

Autonomous Intersection Management over Continuous Space:

A Microscopic and Precise Solution via Computational Optimal Control

Bai Li* Youmin Zhang** Ning Jia*** Xiaoyan Peng*

* College of Mechanical and Vehicle Engineering, Hunan University,

Changsha, China (e-mail: libai@hnu.edu.cn, xiaoyan_p@126.com).

** Department of Mechanical, Industrial and Aerospace Engineering,

Concordia University, Montreal, Canada (e-mail: ymzhang@encs.concordia.ca).

*** Institute of Systems Engineering, Tianjin University,

Tianjin, China (e-mail: jia_ning@tju.edu.cn).

Abstract: Autonomous intersection management (AIM) refers to planning cooperative trajectories for

multiple connected and automated vehicles (CAVs) when they pass through an unsignalized intersection.

In modeling a generic AIM scheme, the predominant network-level or lane-level methods limit the

cooperation potentiality of a multi-CAV team because 1) lane changes are forbidden or only allowed at

discrete spots in the intersection, 2) each CAV’s travel path is fixed or selected among a few topological

choices, and 3) each CAV’s travel velocity is fixed or set to a specified pattern. To overcome these

limitations, this work models the intersection as a continuous free space and describes an AIM scheme as

a multi-CAV trajectory optimization problem. Concretely, a centralized optimal control problem (OCP)

is formulated and then numerically solved. To derive a satisfactory initial guess for the numerical

optimization, a priority-based decentralized framework is proposed, wherein an x-y-time A* algorithm is

adopted to generate a coarse trajectory for each CAV. To facilitate the OCP solution process, 1) the

collision-avoidance constraints in the OCP are convexified, and 2) a stepwise computation strategy is

adopted. Simulation results show the efficacy of the proposed offline AIM method.

Keywords: Autonomous intersection management (AIM), connected and automated vehicles (CAVs),

trajectory planning, numerical optimization, computational optimal control

1. INTRODUCTION

An intersection is a typical scenario that reflects the inherent

conflicts among multiple vehicles when their nominal routes

intersect. Connected and automated vehicles (CAVs) have

brought about promising chances to resolve the conflicts

through their cooperative driving capability. This paper is

focused on the autonomous intersection management (AIM)

scheme, which is about planning the cooperative trajectories

for multiple CAVs when they pass through an unsignalized

intersection (Rios-Torres and Malikopoulos, 2016). The

predominant AIM methodologies cannot sufficiently exploit

the cooperation potentiality of a CAV team. This work aims

to overcome this limitation.

AIM related studies began from (Dresner and Stone, 2008),

wherein the trajectory of each CAV is sequentially planned

with a first-come-first-serve (FCFS) strategy. Several rules

are defined to plan the trajectory for each CAV, which

support lane changes and velocity changes. These rules,

compared with some subsequent studies, bring about

flexibility in the vehicles’ mobility. Vehicle travel behaviors

under such rules appear to be near-optimal, i.e., resemble the

optimal solutions derived by optimal control. Most of the

subsequent studies, nonetheless, only focus on how to derive

an optimal passing order and/or how to plan optimal

velocities for the fixed-path vehicles. Mirheli et al. (2019)

proposed an iterative framework to determine the velocity of

each CAV along a specified path through solving a mixed-

integer non-linear programming (MINLP) problem. The

iterative process continues until consensus is achieved.

Mirheli et al. (2018) formulated the multi-vehicle velocity

planning problem as a mixed-integer linear programming

(MILP) problem and solved it via Monte Carlo tree search.

Similarly, Levin et al. (2017) derived the passing order and

intersection entrance time simultaneously for all the CAVs

through solving an MILP problem. Xu et al. (2018) projected

the vehicles into a virtual lane, determined the passing order

through a geometry topology method, and then designed a

distributed controller to generate the time-continuous

trajectories. Malikopoulos et al. (2018) decentralized the

multi-vehicle velocity planning scheme into a sequential

form and provided analytical solutions to the corresponding

single-vehicle planning problems. Zohdy et al. (2012)

defined two preparation zones for each CAV before it would

enter the intersection, and then planned the velocity via a

simulator-in-the-loop optimizer. Kamal et al. (2013)

developed a model predictive control (MPC) approach to

determine the cooperative velocity profiles as well as the

passing order. Similar works include (Lin et al., 2017; Liu et

al., 2019).

The aforementioned AIM methods are featured by 1) the

CAVs’ paths are fixed or restricted to predefined patterns, 2)

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

Copyright lies with the authors 17312

the CAVs’ velocities are set to be constant or restricted to

typical patterns, and 3) trajectories of the whole team are not

simultaneously planned. These features, although may

enhance the real-time performance of an AIM method, render

that the spatial-temporal intersection space is not sufficiently

utilized.

This work aims to maximize the cooperation capability of a

multi-CAV team and the spatial-temporal potentiality of the

intersection in a generic AIM problem. To that end, we

describe the AIM scheme at a microscopic level through a

centralized optimal control problem (OCP), which is about

simultaneously planning trajectories for all the CAVs. In the

OCP, the CAVs are allowed to change their lanes and adjust

the velocities flexibly. Through efficiently solving this OCP

offline, we expect to exploit the ideally cooperative

performance in a generic AIM scheme.

2. OPTIMAL CONTROL PROBLEM FORMULATION

In this section, an AIM scheme is described as an OCP,

which is about minimizing a cost function, subject to several

types of constraints.

2.1 Vehicle Kinematics

Suppose there are NV CAVs simultaneously passing through

an intersection. A bicycle model is adopted to describe the

mobility of vehicle i
V(1,..., N)i :

fW

() () cos ()

() () sin ()
d

, [0, t],() () tan () L
d

() ()

() ()

i i i

i i i

i i i i

i i

i i

x t v t t

y t v t t

tt v t t
t

v t a t

t t

 (1)

where
ft stands for the fixed completion time, the other

variables are defined according to (Li et al., 2018), and
WL i

denotes the wheelbase of the ith CAV (Fig. 1).

Boundaries are imposed on some variables throughout
f[0, t] :

max() a ,i ia t (2a)

max0 () v ,i iv t (2b)

max() ,i it (2c)

max() .i it (2d)

Herein,
maxa ,

maxv ,
max , and

max respectively represents

the upper bounds on () , (), () , and () .i i i ia t v t t t

2.2 Drivable Region Constraints

Each type of CAV is restricted to travel in partial regions of

the entire intersection space. Before presenting the details, we

classify all the CAVs according to the directions they enter

and exit the intersection. As depicted in Fig. 2, 12 types of

travel behaviors are defined. Herein, each index set records

the IDs of CAVs that fall in those groups.

As an example, the drivable regions of vehicles A1, A2, and

o x

i

Ri

LFi

LWi

LRi

y

Ri

Cri

Cfi

i

i
v

Fig. 1. Kinematic model of a front steering CAV.
BL i

,
RL i

,

WL i
, and

FL i
determine the geometric shape of CAV i. We

use two discs to evenly cover the rectangular vehicle body.

The disc centres are denoted as
riC and

fiC .

Block2

Y

X
O

Block1

Block4 Block3

L
street_

len
g
th

L
street_

len
g
th

L
ro

a
d

_
w

id
th

L
ro

a
d

_
w

id
th

A1
A2
A3

B1

B2
B3

C3
C2
C1

D1

D2
D3

Fig. 2. Schematics on intersection setup and CAV

classification. Lroad_width denotes the length of each road (a

road consists of multiple lanes), and Lstreet_length denotes the

length of each street block.

Block2

Y

X

Block1

Block3Block4

O

Block2Block1

Block3Block4

Legend

Street block

Drivable region of A1 vehicles

Block

Drivable region of A2 vehicles

Drivable region of A3 vehicles

A1

A2

A3

Fig. 3. Drivable regions and allowable trajectories for A1,

A2, and A3 vehicles.

Y

X

Block1

O

Block2

Block3Block4

(a)

Y

X

Block1

O

Block2

Block3Block4

(b)

Fig. 4. Schematics on within-drivable-region constraints for

A1 vehicles: (a) standard drivable region formulation; (b)

simplified street block region via inscribed circles.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

17313

A3 are plotted in Fig. 3. A1 vehicles denote the ones that

enter from west and exit towards north. The drivable regions

of A1 vehicles additionally contain the regions on the

opposite roads, which is different from the current traffic

laws. The settings for A2 and A3 are also expanded, thus the

trajectories shown in Fig. 2 may appear. The expanded

regions render extra flexibilities for better cooperative

performances of the multi-CAV team.

Next, we would introduce how to formulate the drivable-

region constraints. Let us take A1 vehicles as an example.

For each CAV A1i , staying within the defined drivable

regions is identical to 1) vehicle i stays within the dashed-line

box region plotted in Fig. 4a, and 2) vehicle i does not collide

with Block 1. Herein, the second condition, which calls for a

precise collision-avoidance constraint between a rectangular

CAV and a rectangular street block, is overly complicated (Li

and Shao, 2015), and thus is simplified via convexification.

Concretely, we use a couple of inscribed circles to

approximate the rectangular region of Block 1 (Fig. 4b). Also,

we use two equal-sized discs to evenly cover the rectangular

body of the vehicle (Fig. 1). With such approximations, the

collision-avoidance constraint between vehicle i and Block 1

becomes that neither disc overlaps with any circle in the

environment. In contrast with the rectangle-to-rectangle

constraints which are highly nonlinear and almost non-

differentiable (Li and Shao, 2015), the convexified circle-to-

circle constraints are easier. We use inscribed circles to

approximate one street block. The radii of the circles form a

geometric series (the common ratio is 0.5), and the centers of

these circles can be easily determined offline.

Now that vehicle i has been represented by two discs, the

within-box-region constraint (see Fig. 4a) is identical to the

condition that both disc centers keep above the horizontal

line
road_widthL R ,iy and keep left to the vertical line

road_widthL R ,ix wherein R i
 denotes the radius of either

disc (Li and Zhang, 2018). The drivable regions for the rest

11 categories can be defined similarly. The details are

omitted.

2.3 Collision-Avoidance Constraints

While each CAV travels in its specific drivable regions, it

needs to avoid collisions with other moving CAVs as well.

This is achieved through requiring that either disc of one

CAV does not overlap with the discs of another CAV at

every moment during
f[0, t] .

2.4 Initial and Terminal Moment Constraints

At the initial moment 0t , the driving status of CAV i, i.e.,

 (0), (0), (0), (0), (0), (0), (0) ,i i i i i i ix y v a is set as per the

ground truth. At the terminal moment
ftt , each vehicle is

required to travel stably for safety:

 f f f f commom V(t), (t), (t), (t) v ,0,0,0 , 1,..., N ,i i i iv a i (3)

where vcommon is a common velocity being safe for all the

CAVs when they all have exited the intersection. Besides that,

each CAV should reach a specific region at the terminal

moment. Let us take A1 as an example again, the A1 vehicles

should stay within the red corridor marked in Fig. 5, and

travel along the direction of the corridor. The terminal region

and orientation of the rest 11 categories are defined similarly.

Y

XO

Terminal region of A1, B2, C3

Legend:

Terminal region of A2, B3, D1

Terminal region of A3, C1, D2

Terminal region of B1, C2, D3

Fig. 5. Terminal corridor for each category of CAVs.

2.5 Cost Function

We expect that the CAVs to travel smoothly during
f[0, t] .

This is achieved by minimizing each ()ia t and ()i t :

 f V
t N 2 2

1 10
() () d .j jjt

J a t t t

 (4a)

Also, we hope the CAVs would go far in their terminal

directions, thus a distance cost function
2J is formulated:

2 f f

A1 B2 C3 A2 B3 D1

f f

A3 C1 D2 B1 C2 D3

(t) (t)

(t) (t).

i i

i i

i i

i i

J y x

y x

 (4b)

The overall cost function is a weighted sum of J1 and J2:

1 2w ,J J J (5)

wherein w 0 is a weighting parameter that balances the

smoothness penalty and the going-far encouragement.

2.6 Overall Formulation

With the aforementioned elements summarized, our

concerned multi-CAV cooperative trajectory planning

scheme is described as the following OCP:

Minimize (5),

s.t. Kinematic constraints;

 Drivable-region constraints;

 Boundary constraints;

 Collision-avoidance constraints.

 (6)

3. NUMERICAL SOLUTION TO OPTIMAL CONTROL

PROBLEM

3.1 Basic Solution Procedures

Since an analytical solution to (6) is not available, we aim to

find a numerical solution instead. Concretely, (6) is

discretized into a nonlinear program (NLP) problem, and

then solved by an NLP solver. In forming the NLP problem,

a collocation-based approach is adopted, which requires that

both the control and state profiles are discretized and taken as

the decision variables. A collocation-based strategy has some

merits w.r.t. solution stability and high order accuracy

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

17314

(Biegler, 2010). This work adopts the explicit first-order

Runge-Kutta (EFRK) method to convert (6) into an NLP

problem.

The interior-point method (IPM) is utilized to solve the

formed NLP problem. As a barrier-function based optimizer,

IPM converts the constraints into interior-penalty

polynomials, which are added to the objective function

thereafter, thereby building an unconstraint optimization

problem. Through solving that problem with the barrier

multiplier iteratively converges to 0+, a local optimum can be

derived finally. Compared with the active-set based NLP

solvers, IPM is featured by consistently bearing all the

constraints “in the mind”, thus is particularly suitable for the

NLP problems with really complicated constraints.

In general, an NLP solution process largely relies on the

initial guess (also known as the starting point) from which the

iteration begins. An initial guess production approach is

proposed in the next subsection.

3.2 Initial Guess Generation via A* Search

An initial guess refers to a solution from which an NLP

optimization process begins. A near-optimal or even a near-

feasible initial guess could largely ease the NLP solution

difficulty while a poor initial guess may mislead the

convergence towards infeasibility.

An initial guess, in our concerned scheme, is represented by

NV coarse trajectories as well as the corresponding

state/control profiles for the CAVs. The coarse trajectories

are computed sequentially, wherein each coarse trajectory is

produced by an x-y-time A* search algorithm. Herein, all the

CAVs are prioritized by their expected time to exit the

intersection. For each CAV, a lower priority would be set if it

is likely to exit the intersection at a later moment. In each

coarse trajectory search, the CAVs with already searched

trajectories are fixed as moving obstacles in the environment.

The rest part of this subsection elaborates on the principle of

the x-y-time A* search algorithm. It is an extension of the

standard x-y A* algorithm by adding the time profile as the

third search dimension. The new algorithm differs from the

standard A* algorithm in the following aspects: 1) node

expansion in the time dimension is strictly monotonous

because time flows forward in a uniform pace; 2) the goal

node is not a specified point but a manifold with specified

ft ,t which means the vehicle must at least “survive” until

the terminal moment tf; 3) a nominal goal node for each CAV

is set as the location it should reach if it travels along its

reference line in an empty intersection until
ft ,t then the

Manhattan distance function still works to measure the cost-

to-go value with such a nominal goal node; and 4) each node

additionally records the orientation angle of the vehicle,

which is coarsely estimated according to the locations of the

current node and its parent in the 2D Cartesian space.

As a preliminary step, the continuous x-y-time space is

abstracted uniformly in each dimension so as to form a grid

map G, wherein each grid is called a node. The nodes

occupied by the moving/static obstacles are marked. The

initial node and a nominal goal node should be specified.

Denoting the cost-to-come function as (),g the cost-to-go

function as (),h the gross cost function as f g h , and

the Manhattan distance function as (,)L , we present the

pseudo-code of x-y-time A* search algorithm as follows.

Algorithm 1. x-y-time A* Search Algorithm

Input: Gridmap with occupied grids marked, initial node
initnode , and

nominal goal node
endnode ;

Output: An initially guessed coarse trajectory Traj;

1. Initialize OPEN , and CLOSED ;

2. Set init . 0node g , init . Nullnode parent , calculate init .node h and

init . ,node f add
initnode to OPEN;

3. Initialize
best_so_far Nullnode , and 0flag ;

4. while OPEN 0flag , do

5. Find
currentnode such that

current

current
OPEN

arg min .
node

node f

;

6. Move
currentnode from OPEN to CLOSED;

7. for each expanded child (denoted as
childnode) of

currentnode , do

8. if
child CLOSED,node then

9. continue;

10. end if

11. if
child OPEN,node then

12. Calculate current current child* .),(g node g node nodeL ;

13. if
child* .g node g , then

14. Reset
child current.node parent node ,

child. *node g g ;

15. Update
child.node f and child.node ;

16. Update
childnode in OPEN;

17. end if

18. else

19. Calculate
child child child child. , . , . , .node g node h node f node ;

20. if
childnode is subject to collisions, then

21. Move
childnode to CLOSED;

22. continue;

23. else

24. Add
childnode to OPEN;

25. if
child endnode node or

child f. tnode time , then

26. Set 1flag and
best_so_far childnode node ;

27. break;

28. end if

29. end if

30. end if

31. end for

32. end while

33. Backtrack the ancestors of
best_so_farnode recursively until Null is found,

inversely place them to form Traj, and then output Traj;

34. return.

3.3 NLP Solution Facilitation Strategy

The NLP solution process begins from the initial guess

derived by the preceding subsection. A strategy is adopted in

this subsection for further easing the NLP solution difficulties.

Intuitively, a generic way to handle a difficult optimization

problem is to decompose it into easier ones. In our concerned

cooperative trajectory planning task, the primary difficulties

lie in the large-scale collision-avoidance constraints. We

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

17315

temporarily remove all the vehicle-to-vehicle collision-

avoidance constraints and add them back incrementally until

a feasible solution is derived. The detailed procedures are

presented in (Li et al., 2019).

3.4 Overall AIM Method

As a summary of the aforementioned two sections, the

complete AIM principles are depicted in Fig. 6.

Start

Formulate an AIM-oriented OCP in the form of (6)

Convert the OCP into an NLP problem via EFRK

Generate an initial guess for the NLP via Algorithm 1

Solve the NLP via IPM and a stepwise facilitation strategy

Output the derived optimal solution

End

Fig. 6. Flowchart of the proposed AIM method.

4. SIMULATION RESULTS AND DISCUSSIONS

Simulations were performed in MATLAB 2019a and

executed on an i5-7200U CPU with 32 GB RAM that runs at

2.50×2 GHz. A benchmark set containing 50 cases is formed.

In each case, the CAVs’ initial configurations and driving

intensions are randomly specified. Basic parametric settings

are listed in Table 1. More details about the parametric

settings and the benchmark case setups are provided at

https://github.com/libai1943/AIM_COCP.

Table 1. Parametric settings for model and approach.

Parameter(s) Description Setting(s)

NV Number of CAVs 24

W R

F B

L , L ,

L , L

j j

j j

Geometric size of each CAV

V(1,..., N)j
2.80 m, 0.929 m

0.96 m, 1.942 m

ft Specified terminal moment 10.0 s

max max

max max

a , v ,

,

j j

j j

Bounds on ()ja t , ()jv t ,

()j t , and ()j t

2 m/s2, 25 m/s

0.7 rad, 0.3 rad/s

vcommon
Common terminal velocity for

each CAV
20 m/s

road_widthL ,
street_lengthL Road width and street block

length
12 m, 176 m

w Weight in (5) 1.0

Nfe
Number of finite elements in

forming the NLP problem
100

According to our simulations, 82% out of the entire 50

benchmark AIM problems are solved successfully by our

proposed method, and the average CPU time for each

problem is 2274.03 sec. There may be potentials to further

promote the solution capability and time efficiency.

The NLP facilitation approach adopted in Section 3.3 is

efficacious to ease the computational difficulties. Among the

successfully solved benchmark problems, 6.5% of the

vehicle-to-vehicle collision-avoidance constraints are safely

discarded when the optimum is derived on average (max.

67%, min. 1%). By contrast, the success rate to solve the

benchmark problems declines from 82% to 36% if the NLP

solution facilitation strategy is disabled.

As depicted in Fig. 3, the drivable regions for the left-turn,

through, and right-turn vehicles are expanded in our

formulated AIM-oriented optimal control problem. To

investigate the effect of expanding the drivable regions, we

define a comparative algorithm (denoted as Algorithm 2)

which is the same with our proposal except that the drivable

regions are set according to Fig. 7, and use Algorithm 2 to

solve the 50 benchmark problems. Consequently, the average

throughput grows from 3.3858 to 3.4572 sec, which means

the expanding the drivable regions leads to better cooperative

driving performances.

Block2

Y

X

Block1

Block3Block4

Legend

Street block

Drivable region of A1 vehicles

Block

Drivable region of A2 vehicles

Drivable region of A3 vehicles

O

Fig. 7. Drivable region settings for A1, A2, and A3 vehicles

in a comparative algorithm.

A video containing the typical simulation results is provided

at https://www.bilibili.com/video/BV1DA411b7Q2/. As an

example, the initial guess, optimized cooperative trajectories

derived by this work and Algorithm 2 for Case #50 are

illustrated in Figs. 8–10, respectively.

5. CONCLUSIONS

This paper has introduced a computational optimal control

based autonomous intersection management (AIM) method,

which is featured by regarding the intersection as a

continuous free-space and expanding the vehicles’ drivable

regions for improvements in the travel efficiency. Although

our proposed AIM method only provides offline solutions,

they are useful to measure the solution optimality of any

online AIM method. Also, the appearances of the offline

solutions may inspire the proposal of smart online AIM

methods in the future.

ACKNOWLEDGMENTS

This work was supported by the Fundamental Research

Funds for the Central Universities, the Natural Sciences and

Engineering Research Council of Canada, and the National

Key R&D Program of China under Grant 2016YFB0100903-

2.

REFERENCES

Biegler, L. T. (2010). Nonlinear programming: Concepts,

algorithms, and applications to chemical processes. SIAM,

10.

Dresner, K., and Stone, P. (2008). A multiagent approach to

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

17316

autonomous intersection management. Journal of

Artificial Intelligence Research, 31, 591–656.

Kamal, M. A. S., Imura, J. I., Ohata, A., Hayakawa, T., &

Aihara, K. (2013). Coordination of automated vehicles at

a traffic-lightless intersection. In 16th International IEEE

Conference on Intelligent Transportation Systems (ITSC

2013) (pp. 922–927). IEEE.

Levin, M. W., & Rey, D. (2017). Conflict-point formulation

of intersection control for autonomous vehicles.

Transportation Research Part C: Emerging Technologies,

85, 528–547.

Li, B., & Shao, Z. (2015). A unified motion planning method

for parking an autonomous vehicle in the presence of

irregularly placed obstacles. Knowledge-Based Systems,

86, 11–20.

Li, B., & Zhang, Y. M. (2018). Fault-tolerant cooperative

motion planning of connected and automated vehicles at a

signal-free and lane-free intersection. IFAC-Papers

OnLine, 51(24), 60–67.

Li, B., Zhang, Y. M., Zhang, Y., Jia, N., & Ge, Y. (2018).

Near-optimal online motion planning of connected and

automated vehicles at a signal-free and lane-free

intersection. In 2018 IEEE Intelligent Vehicles

Symposium (IV) (pp. 1432–1437). IEEE.

Li, B., Jia, N., Li, P., & Li Y. (2019). Incrementally

constrained dynamic optimization: A computational

framework for lane change motion planning of connected

and automated vehicles. Journal of Intelligent

Transportation Systems, 23(6), 557–568.

Lin, P., Liu, J., Jin, P. J., & Ran, B. (2017). Autonomous

vehicle-intersection coordination method in a connected

vehicle environment. IEEE Intelligent Transportation

Systems Magazine, 9(4), 37–47.

Liu, B., Shi, Q., Song, Z., & El Kamel, A. (2019). Trajectory

planning for autonomous intersection management of

connected vehicles. Simulation Modelling Practice and

Theory, 90, 16–30.

Malikopoulos, A. A., Cassandras, C. G., & Zhang, Y. J.

(2018). A decentralized energy-optimal control

framework for connected automated vehicles at signal-

free intersections. Automatica, 93, 244–256.

Mirheli, A., Hajibabai, L., & Hajbabaie, A. (2018).

Development of a signal-head-free intersection control

logic in a fully connected and autonomous vehicle

environment. Transportation Research Part C: Emerging

Technologies, 92, 412–425.

Mirheli, A., Tajalli, M., Hajibabai, L., & Hajbabaie, A.

(2019). A consensus-based distributed trajectory control

in a signal-free intersection. Transportation Research

Part C: Emerging Technologies, 100, 161–176.

Rios-Torres, J., & Malikopoulos, A. A. (2016). A survey on

the coordination of connected and automated vehicles at

intersections and merging at highway on-ramps. IEEE

Transactions on Intelligent Transportation Systems, 18(5),

1066–1077.

Xu, B., Li, S. E., Bian, Y., Li, S., Ban, X. J., Wang, J., & Li,

K. (2018). Distributed conflict-free cooperation for

multiple connected vehicles at unsignalized intersections.

Transportation Research Part C: Emerging Technologies,

93, 322–334.

Zohdy, I. H., Kamalanathsharma, R. K., & Rakha, H. (2012).

Intersection management for autonomous vehicles using

iCACC. In 2012 15th International IEEE Conference on

Intelligent Transportation Systems (pp. 1109-1114). IEEE.

Fig. 8. Initial guess of Case #50 derived by Algorithm 1.

Fig. 9. Optimized cooperative trajectories of Case #50

derived by the proposed method in this work.

Fig. 10. Optimized cooperative trajectories of Case #50

derived by Algorithm 2.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

17317

