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Abstract: Industrial oscillation recordings are often contaminated with random noise, process
disturbances and underlying nonstationarity, which obscure the useful information of the
signal and complicate subsequent oscillation detection and diagnosis. This paper proposes
a novel denoising technique to improve the quality of oscillation data, by jointly employing
ensemble empirical mode decomposition (EEMD) with canonical correlation analysis (CCA).
The proposed method first utilizes EEMD to decompose the single-loop data into a set of
intrinsic mode functions (IMFs). Then CCA is applied to isolate the oscillation-dependent
components from the decomposed IMFs. We evaluated the performance of the method through
both numerical and industrial examples. The results demonstrate that this work is a promising
tool for oscillation data preprocessing in the single control-loops.
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1. INTRODUCTION

With the increasing demands on product quality and
system performance, modern industrial processes are de-
signed more complicated in both structure and automation
(Chen et al. (2019b)). As a result, the number of oscillatory
loops in process plant keeps steady high even with the
growth of technologies and researches in the area of control
performance monitoring (Bauer et al. (2016)). Although
the statement of Jelali and Huang (2009) affirmed that
oscillation is a solved problem, a recent review (Dambros
et al. (2019)) reported that oscillation is still one of the
most frequent problems in process control, and the last
ten years have witnessed a rapid development of research
activities in oscillation monitoring (Lang et al. (2018)).

One of the main reasons for above research status is that
most of the established oscillation monitoring methods
require the analyzed signal to fulfill certain conditions
that are not always met in practical application (Zhou
et al. (2017); Dambros et al. (2019)). Because of the
feedback control systems, random noise, disturbances and
the nonstationary trend are often presented in both input
and output variables of the process (Dambros et al. (2017);
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Lang et al. (2018)). The presence of these artifacts can
often lead to a decrease in the accuracy of standard
oscillation detection methods and subsequently penalize
their industrial acceptance (Zhou et al. (2017)). It is
important to remove common artifacts from the signal
before oscillation detection by most methods, however,
the research topic on developing applicable preprocessing
techniques is rarely discussed (Dambros et al. (2019)).

Zhou et al. (2017) published the only work exclusively
focused on this topic. The proposed technique aims to
detect and remove transient changes from the oscillatory
time series, which cannot cater for a general denoising
task of the industrial oscillation data. There are indeed
a number of works that made certain improvements on
robustness of their methods to deal with contaminated
data (Thornhill et al. (2003); Naghoosi and Huang (2014);
Xie et al. (2016b); Aftab et al. (2018); Chen et al. (2019a)),
however, such improvements which mostly cover specific
problems, are not portable to other methods.

To resolve above issues, a novel noise removal method,
namely EEMD-CCA, is developed in this study. The
proposed method operates by first decomposing the in-
dustrial recordings via EEMD into several IMFs. Then
CCA is adopted to linearly unmix all IMFs into their
corresponding underlying sources. Thirdly, sources with
low autocorrelation are determined as noise artifacts and
rejected. Finally, the remained sources are reconstructed
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by inverse CCA to produce the noise-free oscillation data.
The effectiveness of the proposed approach is verified by
simulations as well as typical industrial case.

The rest of this paper is organized as follows: Section 2
introduces the methodology of the work. In Section 3, de-
tailed performance analysis and comparison are conducted
on two representative simulations. An industrial case is
studied in Section 4, which is followed by conclusions in
Section 5.

2. METHODOLOGY
2.1 Notion and Problem Description

Our choice of using the EEMD-CCA method for signal
denoising is not trivial or arbitrary. It is motivated by
the prerequisite that an oscillation in the signal is usually
highly autocorrelated (Thornhill et al. (2003); Naghoosi
and Huang (2014)), while other noisy artifacts have rel-
atively low autocorrelations due to their irregular ampli-
tudes and broader frequency spectrum. This is not con-
flict with our intuitive knowledge, due to the fact that
oscillation is heuristically defined as periodic variation
that is not completely hidden in noise (Horch (2007)), or
signal that proposes well-defined amplitude and frequency
(Choudhury et al. (2008)).

Based on above observation, the CCA technique can be
adopted to isolate noise and disturbance from the ongoing
signal, since it aims to find the sources maximally auto-
correlated and meanwhile mutually uncorrelated (Chen
et al. (2015)). However, an important property required to
run CCA is that the number of the signal channels should
greater than or equal to the number of unknown underly-
ing sources, making it unavailable for single-channel (single
control loop) denoising (Sweeney et al. (2012)).

To address this problem, additional signal decomposition
step is needed in order to extend the input channel (Liu
et al. (2019)). Then a two-step denoising strategy can be
developed which involves: (i) A single-channel signal is first
decomposed into multi-channel components using popu-
lar methods such as wavelet analysis or empirical mode
decomposition (EMD) (Huang et al. (1998)); (ii) Those
decomposed multichannel signals are further processed by
CCA to generate meaningful sources. Without a priori
knowledge of the signal of interest, it is hard to select
mother wavelets and decomposition level for wavelet anal-
ysis (Xie et al. (2016a)). In contrast, EMD is completely
data-driven that has been widely used in nonlinear and
nonstationary processes.

In this work, instead of EMD, we propose to use the
EEMD method (Wu and Huang (2009)) for oscillation
data decomposition. The main reason is that EEMD as
a noise-assisted EMD version solves the mode mixing
problem over the univariate time-frequency tools, making
it viable in handling industrial data which is full of noise
and signal intermittency.

2.2 Empirical mode decomposition

The standard EMD can adaptively decompose the input
into a finite set of oscillatory components known as IMFs.

More specifically, for a real valued signal z (¢), the applica-

tion of EMD yields M sets of IMFs, denoted as {d; (t)}?il,
and a monotonic residue r (t), so that

M
P ()= di(t) +r (), (1)

where 7 (¢) is a monotonic function. Detailed procedures
of EMD are summarized in Algo. 1 (Huang et al. (1998)).

Algorithm 1 Algorithm of EMD.

Input: 2'(t)=22(@)=2(t),i=1

1: Find the locations of all the extrema of ' (¢);

2: Interpolate all the maxima (minima) to obtain the
upper (lower) envelop, emax (t) (€min (2));

3: Find the local mean, m (t) = [emin (t) + emax (£)]/2;

4: Subtract the mean from the signal to obtain an oscil-
latory mode, s (t) = x' (t) — m (t);

5. If s(t) obeys the stoppage criteria, d;(t) = s(¢)
becomes an IMF, go to step 6. Otherwise set z! (t) =
s (t) and repeat the process from step 1;

6: Subtract the so derived IMF from z?(t), so that
22 (t) == 22 (t) — d; (t). If 22 (t) becomes a monotonic
function, stop the sifting process with r (t) = 22 (t).
Otherwise, o' (t) = 2% (t), i = i + 1 and go to step 1;

7: return {d; (t)}f\il and 7 (t).

2.8 Ensemble Empirical Mode Decomposition

The frequent appearance of noise and intermittency in
real-world data usually causes mode mixing in EMD,
where mode mixing is defined as either a single IMF
consisting of widely disparate scales, or an amplitude fre-
quency modulated oscillation residing in different IMFs
(Wu and Huang (2009)). To alleviate this problem, en-
semble empirical mode decomposition (EEMD) has been
proposed by performing the EMD over an ensemble of the
signal plus white Gaussian noise (wGn), and then treats
the ensemble means of the corresponding IMFs as the
final EEMD results, mode-by-mode. The aim of adding
noise is to homogenize the scale in time-frequency space,
which enables the natural filter bank of EMD to filter the
intrinsic local oscillations adaptively to proper scales and
thus restrain mode mixing.

Consider a real valued signal x (t) with predefined noise
amplitude € and ensemble size N (they usually take values
of e = 0.2 and N = 100 as recommended by Wu and Huang
(2009)), the procedures of EEMD is outlined in Algo. 2
(Wu and Huang (2009)).

2.4 Canonical Correlation Analysis

CCA is a blind source separation technique which solves
the separation by forcing the sources to be maximally
autocorrelated and mutually uncorrelated (Chen et al.
(2015)). Let X; (t) € RM*T be the observed data ma-
trix with M channels and T' observations, and X, (t) =
X1 (t — 1) be a temporally delayed version of the original
data, CCA aims to find two sets of basis vectors w; and
wa, one for X; (¢) and another for Xs (t), such that the
correlations p between the projections of the variables onto
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Algorithm 2 Algorithm of EEMD.
Input: =« (t), e, N.
1: Generate the ensemble y, (t) = z(t) + ew, (t) for
n=1,...,N, where w, (t) ~ N (0,1);
2: Decompose every member of y,, (t) into M,, IMFs using
EMD (Algo. 1), to yield the set {d™ (¢)}"";

3: Assemble same-index IMFs across the erllsémble using
the mean operator to obtain the final IMFs within
EEMD:; for instance, the mth IMF is computed as
d; (t) = mean {dl1 t),d?(t),...,d¥ (t)};

4: return {d; (t)}fvil and r (¢).

these basis vectors are mutually maximized. This leads to
the following objective function maximizing the correla-
tion between the linear combination of the components in

X (t) and X ():

E[S’{SQ]
t t) = ——L2
argv{}}"c}’vﬁp(m (t),s2(t) E[sTs1|E[sT 5] (2)
— WTC]QW‘Z ’
V/WTCriwi /Wl Caaws

where s1 (t) = wi X, (t) and s, (t) = wiXy (t) denote
the first pair of canonical variates (sources), Cq; and
Cqs are the auto-covariance matrices of X (¢) and X5 (),
respectively, and Cis is the cross-covariance matrix. The
solutions to this maximization problem can be derived by
setting the derivatives of (2) with respect to w; and wo
to zero, yielding following eigen decomposition problem
(Sweeney et al. (2012)):

{ C1_11012C2_21021W1 = p2W1 (3)
C55 C2C'Craws = p*wy

where p? denotes the eigenvalue and w; and w, are the
corresponding eigenvectors. By following the same idea,
the second pair of canonical variates can be obtained
by solving the same eigen decomposition problem with
additional constraint that they are uncorrelated with the
first pair of variates. The subsequent pairs of canonical
variates can again be derived according to (3), restricted
to the condition that the variates are uncorrelated with all
previously found variates. In doing so, typically M pairs
of canonical variates (sources) can be derived from the
combination of X; (¢) and X5 (), which are denoted as:

{Sl<t): 3%@);3%(75)%“;5{%(“ (4)
Sy (t) = [s5(t);85(t);...;857 (8)]

with their corresponding unmixing matrices:
Wi = [(wh) 5 (w5 (i)

Wy = |[(wd) s (wd) s (wi)

According to their definitions, we have S; (t) = WX (¥)
and Sz (t) = W2Xs (t). Note that the corresponding rows
between S; (t) and S (t) are highly correlated, while the
rows within each individual matrix are uncorrelated with
each other. In addition, the rows in S; (¢) are sorted in
terms of their autocorrelation p?, which is computed as
1 T
= sS)—pt)(sit—1)—p 6
P = e 0 ) (- -, ©

()

where o and p' denote the standard deviation and mean
of st (t), respectively. Due to the relatively low autocorre-
lation, CCA is able to isolate the noisy artifacts into the
first several source components. Consequently, removal of
the noise can be accomplished in a manner that the rows
of Si (t), which represent the artifacts in the industrial
recordings, are set to zero before performing the recon-
struction (Liu et al. (2019)).

2.5 Proposed EEMD-CCA Method

The proposed EEMD-CCA based denoising scheme is a
combination of EEMD and CCA, which is actually a two-
step modeling method.

Firstly, the industrial oscillation data x (¢) is decomposed
into a multichannel signal X (¢) using the EEMD algo-
rithm. In order to reduce the impact of nonstationary
trend on oscillation monitoring, the residual signal r (¢)
is removed. As a result, X (¢) only contains the M sets of
IMFs, ie, X (t) = [d1 (t);da (t);...;dwm (2)]

Secondly, CCA is applied to the multichannel signal X ()
to obtain the unmixing matrix W and source matrix S (¢),
in which the rows of the latter are sorted orderly from low
to high according to their autocorrelation.

Thirdly, the first several sources of S (¢) that correspond-
ing to the noise components are set to zero, yielding the
cleaned source matrix S (¢). By leveraging the observation
that noise component has lower autocorrelation as com-
pared to the oscillatory component, a threshold of py = 0.9
is designated to separate the noise from the oscillation
of interest. In practice, according to our experience, the
threshold between 0.75 and 0.9 will lead to good results
for most cases.

Finally, the cleaned multichannel signal X (t) can be
reconstructed by multiplying the mixing matrix A =
W~ with the cleaned source matrix S (¢). The denoised
oscillation data Z (t) are eventually computed by summing
the updated IMFs (rows) in X (¢). To elaborate the details
of the proposed EEMD-CCA method, we summarize the
entire procedures of the algorithm in Algo. 3.

We highlight that by doing the cleaning and reconstruction
using only the EEMD decomposed IMFs is not enough
to achieve a desired cancellation of the noise. Since these
IMFs usually contain both the oscillatory components and
the noise artifacts, the direct rejection of any IMF will
result in the potential loss of oscillations or residue of
noise activities. To verify this claim, an oscillation plus
wGn signal is constructed as given by

x1 (t) = sin (27 ft) + dw (¢) (7)

in which § denotes the amplitude of the added noise and
w(t) ~ N(0,1). If we set § = 0.3, f = 6, fs = 1000
(sampling rate), and T = 1000 (data length), a typical
decomposition of x; (t) via EEMD is shown in Fig. 1. It
is observed that the fundamental wave is split into ds(t)
and dg(t), and each of them is a mixture of the oscillation
and noise. Since the morphological characteristics of the
oscillation in these two modes are slightly distorted, it
is hard to accurately reconstruct the cleaned signal by
directly using the decomposed IMFs.
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Algorithm 3 Algorithm of EEMD-CCA.

Input: =z (¢) and po.

1: Decompose a set of averaged IMFs as the final output
of EEMD, i.e., X (t) = [dy (t) ;da2 (t);...;dp (B)];

2: Utilize X (¢) as the input of CCA to derive the source
matrix S (t) = [s1 (¢);82(t);...;sam (t)] and the un-
mixing matrix W;

3: Calculate the autocorrelation for each row of S (i),
yielding p = [p1; pa; .. .5 pm].

4: Initialize S (t) = S (¢), then:
fori=1: M do

if p; < po do
end if
end for

5: Reconstruct the cleaned multichannel signal X (t) =
[cil (t)1da (t);...:dy (t)] by performing W18 (t)

6: Compute the denoised data using Z (t) = Zf\il d; (t);
7: return I (t).

—
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1. Typical decomposition of () using EEMD. Note
that all IMFs (d;(t)-ds(t)) will be treated as the input
of the CCA method for calculating the canonical
variates, although the last two IMFs are almost zero.

Fig.

We next investigate the autocorrelations of all EEMD-
based IMFs, where the coefficients against the IMF indices
are plotted in the black dashed-line shown in Fig. 2. Obvi-
ously, the largest autocorrelation coefficient among them
is 0.22. Such a low value further confirms our statement
that EEMD is unable to directly separate the oscillation of
interest from the original data. In comparison, the autocor-
relations of the CCA transferred sources are calculated as
depicted by the red solid-line. Owing to the ability of CCA
of forcing the sources to be maximally autocorrelated and
mutually uncorrelated, the underlying oscillation structure
can be captured, ensuring a good denoising performance.

1 ‘
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Fig. 2. Autocorrelations with different approaches.

2.6 Contribution of This Paper

The main contribution of this work is that we propose a
novel denoising scheme for oscillation data preprocessing
from industrial control systems. In addition to improving
the accuracy and reliability of existing methods for oscilla-
tion monitoring, the proposed method also can help reduce
uncertainties in the measurement process, thus relaxing
instrument front-end design constraints and enhancing the
reliability of instrument systems.

Although the combination of EEMD and CCA has al-
ready shown effectiveness for motion and muscle artifacts
removal in single-channel EEG recordings (Sweeney et al.
(2012)), this work is the first attempt to introduce EEMD-
CCA into the field of oscillation monitoring for industrial
data denoising. Moreover, by comparing with the work
proposed by Sweeney et al. (2012), our method highlights
following differences:

(i) To reconstruct the clearer EEG from the high-frequency
dominated signal, Sweeney et al. (2012) used lower noise
amplitude and ensemble size for EEMD implementation,
i.e., e = 0.1 and N = 5. For oscillation data denoising,
however, the method needs much higher parameters (¢ =
0.2, N = 100) since the signal is mainly dominated by
low-frequency oscillations (Wu and Huang (2009)).

(ii) The residual signal r (¢) is removed from the EEMD
decomposition, enabling the proposed method to detrend
the industrial data, thus reduce the impact of nonstation-
ary trend on oscillation monitoring.

(iii) The pure EEG is mainly located in frequency bands
ranging from 1 to 30 Hz. In contrast, the oscillation is con-
sidered as a signal with well-defined and fixed frequency
(or narrow-band signal with a small frequency variation).
This observation indicates that the difference between the
oscillation and the noise component on autocorrelation is
more significant than the difference between EEG and arti-
fact, which suggests that the effectiveness and advantages
of EEMD-CCA may be more prominent for denoising the
industrial oscillation data.

3. PERFORMANCE ANALYSIS AND COMPARISON

In this section, we set out to analyze the denoising per-
formance of the proposed method on two representative
signals: (i) a mono-component oscillation contaminated by
both noise and trend, (ii) a nonlinearity-induced oscillation
which is synthesized with noise, fundamental wave and
two harmonics. To demonstrate the effectiveness of this
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work, the EEMD-based reconstruction is included as a
competing technique. Since the autocorrelations of EEMD-
IMFs are relatively low, a threshold of 0.15 is empirically
used for the EEMD scheme to separate the noise artifacts
from oscillation components.

3.1 Oscillation with Noise and Trend

The numerical signal used in this section is similar to (7),
except that one quadratic trend is added, as given by

T (t) = sin (27 ft) + 0.5t + 0.5t + dw (1) . (8)

By initializing 6 = 0.5, f = 5, fs = 1000 and T = 1000,
typical realizations of both the EEMD and EEMD-CCA
based denoising methods are shown in Fig. 3. From visual
inspection, both methods show abilities of denoising and
detrending, while the EEMD-CCA based scheme seems to
yield a better reconstruction. However, more general and
quantitative evidences should be provided in order to show
the true usefulness of the proposed method.

Signal
] [\

'
[\

0 0.2 0.4 0.6 0.8 1

~
:

[\
T

(=]
T

Denoised

'
[\

0.2 0.4 0.6 0.8 1
Time (s)

(=]

Fig. 3. The original signal and the denoised ones. Top:
dashed-line for the original signal x5(t), solid-line for
the oscillation sin (27 ft); Bottom: dotted-line for the
EEMD denoised signal, solid-line for the EEMD-CCA
denoised signal.

To cater for this requirement, we study the performance
of EEMD and EEMD-CCA quantitatively, using multiple
realizations of xs (t) with different frequency f and wGn
sequences. The frequency value of sin (27 ft) is designed to
vary from 3 to 10 with an interval of 1. Then for each of the
frequency setting, 1000 realizations of EEMD and EEMD-
CCA based denoising are carried out to yield their respec-
tive denoised oscillation data. The performance is mea-
sured using the Pearson correlation coeflicient and root
mean square error (RMSE) in the task of reconstruct-
ing sin (27 ft) from the original signal. Given paired data
{(z1,91),---,(@n,yn)} consisting of n pairs, the Pearson
correlation metric 5, is defined as

B E?:1 (r; — ) (yi — 9)
oy = : -, )
VI - 2%, (- 9)

where T and 3 denote the sample means. Additionally,
RMSE is defined as

RMSE = (10)

Accordingly, the one with the higher Pearson correlation
and lower RM SE is the better method for industrial data
denoising. The averaged correlation and RMSFE indices
computed under different frequencies are plotted in Fig. 4
and Fig. 5, respectively.

s 11 ¥ I I z I I I
E ?T} R B
[5) AN ,
: e
0 0.8r ¥ 1
g
2
2]
S | -# ‘EEMD |
~ 0.6 ~-EEMD-CCA

4 6 8 10

Frequency (Hz)

Fig. 4. The performance comparison between EEMD and
EEMD-CCA in terms of Pearson correlation coeffi-
cient for x4 (t) denoising.

05F -} EEMD
—-EEMD-CCA

RMSE

4 6 8 10
Frequency (Hz)

Fig. 5. The performance comparison between EEMD and
EEMD-CCA in terms of RMSE for x5 (t) denoising.

As evidenced, the proposed EEMD-CCA method exhibits
superior performance for all of the tested frequencies. More
specifically, it observes higher mean but lower standard de-
viation on the Pearson correlation statistics, while showing
lower mean and standard deviation on RMSE statistics.
This experiment indicates that EEMD-CCA is an effec-
tive enhancement tool for industrial oscillation data. We
highlight that the extent of the nonstationarity trend has
little effect on denoising performance of the method, since
it has been extracted and removed as the residual during
the EEMD process.

8.2 Nonlinearity-induced Oscillation

Here, the oscillation model is borrowed from Chen et al.
(2019a), which is formulated as

x5 (t) = 2 [sin (27 ft) 4 sin (67 1) + sin (107 f1)]

tow(). D

Through this simulation, the proposed method can be
more comprehensively examined in terms of multiple os-
cillations detection and nonlinearity-related harmonics ex-
traction. The denoising results of a typical realization of
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x3(t) for both EEMD and EEMD-CCA based methods
are plotted in Fig. 6, with the configuration of é = 0.25,
f =6, fs = 1000 and T" = 1000. In this case, the proposed
method shows considerable superiority, due to the obser-
vation that the EEMD-based denoising only preserved the
fundamental wave, while the EEMD-CCA one retained
both the fundamental and harmonic components.

- - -'Original Signal — Oscillation Signal‘
2r .

Signal

0 0.2 0.4 0.6 0.8 1
4

= | EEMD — EEMD-CCA | |
227 1
s e
5 0
A

2 I I I I

0 0.2 0.4 0.6 0.8 1
Time (s)

Fig. 6. The original signal and the denoised ones for z5(¢).
Top: dashed-line for the original signal, solid-line for
the combination of the oscillations; Bottom: dotted-
line for the EEMD denoised signal, solid-line for the
EEMD-CCA denoised signal.

Similar to Section 3.1, we also investigated statistical ev-
idences of the performance of both methods in denoising
signal x3(t). Fig. 7 and Fig. 8 are corresponding aver-
aged results (from 1000 independent experiments) for the
Pearson correlation coefficient and RMSE, respectively,
with the objective of separate all nonlinearity-related os-
cillations from the original data. As evidenced, the pro-
posed method consistently outperforms the EEMD-based
denoising for all frequency settings in terms of the higher
correlations and lower RM SE values.

=0.98 ¢ 1
.2
S
5 0.96 ]
3 k.
O ST N ]
2 B § .
$0.92¢ 1
- -# EEMD {

0.9 ' 4-EEMD-CCA 1

4 6 8 10
Frequency (Hz)

Fig. 7. The performance comparison between EEMD and
EEMD-CCA in terms of Pearson correlation coeffi-
cient for z3 (t) denoising.

This study shows that the proposed method is empirically
a good choice for denoising signals synthesized by har-
monics, which may facilitate the subsequent detection and
diagnosis of nonlinearity-induced oscillations.

0.5 -% EEMD ‘ 1
—+-EEMD-CCA ,,I~ -. }

0.4 . ey ]
y = /I____'__,:’ b
© 0.3 Y 1
2

0.2 1

0.1 1

0 I I I I
4 6 8 10

Frequency (Hz)

Fig. 8. The performance comparison between EEMD and
EEMD-CCA in terms of RMSE for x3 (t) denoising.

4. INDUSTRIAL CASE STUDY

A typical industrial case is presented in this section to
demonstrate the effectiveness of the proposed method for
industrial oscillatory data denoising. The data set under
study is borrowed from Jelali and Huang (2009), which
is recorded from a level control loop in a chemical plant
(chemicals.loopl0.pv). The uncompressed nonlinear data
are sampled from the output of the control system every 1
second, and it was known a priori that the control valve in
this loop contained stiction (Jelali and Huang (2009)). Fig.
9 shows the original time series and its cleaned versions by
both the EEMD and EEMD-CCA based schemes.

From manual inspection, it is observed that the process
data does not contain obvious harmonics. This is not un-
usual because this quantified stiction is termed as apparent
stiction, whose siction effect has been smoothed due to the
influence of loop dynamics and the regulate action from
the controller (Jelali and Huang (2009)).

With respect to the denoised data, we observe that the
cleaned oscillation obtained from the proposed method ex-
hibits the best fitting to the oscillation behavior underlying
the original signal. In contrast, the EEMD-based method
shows compromised capability of noise reduction, since the
oscillatory component has split into several scales and then
mixed with the corresponding noise components.

—Original Signal
2+ ----EEMD Denoised H
—EEMD-CCA Denoised

Denoised Signal

0 200 400 600 800 1000
Time (s)

Fig. 9. The original industrial data and its cleaned versions
by different methods.

To further verify the usefulness of this work, we use power
spectral density (PSD) which describes the distribution
of power into frequency components to evaluate the de-
noising performance. Due to the lack of ground truth of
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the cleaned oscillation, PSD is an appropriate tool for
qualitative performance comparison. The PSD results are
shown in Fig. 10, from which we can see that the EEMD-
based method has rejected both the oscillation and noise
components during the reconstruction. On the contrary,
our proposed approach prohibits the loss of useful infor-
mation, while largely suppresses the noise components.

150 ; : :
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g —EEMD-CCA Denoised
A 100t
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&
5 50 Noise component
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~ /
0 L L K ! L L L
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Frequency (log2)

Fig. 10. PSD of the original data and the cleaned ones by
different methods. In this figure, the blue curve (input
signal) is almost covered by the red curve (EEMD-
CCA denoised signal) in frequency interval f < 276,

5. CONCLUSION

A novel method that incorporated EEMD with CCA has
been proposed in this paper to reject noise artifacts of
the industrial oscillation data. The approach was used
to denoise the process measurements prior to applying
the oscillation detection and diagnosis methods. We have
verified the practicality of this work through extensive
simulations as well as industrial case. Since EEMD-CCA
can be applied in nonlinear and nonstationary processes,
our contribution may change the conventional ways of
data cleaning, which may further benefit the data-driven
monitoring of industrial control systems.

Of course, there still exists some issues we have not
discussed. For instance, more statistical studies should be
carried out in order to determine the proper ensemble size
and the amplitude of the added noise for the proposed
method. Moreover, this work still needs to be verified in a
wide variety of real-world applications.
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