 

Without loss of generality, consider two binary descriptors b1 

and b2, the Hamming distance can be represented as, 

1 2 1 2 1 2( , ) ( 1) ( 1)T Thamming_dist b b A b b b b      (4) 

where A represents the dimension of the binary descriptor, 

and the value of dot product 1 2 1 2( 1) ( 1)T Tb b b b    can 

reflect the distance between two binary descriptors, which 

can be defined as, 

1 2, 1 2 1 2( 1) ( 1)T T

b bDot b b b b     (5) 

Given a min-batch 
1{ ,..., }Nx x , we define the distance 

propagation function as follows, 

, ,

, 1,

1
| |

( 1)

L HN
k j k j

DP

k j k j

Dot Dot
L

N N K M 

  


  
(6) 

where ,

L

k jDot  represents the value of dot product between the 

kth binary descriptor and the jth binary descriptor in the low-
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dimensional feature space. 
,

H

k jDot  represents the value of dot 

product in the high-dimensional feature space. 

The BRE loss function was first proposed in (Cao et al. 

(2018)). In this approach, we use the marginal entropy LME 

and the activation correlation LAC to increase the diversity of 

the binary descriptors. Finally, the BRE loss function LBRE is 

the sum of LME and LAC. The binary GAN is trained in an 

unsupervised manner by alternately training discriminator D 

and generator G. The discriminative loss of discriminator D 

is defined as follows, 

~ ( ) ~ ( )[log( ( ))] [log(1 ( ( )))]
data zD x p x z p zL E D x E D G z     (7) 

The objective of training discriminator D is as follows, 

D DP DP BRE BREL L L L       (8) 

where 
DP  and 

BRE  are hyperparameters. 

Table 1 shows the hyperparameters to train the GAN model, 

and the Adam optimizer (Diederik et al. (2014)) is used. 

Table 1 Hyperparameters of the model. 

Parameter Value Parameter Value 

Batch size 25 
DP  0.5 

Epoch 100 
BRE  0.1 

Learning rate 0.0003 Momentum 0.5 

2.4 Local Image Patch 

In order to train the binary GAN model, we need to construct 

local image patches from the training dataset. For each 

training image in loop closure detection, we extract about 70 

SURF features and discard some SURF features which are 

near image boundaries. Then, we construct local image 

patches of 32×32 pixels, which are centred at the remaining 

SURF feature points. Finally, we obtained about 140,000 

local image patches. Fig. 5 illustrates the local patch 

construction procedure. We then train the binary GAN model, 

described in Section 2.3 by the extracted local image patches. 

 
Fig. 5. Local Image Patch Construction. 

In this paper, we used a large-scale place-oriented dataset 

(Zhou et al. (2018)) to perform the unsupervised training. 

This dataset is unrelated to any scene that the loop closure 

detection may encounter and the time-consuming process of 

label annotations is avoided.  

3. EXPERIMENT 

3.1 Evaluation Dataset 

Three datasets are used to evaluate the performance of the 

proposed approach, i.e. New College (NC) dataset and City 

Center (CC) dataset (Cummins and Newman (2008)), and 

Korea Advanced Institute Science and Technology (KAIST) 

dataset (Choi et al. (2016)). NC dataset contains 2146 images 

and CC dataset contains 2474 images. These datasets were 

collected by placing a camera on the left and right sides of 

the mobile platform and acquiring an image every 1.5m. 

These datasets include dynamic objects, and in addition, they 

were collected on sunny and windy days, which makes the 

features of images with leaves and shadows unstable. KAIST 

dataset contains three different sequences (North/West/East). 

Each sequence contains 200 images. Images in the KAIST 

dataset were collected while driving a car along the same 

route at different times of the day. Details of the datasets are 

summarized in Table 2. Strong variations about viewpoint 

and condition changes can be found in the datasets. They 

could be great challenges for the hand-crafted feature based 

method to handle these strong variations, and they could be 

good examples to demonstrate the efficiency of the proposed 

approach. 

Table 2. Dataset Descriptions. 

Dataset Environment 
Viewpoint 

Variation 

Condition 

Variation 

NC Campus strong moderate 

CC Downtown strong strong 

KAIST Driving moderate strong 

3.2 Experimental Results 

In this section, we compare our approach with several 

mainstream methods, including the BoVW with hand-crafted 

features like ORB, BRIEF and SURF, and some deep 

learning based methods such as AlexNet, AmosNet and 

HybridNet. In order to evaluate each method, we plot the 

Precision-Recall (PR) curves (Zaffar et al. (2019)) and 

calculate the area under the precision-recall curves (AUC) 

(Zaffar et al. (2019)) by the following formula: 

1
1

1

1

( )
( )

2

M
i i

i i

i

p p
AUC r r









    (9) 

where M represents the number of image sequences, pi 

represents the precision rate at point i and ri represents the 

recall rate at point i. 

The detailed results are shown from Fig. 6 to Fig. 10. The 

AUC score for each method on three datasets are compared 

in Table 3. It is found that 

(1) The performance improvements are obvious by using a 

deep learning based method no matter it is supervised 

(AlexNet, AmosNet and HybirdNet) or unsupervised 

(ours). The reason is that deep learning can auto-

matically extract features and better reflect the essence 

than those hand-crafted features in complex scenes. 
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(2)  Despite the best results on the NC dataset, the proposed 

unsupervised method is found somehow less effective 

than those supervised methods. This is fair because 

supervised learning is more targeted but takes more time 

for training. The performance gap is relatively small and 

completely acceptable. Therefore, it is possible to use 

unsupervised method for loop closure detection, and we 

can benefit a lot since the tedious task of data annotation 

can be totally avoided. In the experiment, our method 

requires only 2,000 unlabelled images. 

(3) From all the figures, it is interesting to find that binary 

feature descriptors are superior to the nonbinary 

descriptors. This is of special significance for loop 

closure detection problem because the binary features 

are more practical in an embedded vSLAM system. 

 
Fig. 6. AUC under PR curves on the CC dataset. 

 
Fig. 6. AUC under PR curves on the NC dataset. 

 

Fig. 7. AUC under PR curves on the KAIST(East) dataset. 

 

Fig. 8. AUC under PR curves on the KAIST(North) dataset. 

 

Fig. 9. AUC under PR curves on the KAIST(West) dataset. 

Table 3 AUC results. 

Methods 
Datasets 

CC NC North East West 

SURF 0.827 0.734 0.610 0.677 0.702 

ORB 0.806 0.735 0.536 0.611 0.662 

BRIEF 0.786 0.730 0.574 0.639 0.675 

Ours(binary) 0.858 0.752 0.656 0.719 0.750 

Ours 

(nonbinary) 
0.834 0.724 0.622 0.686 0.726 

AlexNet 0.864 0.742 0.682 0.787 0.771 

AmosNet 0.865 0.742 0.671 0.749 0.755 

HybridNet 0.867 0.745 0.684 0.778 0.778 

Furthermore, the results of the k-means clustering on local 

image patches from BRIEF, SURF, ORB and the proposed 

approach are studied and visualized through Fig. 11 to Fig. 

14. Due to space limitations, we only selected the first 15 

images of the CC dataset and visualize the clustered results of 

the class 1. The number of cluster center is set as 20. As we 

can find from the results, the local descriptors such as BRIEF, 

SURF, and ORB badly gathered the patches with different 

appearances. It is shown that the proposed approach well 

aggregated local patches with similar appearances. The 

overall effect is much better than the other three methods. 

 

Fig. 11. Clustering results on BRIEF descriptor. 
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Fig. 12. Clustering results on SURF descriptor. 

 

Fig. 13. Clustering results on ORB descriptor. 

 

Fig. 14. Clustering results of the proposed approach. 

Moreover, we examine the influence of the hyperparameters 

in the loss function on the performance. Table 4 shows the 

results. It is obvious that both DP loss function and BRE loss 

function play active roles on the performance improvement. 

We can therefore conclude that the performance of the 

proposed binary GAN can be further improved if we 

carefully tune the hyperparameter 
DP  and 

BRE . 

Table 4 AUC results with different hyperparameters. 

Parameters 
Datasets 

CC NC North East West 

0.5DP  , 0.1BRE   0.858 0.752 0.656 0.719 0.750 

0, 0.1DP BRE    0.752 0.690 0.511 0.522 0.574 

0.5, 0DP BRE    0.768 0.692 0.493 0.512 0.541 

4. CONCLUSIONS 

In this paper, we propose a novel loop closure detection 

approach by incorporating a dedicated binary GAN into the 

BoVW model. This binary GAN model is trained in an 

unsupervised manner without any image annotations. In order 

to extract more discriminative low-dimensional binary 

descriptors, we use the DP loss function to propagate the 

Hamming distance from the high-dimensional feature space 

to the low-dimensional feature space and use the BRE loss 

function to promote the diversity. We compared our proposed 

method extensively with other state-of-the-art methods. 

Powered by the binary feature descriptors, it is verified that 

unsupervised loop closure detection is possible for vSLAM 

even concerning limited computing resource in autonomous 

unmanned systems. 
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