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Abstract:
In contract-based demand response, there is a possibility that some participants may default
on providing their scheduled negawatt energy. Therefore, one of the essential functions of
the aggregator is to detect defaulting participants. This paper aims at solving the problem
of detecting defaulting participants with time-varying failure rates in contract-based demand
response, provided that the aggregator can inspect the total negawatt energy and the individual
negawatt energy of a limited number of participants via smart meters. By assuming that there
are only a few defaulting participants and they default in all periods, we propose a detection
algorithm based on block-sparse reconstruction. The proposed algorithm is demonstrated
through numerical simulation.
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1. INTRODUCTION

One of the basic requirements of electric power grids is
supply-demand balancing. It is not an easy requirement
since both supply and demand may change unexpectedly
due to various reasons, such as generation unit forced out-
ages, transmission and distribution line outages, and sud-
den load changes. The power demand and supply disequi-
librium can degrade energy quality and even lead to large-
scale outages. Traditional power grids face the challenges
of increased demand, grid stability and environmental pol-
lution (P. Siano (2014)). The smart grid is envisioned as a
new type of power grid that combines smart meters, which
are used to measure the power consumption of users with
the demand response (DR), which promises solutions for
future power grids (E. Heylen et al. (2020), R.E. Geneidy
et al. (2020), and M. Barbero et al. (2020)).

DR is defined as (Q Qdr (2006)) “changes in electric usage
by customers from their normal consumption patterns to
better match the demand for power with the supply.” In
general, DR programs can be classified into two main
categories (M.H. Albadi et al. (2007)): Incentive-Based
Programs (IBP) and Price-Based Programs (PBP). Our
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research is based on IBP, whose process is as follows (L.
Gkatzikis et al. (2013)). The aggregator contracts with
the customers in advance, and the participants can receive
upfront incentive payments or rate discounts. During the
contract period, the participants provide the scheduled
amount of negawatt energy to the aggregator, for example,
by postponing some tasks that require large amounts of
power or switching their consumption to alternate power
supplies such as batteries. Here, the negawatt energy rep-
resents the energy that saved through energy conservation.
In this process, the aggregator meters the total amount of
negawatt energy in real-time to manage the DR.

However, there will inevitably be some defaulting partic-
ipants due to demand-side fluctuations. One of the most
critical functions of the aggregator is to detect the failure
sources quickly and carry out the appropriate procedures.
In theory, the detection of defaulting participants in DR
can be easily achieved by accessing all participants’ smart
meters. However, such detection will increase communi-
cation costs. Furthermore, it will decrease the social ac-
ceptance of DR, because the smart meters have detailed
information about how much electricity is used at each
time slot, from which one can infer the behavioral patterns
of the occupants. Therefore, it is preferable to detect
defaulting participants by using more limited information.
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Fig. 1. Demand response

S. Azuma et al. (2020) recently established a framework
for detecting defaulting participants by focusing on the
fact that the number of defaulting participants is very
small, i.e., the distribution of defaulting participants is
sparse. This method is based on sparse reconstruction and
iterative metering, and as a result, it can detect defaulting
participants with little computation and inspection. How-
ever, it is assumed that the rate of default with regard
to the scheduled negawatt energy is constant for each
participant. It is somewhat unrealistic since the absolute
amount of default might be constant, while in this case,
the rate of default will be time-varying.

In this paper, we propose a detection method for defaulting
participants with time-varying failure rates in DR. Here,
we focus on the property that if a participant is default-
ing, then the participant is defaulting in all time slots.
This assumption is reasonable when the default occurs
due to an instrument fault (H.G. Kwag et al. (2014)).
Thus, we formulate the detection problem as a “block-
sparse” reconstruction problem, and propose a method
based on the block-sparse reconstruction algorithm. This
method enables us to detect defaulting participants with
a small number of inspections exactly. The effectiveness of
the proposed method is demonstrated through numerical
examples.

2. DEFAULT DETECTION PROBLEM

2.1 Contract-Based Demand Response

We consider a contract-based DR program as shown in
Fig. 1, and assume that the contract between the aggre-
gator and each participant is made as follows (S. Azuma
et al. (2020)):

(1) The participant pledges a certain amount of negawatt
energy to the aggregator at each time slot.

(2) The participants agree to release their smart meter
data, but the aggregator can access the data only
when an anomaly is detected.

(3) A violation of the scheduled negawatt energy will
result in a penalty.

There are some supplementary explanations for the above
three clauses. About the first clause, the participant needs
to furnish the scheduled amount of negawatt energy to the
aggregator at each time slot, as exemplified in Table 1.
The second clause is related to data release and is a
standard clause in DR contracts, which enhances consumer
acceptance. In addition, it reduces the communication
costs of the aggregator. The third clause is imposed for
minimizing the number of defaulting participants.

Table 1. Example of the scheduled negawatt
energy of a participant

Time slot 1 2 ... 24

Negawatt energy (kWh) 0.417 0.327 ... 0.275

2.2 Problem Formulation

In practice, some participants may default on providing
the scheduled negawatt energy. If defaults occur, the
aggregator must detect the defaulting participants as soon
as possible and change their electricity usage to eliminate
the risk of significant failures. Therefore, we consider the
default detection problem, which is formulated as follows.

Assume that participants 1, 2, ..., n are selected to provide
the scheduled negawatt energy at time slots 1, 2, ...,m. The
scheduled negawatt energy (kWh) of participant i at time
slot j is denoted as cij ∈ (0,∞), and the failure rate of
participant i at time slot j is symbolized by xij ∈ [0, 1].
Note that xij > 0 if participant i defaults, and xij =
0 (j = 1, 2, ...,m) otherwise. We define the total amount
of negawatt energy (kWh) generated by the DR at time
slot j as sj ∈ R0+. Thus, it is evident that

n∑
i=1

cij(1− xij) = sj (1)

holds at time slot j.

Our problem is to estimate xij (i = 1, 2, ..., n and j =
1, 2, ...,m) from cij (i = 1, 2, ..., n and j = 1, 2, ...,m),
sj (j = 1, 2, ...,m), and a limited number of direct
inspections of the failure rates.

3. DEFAULT DETECTION FOR TIME-INVARIANT
FAILURE RATES

In this section, we review the previous result (S. Azuma
et al. (2020)) for the case in which the failure rates are
time-invariant, i.e., xi1 = xi2 = · · · = xim (i = 1, 2, ..., n).

3.1 Sparsity of Failure Rates

By letting x̄i := xi1 (= xi2 = xi3 = · · · = xim), we can
obtain

C̄x̄ = C̄1n − s (2)

for m time slots from (1), where

C̄ :=


c11 c21 · · · cn1

c12 c22 · · · cn2

...
...

. . .
...

c1m c2m · · · cnm

 ∈ [0,∞)m×n,

x̄ := [x̄1 x̄2 · · · x̄n]
T ∈ [0, 1]n, s := [s1 s2 · · · sm]

T ∈
[0,∞)m, and 1n is a n-dimensional column vector whose
elements are all one. Then, the default detection problem
corresponds to solving the linear equation in (2) with
respect to x̄.

However, in general, m < n holds in DR; therefore,
we cannot uniquely determine the solution x̄ to (2). In
addition, according to the third clause of the contract, we
reasonably suppose that only a few defaulting participants
exist. Therefore, vector x̄ can be assumed to be sparse.
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3.2 Default Detection Based on Sparse Reconstruction

With the prior knowledge that x̄ is a sparse vector, we
consider utilizing the sparse reconstruction to solve the
problem formulated in the previous section.

Consider the linear equation

Ax̄ = b, (3)

where x̄ ∈ Rn is the unknown sparse vector, A ∈ Rm×n

and b ∈ Rm are a constant matrix and vector, respectively.
If x̄ is sparse, it is known that the solution is given by the
following optimization problem:

min
x̄
‖x̄‖1 s.t. Ax̄ = b, (4)

which can be reformulated as a linear programming (S.S.
Chen et al. (2006)).

However, when m� n, even if the sparsity of x̄ is assumed,
the number of equations contained in (2) is not sufficient to
determine the true sparse x̄, which results in an incorrect
solution. Therefore, S. Azuma et al. (2020) proposed a
default detection method that incorporates the inspection
of actual negawatt energy into the sparse reconstruction.
It iterates through the following two operations:

(1) Estimate the failure rates of all participants by solv-
ing the sparse reconstruction problem in (2).

(2) Inspect the actual negawatt energy of the most sus-
picious participant indicated by the result of step (1),
and reflect the inspection result in the sparse recon-
struction problem to be solved at the next iteration.

It has been proven that the above method can exactly
estimate the time-invariant failure rates.

4. DEFAULT DETECTION FOR TIME-VARYING
FAILURE RATES

Although the time-invariant case was successfully solved in
the previous research (S. Azuma et al. (2020)), the time-
invariant assumption is not practical at all. In fact, failures
occur unexpectedly. Therefore, we need a solution for the
time-varying case. In this section, we propose a solution
based on the block sparsity of the failure rate vector.

4.1 Block Sparsity of Failure Rates

Let xi := [xi1 xi2 · · · xim]
T ∈ [0, 1]m (i = 1, 2, ..., n) and

x :=
[
xT

1 xT
2 · · · xT

n

]T ∈ [0, 1]nm. The former represents
the sequence of failure rates of participant i, and the latter
is the collection of xi (i = 1, 2, ..., n) called the failure rate
vector.

To build a linear equation, we constitute a new coefficient
matrix

Ci :=


ci1

ci2
. . .

cim

 ∈ [0,∞)m×m

and

C := [C1 C2 · · · Cn] ∈ [0,∞)m×nm.

From (1), we obtain

Cx = C1nm − s, (5)

Fig. 2. Image of a block-sparse model

where 1nm is an nm-dimensional column vector whose
elements are all one, the matrix C is called the scheduled
negawatt table, and s is referred to as the total negawatt
vector.

Equation (5) is similar to (2); however, (5) contains nm
unknowns (m times of those of (2)). Therefore, it is not
practical to apply the previous method (S. Azuma et al.
(2020)) to this case. However, in DR, it is reasonable to
assume that

• if participant i defaults, xij is nonzero for all j,
• if participant i does not default, xij is zero for all j.

They imply that x has a block-sparse structure. Therefore,
we employ a block-sparse reconstruction technique to solve
our problem.

4.2 Block-Sparse Reconstruction

In this section, we introduce a framework of block-sparse
reconstruction.

Consider the linear equation

Ax = b (6)

with a block-sparse structure as shown in Fig. 2, where
x ∈ Rnm is the unknown block-sparse vector, A ∈
Rm×nm and b ∈ Rm are a known constant matrix and
vector, respectively. Since m < nm, the solution x of the
linear equation cannot be uniquely determined. Therefore,
M. Stojnic et al. (2009) considered the following convex
relaxation for the recovery of a block-sparse vector x:

min
x
‖x1‖2 + ‖x2‖2 + · · ·+ ‖xn‖2 s.t. Ax = b, (7)

where xi = [xi1 xi2 · · · xim]
T ∈ [0, 1]m for i = 1, 2, ..., n.

4.3 Default Detection Method

Since m � nm for a large n, the exact solution for our
problem is not always recovered from the straightforward
application of the relaxation of (7). It motivates us to
develop an iterative algorithm in a similar way to (S.
Azuma et al. (2020)).

In practice, the aggregator can inspect the history of the
actual negawatt energy of an arbitrary participant via its
smart meter. Based on this idea, the following algorithm
is proposed.

(Step 1) Let BSR(0) be the optimization problem in (7)
for A := C and b := C1nm−s, and set P (0) := {1, 2, ..., n},
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where P (t) is the list of participants whose negawatt
energy has never been inspected until t-th iteration.
(Step 2) For each iteration t = 0, 1, ..., n − 1, implement
the following operations:

(1) Solve BSR(t) and obtain a solution x(t), where
BSR(t) is the block-sparse reconstruction problem at
iteration t.

(2) Set k(t) ∈ P (t) as the index i of the participant with
the largest block of x(t) in the group P (t), which
represents the most suspicious participant.

(3) Inspect the history of the negawatt energy of partici-
pant k(t) via its smart meter, and get the true failure
rate x∗

k(t) ∈ [0, 1]m.

(4) Let BSR(t+1) be the optimization problem resulting
from the modification of BSR(t). Embed the addi-
tional constraint xk(t) = x∗

k(t), where xk(t) is the

k(t)-th block of x(t) with m elements. Set P (t +
1) := P (t)− {k(t)}.

For the above algorithm, the following result is obtained.

Theorem 1. Consider the above algorithm. Assume that
Ci (i = 1, 2, ..., n) has positive diagonal entries. If xk(t) = 0
in Step 2-(2) for iteration t, then x(t) = x∗, where x∗ is
the true value of the failure rate vector.

This theorem provides the stopping rule for the algorithm
and ensures that the algorithm provides the exact solution
after a certain number of iterations. It tends to reduce the
actual number of inspections, which significantly decreases
the amount of data traffic and ensures the efficiency of
the aggregator. In addition, it reduces the possibility of
inspection for each participant, which protects the private
information of most participants.

4.4 Numerical Example

In this section, we show how the proposed algorithm
efficiently solves the detection problem.

Let us consider the DR with n = 100 and m = 24.
The scheduled negawatt energy cij (i = 1, 2, ..., n and
j = 1, 2, ...,m) is randomly generated from the uniform
distribution on the interval (0, 1]. The failure rate x is
shown in Fig. 3 (a), where we randomly set three defaulting
participants, 11, 37, and 47; each dot represents the failure
rate of the participant in each time slot. The total amounts
of negawatt energy sj (j = 1, 2, ..., 24) are shown as
Fig. 3 (b). The condition xk(t) = 0 in Theorem 1 holds
for t = 12, which finished the algorithm in the twelfth
iteration and provided the estimated result x̂ = x(12)
as shown in Fig. 3 (c). We see that the estimation in
Fig. 3 (c) is equal to the true failure rate in Fig. 3 (a). This
result demonstrates that the proposed algorithm exactly
estimates the failure rate vector x with a small number of
inspections.

5. CONCLUSION

In this paper, the detection of defaulting participants
with time-varying failure rates has been investigated. By
assuming that there are only a few defaulting participants
and they default in all periods, we have proposed a
detection algorithm based on block-sparse reconstruction.

(a) Failure rates xij

(b) Total amounts of negawatt energy sj

(c) Estimation of xij

Fig. 3. Results estimated by the proposed method

In addition, the stopping rule that enables us to solve
the problem with a small number of inspections was
presented. It can enhance consumer acceptance and reduce
the communication costs of the aggregator.

In the next step, we will improve our method to reduce the
number of inspections by incorporating additional prior
knowledge.
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