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Abstract: Autonomous intersection management (AIM) refers to planning cooperative trajectories for 

multiple connected and automated vehicles (CAVs) when they pass through an unsignalized intersection. 

In modeling a generic AIM scheme, the predominant network-level or lane-level methods limit the 

cooperation potentiality of a multi-CAV team because 1) lane changes are forbidden or only allowed at 

discrete spots in the intersection, 2) each CAV’s travel path is fixed or selected among a few topological 

choices, and 3) each CAV’s travel velocity is fixed or set to a specified pattern. To overcome these 

limitations, this work models the intersection as a continuous free space and describes an AIM scheme as 

a multi-CAV trajectory optimization problem. Concretely, a centralized optimal control problem (OCP) 

is formulated and then numerically solved. To derive a satisfactory initial guess for the numerical 

optimization, a priority-based decentralized framework is proposed, wherein an x-y-time A* algorithm is 

adopted to generate a coarse trajectory for each CAV. To facilitate the OCP solution process, 1) the 

collision-avoidance constraints in the OCP are convexified, and 2) a stepwise computation strategy is 

adopted. Simulation results show the efficacy of the proposed offline AIM method. 

Keywords: Autonomous intersection management (AIM), connected and automated vehicles (CAVs), 

trajectory planning, numerical optimization, computational optimal control 



1. INTRODUCTION 

An intersection is a typical scenario that reflects the inherent 

conflicts among multiple vehicles when their nominal routes 

intersect. Connected and automated vehicles (CAVs) have 

brought about promising chances to resolve the conflicts 

through their cooperative driving capability. This paper is 

focused on the autonomous intersection management (AIM) 

scheme, which is about planning the cooperative trajectories 

for multiple CAVs when they pass through an unsignalized 

intersection (Rios-Torres and Malikopoulos, 2016). The 

predominant AIM methodologies cannot sufficiently exploit 

the cooperation potentiality of a CAV team. This work aims 

to overcome this limitation. 

AIM related studies began from (Dresner and Stone, 2008), 

wherein the trajectory of each CAV is sequentially planned 

with a first-come-first-serve (FCFS) strategy. Several rules 

are defined to plan the trajectory for each CAV, which 

support lane changes and velocity changes. These rules, 

compared with some subsequent studies, bring about 

flexibility in the vehicles’ mobility. Vehicle travel behaviors 

under such rules appear to be near-optimal, i.e., resemble the 

optimal solutions derived by optimal control. Most of the 

subsequent studies, nonetheless, only focus on how to derive 

an optimal passing order and/or how to plan optimal 

velocities for the fixed-path vehicles. Mirheli et al. (2019) 

proposed an iterative framework to determine the velocity of 

each CAV along a specified path through solving a mixed-

integer non-linear programming (MINLP) problem. The 

iterative process continues until consensus is achieved. 

Mirheli et al. (2018) formulated the multi-vehicle velocity 

planning problem as a mixed-integer linear programming 

(MILP) problem and solved it via Monte Carlo tree search. 

Similarly, Levin et al. (2017) derived the passing order and 

intersection entrance time simultaneously for all the CAVs 

through solving an MILP problem. Xu et al. (2018) projected 

the vehicles into a virtual lane, determined the passing order 

through a geometry topology method, and then designed a 

distributed controller to generate the time-continuous 

trajectories. Malikopoulos et al. (2018) decentralized the 

multi-vehicle velocity planning scheme into a sequential 

form and provided analytical solutions to the corresponding 

single-vehicle planning problems. Zohdy et al. (2012) 

defined two preparation zones for each CAV before it would 

enter the intersection, and then planned the velocity via a 

simulator-in-the-loop optimizer. Kamal et al. (2013) 

developed a model predictive control (MPC) approach to 

determine the cooperative velocity profiles as well as the 

passing order. Similar works include (Lin et al., 2017; Liu et 

al., 2019). 

The aforementioned AIM methods are featured by 1) the 

CAVs’ paths are fixed or restricted to predefined patterns, 2) 
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the CAVs’ velocities are set to be constant or restricted to 

typical patterns, and 3) trajectories of the whole team are not 

simultaneously planned. These features, although may 

enhance the real-time performance of an AIM method, render 

that the spatial-temporal intersection space is not sufficiently 

utilized. 

This work aims to maximize the cooperation capability of a 

multi-CAV team and the spatial-temporal potentiality of the 

intersection in a generic AIM problem. To that end, we 

describe the AIM scheme at a microscopic level through a 

centralized optimal control problem (OCP), which is about 

simultaneously planning trajectories for all the CAVs. In the 

OCP, the CAVs are allowed to change their lanes and adjust 

the velocities flexibly. Through efficiently solving this OCP 

offline, we expect to exploit the ideally cooperative 

performance in a generic AIM scheme. 

2. OPTIMAL CONTROL PROBLEM FORMULATION 

In this section, an AIM scheme is described as an OCP, 

which is about minimizing a cost function, subject to several 

types of constraints. 

2.1 Vehicle Kinematics 

Suppose there are NV CAVs simultaneously passing through 

an intersection. A bicycle model is adopted to describe the 

mobility of vehicle i 
V( 1,..., N )i  : 
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where 
ft  stands for the fixed completion time, the other 

variables are defined according to (Li et al., 2018), and 
WL i

 

denotes the wheelbase of the ith CAV (Fig. 1). 

Boundaries are imposed on some variables throughout 
f[0, t ] : 

max( ) a ,i ia t      (2a) 

max0 ( ) v ,i iv t      (2b) 

max( ) ,i it      (2c) 

max( ) .i it      (2d) 

Herein, 
maxa , 

maxv , 
max , and 

max  respectively represents 

the upper bounds on ( ) ,  ( ),  ( ) ,  and ( ) .i i i ia t v t t t   

2.2 Drivable Region Constraints 

Each type of CAV is restricted to travel in partial regions of 

the entire intersection space. Before presenting the details, we 

classify all the CAVs according to the directions they enter 

and exit the intersection. As depicted in Fig. 2, 12 types of 

travel behaviors are defined. Herein, each index set records 

the IDs of CAVs that fall in those groups. 

As an example, the drivable regions of vehicles A1, A2, and 
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Fig. 1. Kinematic model of a front steering CAV. 
BL i

,
RL i

, 

WL i
, and

FL i
determine the geometric shape of CAV i. We 

use two discs to evenly cover the rectangular vehicle body. 

The disc centres are denoted as 
riC  and 

fiC . 
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Fig. 2. Schematics on intersection setup and CAV 

classification. Lroad_width denotes the length of each road (a 

road consists of multiple lanes), and Lstreet_length denotes the 

length of each street block. 
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Fig. 3. Drivable regions and allowable trajectories for A1, 

A2, and A3 vehicles. 
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Fig. 4. Schematics on within-drivable-region constraints for 

A1 vehicles: (a) standard drivable region formulation; (b) 

simplified street block region via inscribed circles. 
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A3 are plotted in Fig. 3. A1 vehicles denote the ones that 

enter from west and exit towards north. The drivable regions 

of A1 vehicles additionally contain the regions on the 

opposite roads, which is different from the current traffic 

laws. The settings for A2 and A3 are also expanded, thus the 

trajectories shown in Fig. 2 may appear. The expanded 

regions render extra flexibilities for better cooperative 

performances of the multi-CAV team. 

Next, we would introduce how to formulate the drivable- 

region constraints. Let us take A1 vehicles as an example. 

For each CAV A1i , staying within the defined drivable 

regions is identical to 1) vehicle i stays within the dashed-line 

box region plotted in Fig. 4a, and 2) vehicle i does not collide 

with Block 1. Herein, the second condition, which calls for a 

precise collision-avoidance constraint between a rectangular 

CAV and a rectangular street block, is overly complicated (Li 

and Shao, 2015), and thus is simplified via convexification. 

Concretely, we use a couple of inscribed circles to 

approximate the rectangular region of Block 1 (Fig. 4b). Also, 

we use two equal-sized discs to evenly cover the rectangular 

body of the vehicle (Fig. 1). With such approximations, the 

collision-avoidance constraint between vehicle i and Block 1 

becomes that neither disc overlaps with any circle in the 

environment. In contrast with the rectangle-to-rectangle 

constraints which are highly nonlinear and almost non-

differentiable (Li and Shao, 2015), the convexified circle-to-

circle constraints are easier. We use inscribed circles to 

approximate one street block. The radii of the circles form a 

geometric series (the common ratio is 0.5), and the centers of 

these circles can be easily determined offline. 

Now that vehicle i has been represented by two discs, the 

within-box-region constraint (see Fig. 4a) is identical to the 

condition that both disc centers keep above the horizontal 

line 
road_widthL R ,iy    and keep left to the vertical line 

road_widthL R ,ix    wherein R i
 denotes the radius of either 

disc (Li and Zhang, 2018). The drivable regions for the rest 

11 categories can be defined similarly. The details are 

omitted. 

2.3 Collision-Avoidance Constraints 

While each CAV travels in its specific drivable regions, it 

needs to avoid collisions with other moving CAVs as well. 

This is achieved through requiring that either disc of one 

CAV does not overlap with the discs of another CAV at 

every moment during 
f[0, t ] . 

2.4 Initial and Terminal Moment Constraints 

At the initial moment 0t  , the driving status of CAV i, i.e., 

 (0), (0), (0), (0), (0), (0), (0) ,i i i i i i ix y v a   is set as per the 

ground truth. At the terminal moment 
ftt  , each vehicle is 

required to travel stably for safety: 

   f f f f commom V(t ), (t ), (t ), (t ) v ,0,0,0 ,  1,..., N ,i i i iv a i    (3) 

where vcommon is a common velocity being safe for all the 

CAVs when they all have exited the intersection. Besides that, 

each CAV should reach a specific region at the terminal 

moment. Let us take A1 as an example again, the A1 vehicles 

should stay within the red corridor marked in Fig. 5, and 

travel along the direction of the corridor. The terminal region 

and orientation of the rest 11 categories are defined similarly. 
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Fig. 5. Terminal corridor for each category of CAVs. 

2.5 Cost Function 

We expect that the CAVs to travel smoothly during 
f[0, t ] . 

This is achieved by minimizing each ( )ia t  and ( )i t : 
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Also, we hope the CAVs would go far in their terminal 

directions, thus a distance cost function 
2J  is formulated: 

2 f f
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The overall cost function is a weighted sum of J1 and J2: 

1 2w ,J J J         (5) 

wherein w 0  is a weighting parameter that balances the 

smoothness penalty and the going-far encouragement. 

2.6 Overall Formulation 

With the aforementioned elements summarized, our 

concerned multi-CAV cooperative trajectory planning 

scheme is described as the following OCP: 

Minimize (5),

s.t.  Kinematic constraints;

      Drivable-region constraints;

      Boundary constraints;

      Collision-avoidance constraints.

  (6) 

3. NUMERICAL SOLUTION TO OPTIMAL CONTROL 

PROBLEM 

3.1 Basic Solution Procedures 

Since an analytical solution to (6) is not available, we aim to 

find a numerical solution instead. Concretely, (6) is 

discretized into a nonlinear program (NLP) problem, and 

then solved by an NLP solver. In forming the NLP problem, 

a collocation-based approach is adopted, which requires that 

both the control and state profiles are discretized and taken as 

the decision variables. A collocation-based strategy has some 

merits w.r.t. solution stability and high order accuracy 
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(Biegler, 2010). This work adopts the explicit first-order 

Runge-Kutta (EFRK) method to convert (6) into an NLP 

problem. 

The interior-point method (IPM) is utilized to solve the 

formed NLP problem. As a barrier-function based optimizer, 

IPM converts the constraints into interior-penalty 

polynomials, which are added to the objective function 

thereafter, thereby building an unconstraint optimization 

problem. Through solving that problem with the barrier 

multiplier iteratively converges to 0+, a local optimum can be 

derived finally. Compared with the active-set based NLP 

solvers, IPM is featured by consistently bearing all the 

constraints “in the mind”, thus is particularly suitable for the 

NLP problems with really complicated constraints. 

In general, an NLP solution process largely relies on the 

initial guess (also known as the starting point) from which the 

iteration begins. An initial guess production approach is 

proposed in the next subsection. 

3.2 Initial Guess Generation via A* Search 

An initial guess refers to a solution from which an NLP 

optimization process begins. A near-optimal or even a near-

feasible initial guess could largely ease the NLP solution 

difficulty while a poor initial guess may mislead the 

convergence towards infeasibility. 

An initial guess, in our concerned scheme, is represented by 

NV coarse trajectories as well as the corresponding 

state/control profiles for the CAVs. The coarse trajectories 

are computed sequentially, wherein each coarse trajectory is 

produced by an x-y-time A* search algorithm. Herein, all the 

CAVs are prioritized by their expected time to exit the 

intersection. For each CAV, a lower priority would be set if it 

is likely to exit the intersection at a later moment. In each 

coarse trajectory search, the CAVs with already searched 

trajectories are fixed as moving obstacles in the environment. 

The rest part of this subsection elaborates on the principle of 

the x-y-time A* search algorithm. It is an extension of the 

standard x-y A* algorithm by adding the time profile as the 

third search dimension. The new algorithm differs from the 

standard A* algorithm in the following aspects: 1) node 

expansion in the time dimension is strictly monotonous 

because time flows forward in a uniform pace; 2) the goal 

node is not a specified point but a manifold with specified 

ft ,t  which means the vehicle must at least “survive” until 

the terminal moment tf; 3) a nominal goal node for each CAV 

is set as the location it should reach if it travels along its 

reference line in an empty intersection until 
ft ,t  then the 

Manhattan distance function still works to measure the cost-

to-go value with such a nominal goal node; and 4) each node 

additionally records the orientation angle of the vehicle, 

which is coarsely estimated according to the locations of the 

current node and its parent in the 2D Cartesian space. 

As a preliminary step, the continuous x-y-time space is 

abstracted uniformly in each dimension so as to form a grid 

map G, wherein each grid is called a node. The nodes 

occupied by the moving/static obstacles are marked. The 

initial node and a nominal goal node should be specified. 

Denoting the cost-to-come function as ( ),g  the cost-to-go 

function as ( ),h   the gross cost function as f g h  , and 

the Manhattan distance function as ( ,  )L   , we present the 

pseudo-code of x-y-time A* search algorithm as follows. 

Algorithm 1. x-y-time A* Search Algorithm 

Input: Gridmap with occupied grids marked, initial node 
initnode , and 

nominal goal node 
endnode ; 

Output: An initially guessed coarse trajectory Traj; 

1. Initialize OPEN  , and CLOSED ; 

2. Set init . 0node g  , init . Nullnode parent  , calculate init .node h  and 

init . ,node f  add 
initnode  to OPEN; 

3. Initialize 
best_so_far Nullnode  , and 0flag  ; 

4. while    OPEN 0flag  , do 

5.     Find 
currentnode  such that 

current

current
OPEN

arg min .
node

node f


; 

6.     Move 
currentnode  from OPEN to CLOSED; 

7.     for each expanded child (denoted as 
childnode ) of 

currentnode , do 

8.         if 
child  CLOSED,node   then 

9.             continue; 

10.         end if 

11.         if 
child  OPEN,node   then 

12.             Calculate current current child* . ),(g node g node nodeL  ; 

13.             if 
child* .g node g , then 

14.                 Reset 
child current.node parent node , 

child. *node g g ; 

15.                 Update 
child.node f  and child.node  ; 

16.                 Update 
childnode  in OPEN; 

17.             end if 

18.         else 

19.             Calculate 
child child child child. ,  . ,  . ,  .node g node h node f node  ; 

20.             if 
childnode  is subject to collisions, then 

21.                 Move 
childnode  to CLOSED; 

22.                 continue; 

23.             else 

24.                 Add 
childnode  to OPEN; 

25.                 if 
child endnode node  or 

child f. tnode time  , then 

26.                     Set 1flag   and 
best_so_far childnode node ; 

27.                     break; 

28.                 end if 

29.             end if 

30.         end if 

31.     end for 

32. end while 

33. Backtrack the ancestors of 
best_so_farnode  recursively until Null is found, 

inversely place them to form Traj, and then output Traj; 

34. return. 

3.3 NLP Solution Facilitation Strategy 

The NLP solution process begins from the initial guess 

derived by the preceding subsection. A strategy is adopted in 

this subsection for further easing the NLP solution difficulties. 

Intuitively, a generic way to handle a difficult optimization 

problem is to decompose it into easier ones. In our concerned 

cooperative trajectory planning task, the primary difficulties 

lie in the large-scale collision-avoidance constraints. We 
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temporarily remove all the vehicle-to-vehicle collision-

avoidance constraints and add them back incrementally until 

a feasible solution is derived. The detailed procedures are 

presented in (Li et al., 2019). 

3.4 Overall AIM Method 

As a summary of the aforementioned two sections, the 

complete AIM principles are depicted in Fig. 6. 

Start

Formulate an AIM-oriented OCP in the form of (6)

Convert the OCP into an NLP problem via EFRK

Generate an initial guess for the NLP via Algorithm 1

Solve the NLP via IPM and a stepwise facilitation strategy

Output the derived optimal solution

End  

Fig. 6. Flowchart of the proposed AIM method. 

4. SIMULATION RESULTS AND DISCUSSIONS 

Simulations were performed in MATLAB 2019a and 

executed on an i5-7200U CPU with 32 GB RAM that runs at 

2.50×2 GHz. A benchmark set containing 50 cases is formed. 

In each case, the CAVs’ initial configurations and driving 

intensions are randomly specified. Basic parametric settings 

are listed in Table 1. More details about the parametric 

settings and the benchmark case setups are provided at 

https://github.com/libai1943/AIM_COCP. 

Table 1. Parametric settings for model and approach. 

Parameter(s) Description Setting(s) 

NV Number of CAVs 24 

W R

F B

L ,  L ,

L ,  L

j j

j j

 
Geometric size of each CAV 

V( 1,..., N )j   
2.80 m, 0.929 m 

0.96 m, 1.942 m 

ft  Specified terminal moment 10.0 s 

max max

max max

a ,  v ,

,  

j j

j j 
 

Bounds on ( )ja t , ( )jv t , 

( )j t , and ( )j t  

2 m/s2, 25 m/s 

0.7 rad, 0.3 rad/s 

vcommon 
Common terminal velocity for 

each CAV 
20 m/s 

road_widthL ,
street_lengthL  Road width and street block 

length 
12 m, 176 m 

w Weight in (5) 1.0 

Nfe 
Number of finite elements in 

forming the NLP problem 
100 

According to our simulations, 82% out of the entire 50 

benchmark AIM problems are solved successfully by our 

proposed method, and the average CPU time for each 

problem is 2274.03 sec. There may be potentials to further 

promote the solution capability and time efficiency. 

The NLP facilitation approach adopted in Section 3.3 is 

efficacious to ease the computational difficulties. Among the 

successfully solved benchmark problems, 6.5% of the 

vehicle-to-vehicle collision-avoidance constraints are safely 

discarded when the optimum is derived on average (max. 

67%, min. 1%). By contrast, the success rate to solve the 

benchmark problems declines from 82% to 36% if the NLP 

solution facilitation strategy is disabled. 

As depicted in Fig. 3, the drivable regions for the left-turn, 

through, and right-turn vehicles are expanded in our 

formulated AIM-oriented optimal control problem. To 

investigate the effect of expanding the drivable regions, we 

define a comparative algorithm (denoted as Algorithm 2) 

which is the same with our proposal except that the drivable 

regions are set according to Fig. 7, and use Algorithm 2 to 

solve the 50 benchmark problems. Consequently, the average 

throughput grows from 3.3858 to 3.4572 sec, which means 

the expanding the drivable regions leads to better cooperative 

driving performances. 

Block2

Y

X

Block1

Block3Block4

Legend

Street block

Drivable region of A1 vehicles

Block

Drivable region of A2 vehicles

Drivable region of A3 vehicles

O

 

Fig. 7. Drivable region settings for A1, A2, and A3 vehicles 

in a comparative algorithm. 

A video containing the typical simulation results is provided 

at https://www.bilibili.com/video/BV1DA411b7Q2/. As an 

example, the initial guess, optimized cooperative trajectories 

derived by this work and Algorithm 2 for Case #50 are 

illustrated in Figs. 8–10, respectively. 

5. CONCLUSIONS 

This paper has introduced a computational optimal control 

based autonomous intersection management (AIM) method, 

which is featured by regarding the intersection as a 

continuous free-space and expanding the vehicles’ drivable 

regions for improvements in the travel efficiency. Although 

our proposed AIM method only provides offline solutions, 

they are useful to measure the solution optimality of any 

online AIM method. Also, the appearances of the offline 

solutions may inspire the proposal of smart online AIM 

methods in the future. 
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Fig. 8. Initial guess of Case #50 derived by Algorithm 1. 

 

Fig. 9. Optimized cooperative trajectories of Case #50 

derived by the proposed method in this work. 

 

Fig. 10. Optimized cooperative trajectories of Case #50 

derived by Algorithm 2. 
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