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Abstract: The problem of accurate and reliable plasma shape control is significant, both for modern 
operating tokamaks, for example for the Globus-M/M2 spherical tokamak, and for future thermonuclear 

tokamak-reactors using magnetic plasma confinement. The article presents the new results of design and 

modeling the plasma shape control system for the Globus-M/M2 tokamak with the pre-trained artificial 

neural network as a plasma equilibrium reconstruction algorithm, which is included in the feedback of the 

control system. To collect the necessary data for training the artificial neural network and to model the 

plasma control system the developed magnetic plasma evolutionary code was used. 
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1. INTRODUCTION 

At present, the perspective Globus-M/M2 spherical tokamak 

with the aspect ratio of 1.5 (Ioffe Institute, St. Petersburg, RF) 

(Minaev et al., 2017) can be considered as an example of a 

tokamak from the alternative way to achieve controlled 

thermonuclear fusion compared to traditional tokamaks with a 

large aspect ratio (Chuyanov and Gryaznevich, 2017). In 

tokamaks, unlike the SISO plasma position and current control 

loops, in which the controlled signals can be directly 

measured, the plasma shape can only be estimated from 

external magnetic measurements by Rogowski coils, flux 

loops, and magnetic probes (Lao et al., 1985; Mitrishkin et al., 
2019). At the same time, the extensive experience in 

conducting plasma discharges, as well as a vast database of 

plasma discharges, together with the need to implement a 

feedback plasma shape control system in Globus-M2 

experiments, led to the proposal to employ artificial neural 

network (ANN) as an online algorithm for plasma equilibrium 

reconstruction in a feedback loop. The novelty of this article is 

a step forward from the application of the ANN approach for 

identifying non-circular plasma equilibrium to controlling the 

shape of the plasma in the spherical Globus-M2 tokamak in 

real-time. 

An application of ANN models for various objectives related 

to nuclear fusion research begins in the early 1990s. 

Significant results were obtained in (Bishop et al., 1995; 

Windsor et al., 1997) on the COMPASS-D tokamak (GB), 

wherein real experiments only the plasma vertical elongation 

control system was applied, which could not be considered as 

a comprehensive plasma shape control system. In addition, in 

(Windsor et al., 1997) an attempt was made to employ an ANN 

as a nonlinear mapping from measured magnetic signals and 

soft X-ray signals to geometric parameters of the plasma 

shape, such as the plasma inner radius, vertical position, minor 

radius, elongation k, triangularity, etc, for the 501 simulated 

shots. Unfortunately, the accuracy of estimation on the real 

data was insufficient for the adaptation of the ANN to 

experiments in real-time. 

In addition, a series of results dedicated to the ASDEX 

Upgrade tokamak is worth mentioning. In (Morabito, 1995) 

the ANN model was used to classify the type of plasma shape 

(upper and lower X-point, inner and outer limiter) and 

outperformed the real-time version of the Function 

Parameterization technique (Braams et al., 1986) implemented 
on the plasma control computer of the machine in terms of 

computation time. In (Coccorese et al., 1994) the technique of 

using the multidimensional interpolation capability of the 

multilayer ANN to establish a nonlinear mapping between a 

set of magnetic flux measurements and shaping parameters 

(major and minor radius, elongation, triangularity, internal 

inductance, poloidal beta, R and Z co-ordinates of the X-point) 

of a non-circular plasma was demonstrated. The shaping 

parameters were generated by means of a specially adapted 

version of an MHD equilibrium code on ASDEX Upgrade. 

However, this work was not brought to the stage of applying 
the ANN in the control system in experiments. 

A similar method (as for the ASDEX Upgrade tokamak) of 

ANNs for the fast extraction of equilibrium parameters from 

measurements was applied to the DIII-D tokamak (Lister and 

Schnurrenberger, 1991) using the EFIT code (Lao et al., 1985) 

to generate a database, but still, the ANN approach was not 

applied to plasma shape control purposes. 

In (Greco et al., 2007) the ANN model was exploited to 

classify magnetic variables useful to determine the plasma 
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shape and position based on the ITER geometry configuration 

with reduced computational complexity. Similar results for the 

identification of non-circular plasma equilibrium with the help 

of the ANN approach were obtained in (Wang et al., 2016) for 

the EAST tokamak. 

All of the above papers are united by the fact that the trained 

ANN was not used in the feedback loop for real control of the 

plasma shape, but was only used for offline estimation of 

plasma equilibrium parameters. Given the hardware 

implementation of ANNs is straightforward, as well as the 

property of the ANN to extract useful features from a large 
data set is well-known. The aim of this work is to demonstrate 

the possibility of using a feedforward ANN with one hidden 

layer as an algorithm for plasma equilibrium reconstruction in 

the plasma shape control loop. To justify the credibility of this 

approach, several facts should be noted. Firstly, in our era of 

big data, when the amount of accumulated information is 

growing rapidly, it is necessary to be able to extract and 

process useful information from the data. For instance, in JET 

(GB) more than 45 gigabytes of data can be produced in a well-

diagnosed discharge (Murari and Vega, 2014). Secondly, a 

feed-forward ANN with a single hidden layer has the well-
known ability to approximate continuous functions on 

compact subsets in Euclidian space 
n

 (the universal 
approximation theorem for sigmoid functions is in (Cybenko, 

1989)). Recent results have also been obtained for the 

Rectified Linear Unit (ReLU) activation function (Lu et al., 

2017), the use of which significantly accelerates the training 

of the ANN. Thirdly, the development of modern optimization 

methods for the backpropagation algorithm, for example, 

ADAM namely adaptive moment estimation (Kingma and Ba, 

2014), as well as the development of methods to avoid 

overfitting of the ANN (Goodfellow et al., 2016), have 

significantly improved the performance of ANNs for various 

objectives. Finally, yet importantly, online versions of the 
well-known plasma equilibrium reconstruction codes (for 

example, (Luo et al., 2009)) require powerful computing 

servers. 

Section 2 describes the generation of the dataset for training 

the ANN based on the developed magnetic plasma 

evolutionary code. It also uses two methodologies for the 

synthesis of robust controllers in the application to the 

tokamak plasma: Quantitative Feedback Theory (QFT) for the 

SISO control loops, and loop shaping design using McFarlane- 

Glover method for the MIMO plasma shape loop. Section 3 

presents the details of the training of the ANN. Section 4 

shows the results of the simulation of the plasma control 
system for the Globus-M tokamak taking into account the 

ANN as the plasma equilibrium reconstruction algorithm. 

Conclusions underline the reasons for the possibility of using 

the ANN in the plasma shape control closed-loop and the high 

performance of the presented new plasma shape control 

system as well as the necessity to develop more advanced 

plasma magnetic control systems in elongated tokamaks. 

 

2. GENERATION OF THE DATASET 

2.1 The Globus-M Tokamak 

The Globus-M tokamak  (Gusev et al., 2013) is the spherical 

tokamak (Fig. 1a) with a large accumulated database of plasma 

discharges, so the simulation results are presented for this 

version of the tokamak, despite the recent modernization of the 

plant under control (Minaev et al., 2019). 

  

(a) (b) 

Fig. 1. (a) Vertical cross-section of the Globus-M tokamak 

where PF, CC, HFC, and VFC are poloidal, correction, 

horizontal, and vertical field coils, respectively; (b) 

Comparison between the plasma equilibrium obtained with the 

aid of reconstruction from experimental data using the FCDI 

code and modelled with the TOPMEC (see Section 2.2). 

There are two SISO fast control closed-loops for plasma 
vertical and horizon position stabilization on the Globus-

M/M2 tokamak. In these loops, original thyristor current 

invertors HFC-VFCA  in self-oscillations modes with a frequency 

of about 3 kHz (Kuznetsov et al., 2019) are used as actuators 

together with analog PID-controllers Z-RC . Six SISO feedback 

systems for the control of currents in the CS and PF coils with 

multiphase thyristor rectifiers PF-CSA  as actuators and analog 

P-controllers PF-CSC  form the inner MIMO cascade of the 

multivariable control system (Fig. 2). The model of the multi-

phase thyristor rectifier is investigated in (Mitrishkin et al., 

2016). 

 

Fig. 2. Block diagram of the multi-loop hierarchical plasma 

magnetic control system of the Globus-M/M2 tokamak. 

2.2 Tokamak Plasma Magnetic Evolution Code 
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The plasma evolution codes such as TSC (Jardin et al., 1986) 

and DINA (Khayrutdinov and Lukash, 1993) allow for 

simulation of plasma tokamak discharges but they model many 

transport processes not essential for plasma shape and position 

control and thus often are too slow and cumbersome for 

plasma magnetic control system design and simulation. 

In order to model plasma dynamics during the entire discharge 

without solving complex transport equations, the numerical 

Tokamak Plasma Magnetic Evolution Code (TOPMEC) has 

been developed in (Mitrishkin et al., 2018a; Mitrishkin et al., 

2018b). On each time step of the numerical TOPMEC, the 
plasma linear model is calculated (Walker and Humphreys, 

2006, Mitrishkin et al., 2019) and then used to advance 

tokamak currents and plasma position. Then new currents and 

plasma position are used to calculate new plasma equilibrium. 

The plasma current density is modelled by approximating 

functions p  and F  from Grad-Shafranov equation (Ariola 

and Pironti, 2016) by polynomial functions of poloidal 

magnetic flux Ψ in the cylindrical coordinate system ( , , )r z  

under the assumption of axial-symmetry of the plasma: 

2
2 2 2 2

0 02

1
2 4 2

d d
r rJ r p F

r r r d dz
   

   
     

   
 

where J  is the toroidal plasma current density distribution. 

The coefficients of polynomials are calculated from boundary 

conditions on plasma current density, total plasma current, and 

plasma parameters namely the poloidal beta p  and the 

normalized plasma internal inductance il  specified by the user. 

The updated plasma equilibrium is then used to create plasma 

linear model on the next time step (Fig. 3). To verify the code, 

we have compared the equilibria obtained by the TOPMEC 

and equilibria reconstructed from experimental data by the 

FCDI (Flux and Current Distribution Identification) code 

(Mitrishkin et al., 2017b). As shown in Fig. 1b the resulting 

plasma shapes are practically identical. 

 

Fig. 3. Block-diagram of the TOPMEC (Mitrishkin et al., 

2018b) 

2.3 Magnetic plasma shape control system with the TOPMEC  

Blocks marked in black in Fig. 2 were tested on the base of 

experiments on the Globus-M tokamak, while blocks marked 

in red were implemented only in the simulation environment 

with usage of LTI (Linear time-invariant) and LPV (Linear 
parameter-varying) plasma models (Mitrishkin et al., 2017a; 

Mitrishkin, et al., 2017b). In the case of using the TOPMEC as 

the controlled plant model, when each new SISO loop is added 

(starting from the CS, then the vertical position Z control loop, 

then horizontal R, and then the PF-coils, one by one), the 

parameters of linear plasma models generated by the 

TOPMEC are being changed. For example, the unstable 

eigenvalue of the matrix A of the state space representation of 

the linear plasma model could change considerably. Therefore, 

for modeling purposes, the CZ, CR, CCS, CPF, and CIp controllers 

were synthesized, given the modified plasma model due to the 

previous control loop and using the QFT methodology 

(Garcia-Sanz, 2017; http://codypower.com), which is suitable 
for the synthesis of robust SISO controllers for the set of linear 

models with uncertainties. In QFT frequency analysis, a set of 

curves (QFT bounds) are considered on the Nichols chart for a 

finite number of representative frequencies (Fig. 4). These 

curves describe the frequency constraints for a closed-loop 

system at each characteristic frequency taking into account 

various specifications (stability specification, reference 

tracking specification, etc.) for the whole set of linear plasma 

models at once. This is the main advantage of the QFT 

methodology. It is only necessary to determine the nominal 

plant  0P s  and perform tuning of the controller  G s  for the 

nominal open-loop transfer function      0 0 L s P s G s  

without violation of the frequency constraints. 

  

(a) (b) 

Fig. 4. Loop shaping procedure for the controller of the plasma 

for (a) vertical position Z; (b) horizontal position R with QFT 

bounds for characteristic frequencies (rad/s), which are 

marked with figures. 

The outer cascade of plasma shape control (Fig. 2) is based on 

the modified isoflux control technique (Mitrishkin et al., 

2017a) and incorporates the Improved Moving Filaments 

method (Mitrishkin et al., 2019) for plasma equilibrium 
reconstruction, which has sufficient accuracy and speed of 

response. The Improved Moving Filaments algorithm 

calculates r-, z-components of the magnetic field rB and zB  in 

the desirable X-point location, as well as the poloidal flux 

differences between the X-point and points of a desirable 

location of plasma boundary. The objective of the MIMO 

controller shapeC , which is designed by the well-suited for this 

task robust loop-shaping approach (McFarlane and Glover, 
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1990; Skogestad and Postlethwaite, 2005; Mitrishkin et al., 

2017a) is to reduce these values to zero. 

2.4 Training, validation and test sets  

To train the ANN, the training data set was compiled based on 

the TOPMEC of the plasma. For this, 75 plasma discharges of 

various durations were generated with different references for 

the vertical refZ , horizontal refR  position of the plasma, and 

plasma current PrefI  using the plasma shape control system 

shown in Fig. 2. For modelling the plasma shape control 

system, the parameters p  and il  were chosen equal to 0.405 

and 1.95, respectively. The outer plasma shape control loop 

was turned on at some time moment; therefore, the data 

includes both the limiter phase and the divertor phase of 

plasma discharge and besides both with and without the 

plasma shape control loop. In total, the database contains 

255024 time slices 10 percent of which was used for validation 

and 10 percent for testing. The task of the ANN is a nonlinear 
mapping of the input vector 

33 1

M( , , , , , )p HFC VFC PF CS VVx I I I I I R 

   , where pI  is the 

plasma current, , ,HFC VFC PF CSI I I   are currents in the CS&PF 

coils, M is the poloidal fluxes measured by 21 flux loops, 

VVI  is the vacuum vessel current to the output vector 

1 2

4 1( ,, ),r zB By R    , where ,  r zB B  are components 

of the magnetic field in the desirable X-point location, 

1 21 2,  X X         , 1  and 2  are shown in 

Fig. 1b. In order to increase the convergence rate of the ANN 

learning algorithm, both the input and output data were 

normalized: ' ( ) /x xx x M D  , ' ( ) /y yy y M D  , 

where xM , yM , xD , yD are the sample mean and the sample 

variance of x  and y , respectively. 

 

3. THE MULTILAYER ANN WITH BACK-

PROPAGATION TRAINING METHOD AS THE 

ISOFLUX SIGNALS ESTIMATOR 

To train the ANN, an architecture with one hidden layer with 

ReLU activation functions (Lu et al., 2017) and with a 

different number of neurons was chosen (Fig. 5a).  

  

(a) (b) 

Fig. 5. The ANN diagram with (a) one hidden layer and with 

(b) additional (dropout) hidden layer. 

In order to reduce the chances of ANN overfitting, we also 

tested ANNs with a dropout layer with the fraction rate equal 

to 0.5 (Fig. 5b). For training the ANNs, the ADAM algorithm 

(Kingma and Ba, 2014) with 30 epochs was used, and the batch 

size was 4000. Tables 1 and 2 show the results of training the 

ANNs in terms of the Mean Square Error (MSE), which was 

also a loss function for this multidimensional regression task. 

As expected, the accuracy in terms of MSE increases with the 

number of neurons in the hidden layer for all parts of the 

dataset, which means that the overfitting of the ANNs does not 

occur during the 30 epochs of learning. 

Table 1.  MSE for the ANNs with one hidden layer 

The 

number of 

neurons 

Train data 
Validation 

data 
Test data 

32 0.0177 0.0342 0.0256 

64 0.0082 0.0175 0.0151 

128 0.0042 0.0074 0.0066 

256 0.0022 0.0052 0.0038 

512 0.0016 0.0042 0.0030 

1024 0.0013 0.0038 0.0026 

2048 0.0012 0.0034 0.0024 

Table 2.  MSE for the ANNs with one hidden layer and 

the additional dropout layer 

The 

number of 

neurons 

Train data 
Validation 

data 
Test data 

32 0.1722 0.0778 0.0615 

64 0.1018 0.0434 0.0384 

128 0.0585 0.0263 0.0221 

256 0.0319 0.0107 0.0105 

512 0.0172 0.0066 0.0057 

1024 0.0101 0.0042 0.0037 

2048 0.0063 0.0029 0.0031 

 

4. SIMULATION RESULTS OF THE PLASMA SHAPE 

CONTROL SYSTEM  

The plasma shape control system with the ANN as the isoflux 

signals estimator in the plasma shape control loop was 

simulated in the Matlab/Simulink environment. Figs. 6 and 7 
show a comparison of the magnetic output ANN signals used 

to control the shape together with the robust MIMO controller 

(see Section 2.3) with the ground truth signals from the 

TOPMEC. The plasma shape control loop was turned on at 

0.18 s of the plasma discharge. Here, the ANN with 1024 

neurons from Table 1 was used. The coordinates of the desired 

location of X-point, point 1 and 2 (Fig. 1b) for calculation of 

,X  1,  and 2  were the coordinates (0.30, 1.24), (0.57, 

0.81), (0.30, 0.44), respectively. 

Fig. 8 depicts the evolution of the plasma separatrix during the 

plasma discharge with the ANN in the feedback loop and with 

reference values 0.01 mrefZ  , 0.365 mrefR  , 

150 kAPrefI  . As can be seen from the figures, the ANN 

with high accuracy recovers the output signals, and the robust 
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margin of the MIMO shape controller is enough to control the 

plasma shape. 

 

Fig. 6. Plasma shape control: Br, Bz at X-point are obtained by 

the ANN and the TOPMEC. 

 

Fig. 7. Plasma shape control: 1 1 ,X   

22  X    , X  is the flux at X-point, 1 , 2  are 

fluxes at the separatrix (Fig. 1b) from the ANN and the 

TOPMEC. 

  

(a) (b) 

  

(c) (d) 

Fig. 8. Evolution of the plasma separatrix during the plasma 

discharge from the TOPMEC code (red lines) and the 

Improved Moving Filament Code (blue lines) with 5 filaments 

at (a) 0.17 s, (b) 0.18 s, (c) 0.19 s, (d) 0.20 s. The coordinates 

of the desired location of the plasma separatrix are marked 

with black asterisks. 

5. CONCLUSIONS 

In the paper, the possibility of using the ANN to control the 

plasma shape for tokamaks as the algorithm for plasma 

equilibrium reconstruction, which is included in the feedback 

together with the MIMO robust controller, is demonstrated. A 

further direction of work will be related to the application of 

this approach in real experiments for the Globus-M2 tokamak. 

The results of the work done are in line with the trend to 

develop plasma magnetic control systems for effective control 

of plasma position, current, and shape in vertically elongated 

tokamaks with unstable plasma that has been shown in the 
survey of Mitrishkin et al. (2018c). The plasma magnetic 

control systems are being evolved in the class of digital 

hierarchical multivariable parameter-varying systems having 

various directions and principles, which try to improve MIMO 

system robust performance and stability margins by different 

approaches. This is because plasma in any elongated tokamak 

is an extremely complicated plant under control that requires 

to control collectives of nano-particles specifically ions and 

electrons of the plasma. 
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