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Abstract: In the field of model predictive control (MPC), the computational effort of solving
the optimization problem considering long prediction horizon is often challenging, making the
implementation in real time infeasible. On the other side, a longer prediction horizon leads to
better control performance. Therefore, a trade off between computational effort and control
performance should accurately be achieved for the selection of prediction horizons within model
predictive algorithms. This paper presents a new scheme for model predictive control (structured
MPC) considering a fixed set of rules for assumed control structures simplifying the optimization
problem and therefore reducing the computational effort of MPC while maintaining advantages
of adaptive and optimal behavior due to MPC in combination with evaluation using prediction
horizons. The suitable control input is defined considering a performance measure. Experimental
results using a hydraulic differential cylinder test rig validate the advantages of the introduced
approach for real time application of MPC in comparison to standard controllers.

1. INTRODUCTION AND PROBLEM DEFINITION

Model predictive control (MPC) is an advanced control
technique which has been applied successfully in many
practical applications. This controller type uses an opti-
mizer for the optimal control evaluating over a future time
horizon based upon a mathematical or input-output model
of the process. Model predictive control has influenced
the directions of development of industrial control systems
(Yan and Wang (2012)).
If the system is linear and can be represented by a linear
model, the constrains are linear and the cost function is
a quadratic cost function, then linear time-invariant MPC
can be considered as an adequate controller. In this case
a convex optimization problem has to be solved and the
cost function has a single global optimum. If the system
to be controlled is a nonlinear system but can be approxi-
mated by linear models, adaptive and gain-scheduled MPC
controllers can be used. Both controllers work based on
multiple linearized model, each representing the nonlinear
function around its operating point.
The adaptive MPC uses the updated internal system
model at each time step (Kim (2010)). It is worth men-
tioning that adaptive MPC approaches are used when the
structure of optimization problem is not changed across
different operating conditions over the prediction horizon.
Otherwise gain-scheduled MPC should be used. In gain-
scheduled MPC the system model is linearized at the op-
erating points of interest. For each operating point a linear
MPC controller is designed off-line (Chisci et al. (2003))
considering the optimization procedure. Each controller

operates independent from the other ones and may have
different number of constrains. It is noteworthy that in
this approach an algorithm should be designed to switch
between the predefined MPC controllers for different op-
erating conditions. Although, using of independent MPC
controller approaches is an advantage of gain-scheduled
MPC. This approach requires more computational mem-
ory than adaptive MPC.
Model predictive control is typically characterized by a
high calculation effort which significantly depends on the
optimization algorithm. Determination of optimum con-
trol parameters in real time is the core of MPC approach.
Suitable selection of the prediction horizon is required to
ensure the suitable performance in steady state. However,
the computational effort of solving the optimization prob-
lem considering prediction procedure is often challenging,
making the implementation in real time impractical be-
cause the optimization must be solved at each time step.
Therefore, a trade off between computational complexity
and performance should accurately be done for the selec-
tion of prediction horizon length.
Several methodologies are proposed to overcome the high
computational effort of optimization procedure focusing
on real-time applications. One of the proposed approach
is denoted as ’move blocking strategy’ (Cagienard et al.
(2007)) which tries to divide the prediction horizon to two
parts, the first interval with a small sample time and the
second one with a large sample time, considering that high-
resolution sampling of the plant is mainly required near
the present time step. The second methodology is based
on extrapolation (Geyer et al. (2011)) while the third one
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is based on event-based horizon (Geyer and Mastellone
(2012)). In (Ma et al. (2011)) a periodic moving window
blocking strategy is used to reduce the computational time
for constrained optimization problem for the operation
of building cooling systems although the process is slow
itself. Accordingly, most of the real time application of
MPC is related to the slow process with limited dynamics.
Considering systems with slow dynamics, the well-known
MPC with high computational load can be successfully
implemented in real time. In the case of fast dynamical
behavior implementation of MPC will be challenging. In
addition to all aforementioned approaches to run MPC
faster, several methods are proposed for example model
order reduction, shorter prediction and control horizons,
and reduced number of constrains. For fast application
with a very small sample time, the explicit MPC can
be used which reduces the run time by precomputing
the optimal solution off-line (Bumroongsri and Kheawhom
(2012)). Another option to guarantee the worst-case execu-
tion time of MPC controller is to use suboptimal solution
for optimization procedure (Zeilinger et al. (2011)).
Hydraulic cylinders are broadly used in different indus-
trial aspects, e.g., heavy machines, cranes, and robots.
The motion behavior of hydraulic differential cylinders
can be defined by nonlinear differential equations with
strong nonlinear behavior (Jelali and Kroll (2012)). Mo-
tion control of power trains, drive trains, or even actuators
has been in the focus of several scientific and industrial
efforts of the last decade. Advanced control approaches
are based on knowledge (models resp.) about the system
to be controlled, realized by mathematical models (e.g.,
sets of differential equations). To control such a system
the fast dynamics of the system has to be considered in
design procedure. The controller should be able to realize
the required input in real time.
In the context of this paper, the approach of MPC is
modified: firstly a fixed controller scheme is selected and
secondly the optimization task is simplified to significantly
reduce the computational effort. A more detailed descrip-
tion in combination with simulation results is given in
(Bakhshande et al. (2019)). Main purpose of this contribu-
tion is to reduce the computational effort and complexity
of MPC to make the implementation in real time possible.
A hydraulic differential test rig is considered to validate
the advantages of proposed approach.

This paper is organized as follows. In Section 2 the stan-
dard MPC considering different optimization methodolo-
gies is introduced. In Section 3, the new MPC control
strategy is outlined in detail. In Section 4 the hydraulic
cylinder system used for validation of the proposed ap-
proach is introduced. In Section 5 the proposed approach
is implemented on the hydraulic system to evaluate the
well-known and proposed approaches, individual effects,
and obtainable results. Finally, conclusions are drawn in
Section 6.

2. PRELIMINARIES

2.1 Model predictive control (MPC)

Although a number of different model predictive control
algorithms have been developed over the years, the main

idea (i.e., the explicit application of a process model, the
receding horizon and optimization of a cost function) is
always the same ( Lawryńczuk (2007)). Accordingly the
cost function

J(k) =

N2
∑

r=1

||yref (k + r|k) − y(k + r|k)||2 (1)

+ρ

Nu−1
∑

r=0

||∆u(k + r|k)||2,

is minimized by an optimization algorithm considering
input vector u(k), prediction horizon N2, and control
horizon Nu. Equation (1) is the algebraical description of
the core idea of MPC. In every time instant k, the cost
function J has to be minimized. All components of this
function will be introduced in the sequel.
For each sampling instant k, a set of values which is going
to be controlled in a certain future horizon, exists. This
horizon is called control horizon, described with symbol
Nu. The expression of controlled variable u(k), also called
control signal, in control horizon Nu is

u(k) =









u(k|k)
u(k + 1|k)

...
u(k + Nu − 1|k)









. (2)

Accordingly

∆u(k) =









∆u(k|k)
∆u(k + 1|k)

...
∆u(k + Nu − 1|k)









(3)

=









u(k|k) − u(k − 1|k)
u(k + 1|k) − u(k|k)

...
u(k + Nu − 1|k) − u(k + Nu − 2|k)









, (4)

is calculated to minimize the differences between the
predicted values of the outputs y (or states) and the
reference trajectory yref over the prediction horizon as
shown (1).
The ρ > 0 value denoted in (1) bounds the changing rate of
inputs ∆u directly. By increasing the ρ value the increment
of input value is decreased and consequently the controller
becomes slower.
In (1), N2 denotes the predictive horizon, in which the
future outputs are predicted using system model while

y(k) =









y(k|k)
y(k + 1|k)

...
y(k + N2 − 1|k)









, (5)

denotes the prediction of the outputs for the future sam-
pling calculated at the current sampling instant k using a
dynamic model of the process.
Note that the prediction horizon N2 is always larger than
the control horizon Nu. Consequently, the predicted out-
put vector

[y(k + 1|k), y(k + 2|k), ..., y(k + Nu|k)]T , (6)

is generated by input vector

[u(k|k), u(k + 1|k), ..., u(k + Nu − 1|k)]T , (7)
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in the control horizon. In the time interval from k+Nu to
k + N2 − 1, inputs are considered without changes, which
means outputs from y(k + Nu + 1|k) to y(k + N2|k) in
time interval [k + Nu + 1, k + N2] are all evaluated by
u(k + Nu − 1|k) based on the prediction results.
The main idea of MPC can be concluded as the mini-
mization of difference between future output and reference
trajectory using the prediction results. To achieve this ob-
jective, the optimization algorithm plays a very important
role.
For every continuous instant k, the present plant output
y(k|k) is sent to the controller and replaced by the pre-
dicted output by system model in last step y(k|k− 1) and
then stored in controller as time delay value. Afterwards
the optimized input set will be founded by an optimiza-
tion algorithm (e.g. genetic algorithm). More specifically,
genetic algorithm generates a population of input sets
and uses system model to evaluate the predicted outputs,
then calculates the cost function separately and selects the
input set which leads to the minimum J value.

2.2 OPTIMIZATION

Optimization is one of the most essential part in MPC.
Most algorithms like gradient descent, are looking along
gradient descent line to find the local minimum. To use
this kind of line searching methods, the Jacobi and Hes-
sian matrix of cost function should be determined at
first ( Lawryńczuk (2007)). However, evaluating these two
matrices is a challenging task for a neural network-based
MIMO system.
In computer science and operations research, a genetic
algorithm (GA) is a meta-heuristic inspired by the pro-
cess of natural selection that belongs to the larger class
of evolutionary algorithms (EA). Genetic algorithms are
commonly used to generate high-quality solutions to op-
timization and search problems by relying on bio-inspired
operators such as mutation, crossover, and selection. In-
stead of finding local minimum in line searching algorithm,
genetic algorithm is able to find the global minimum (Das-
gupta and Michalewicz (2013)).
Beside genetic algorithm there are various optimiza-
tion approaches like particle swarm optimization, pat-
tern search optimization, Levenberg–Marquardt algo-
rithm, nonlinear constrained optimization, etc. The com-
putational effort and complexity of MPC is related to the
computational time of optimization procedure. According
to the available literature and to the best of authors
knowledge the MPC approach is primarily used in the
process industry (Qin and Badgwell (2003)) where the
computational effort is not a main challenge because the
process is slow itself and calculation of the optimal solution
can be done in real time.

3. STRUCTURED MPC: NEW DESIGN FOR
REAL-TIME APPLICATION OF MPC APPROACH

As mentioned before, MPC implementation is compu-
tationally demanding because prediction in combination
with online optimization is required for improved perfor-
mance of the control. From the other side, calculation
effort for solving the optimization problem is significantly
determined by the size of prediction horizon. In this sec-
tion, a new strategy is proposed to achieve long prediction

k k+1 k+N. . .

K

K

K
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1
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n

2

Prediction horizon N
2
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Set point-

. 
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Fig. 1. Schematic diagram of the selection approach at
time step k

horizons well within achievable levels of computational
effort.
In the context of this contribution, the approach of direct
adaptive control is used to reduce the computational effort
according to the objectives. The system model is used
within adaptation mechanism to evaluate the suitability
of control parameters and to identify the best possible
value. Consequently, the time consuming optimization of
cost function is replaced by a set of control rules (according
to a given and therefore fixed controller structure) and se-
lection of control parameters is done considering the MPC
procedure. In the proposed structured MPC no explicitly
integrated optimization is required.
The main idea is to use output feedback control in combi-
nation with MPC approach. The schematic diagram of the
selection approach at the time step k is shown in figure 1.
The future output values of the system is calculated over
a prediction horizon by using the mathematical model and
considering different input values u(t) based on the output
feedback control

ui = Ki(y(k) − yref (k)), (8)

with gain Ki as a proportional controller. The mean
square error (MSE) is calculated to evaluate the control
performance over the prediction horizon and select the
best Ki as

MSE(k) =
1

N2
ΣN2

r=1(y(k + r|k) − yref(k + r|k))2, (9)

with prediction horizon N2. The aim of the proposed
structured MPC approach is to find the best predicted
path closest to the reference trajectory considering the
control structure (8). Therefore, minimum MSE consider-
ing different Ki is selected at this step. The corresponding
input is used for control and all steps above are repeated.

4. MODEL OF A HYDRAULIC DIFFERENTIAL
CYLINDER

In this section the hydraulic cylinder test rig is introduced
according to the previous publication (Bakhshande et al.
(2020)). A model of a hydraulic differential cylinder with
a proportional control valve as shown in Figure 2 (Jelali
and Kroll (2012)) is given by
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Fig. 2. Sketch and test rig of hydraulic differential cylin-
der system at the Chair of Dynamics and Control
(UDuE), (1) proportional directional control valve,
(2) oil supply in chamber A, (3) oil supply in chamber
B, (4) moving mass, and (5) load cylinder
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u(t) +







0
d(t)

0
0






,

= f (x) + g(x)u(t) + d(t),

y(t) = h(x) = x1(t),

(10)

with the variant mass

m(x1) = mbasic + ρfl(VA(x1) + VB(x1)), (11)

the volumes VA, VB in chambers A and B as

VA(x1(t)) = VcA + x1(t)AA,

VB(x1(t)) = VcB + (H − x1(t))AB , 0 ≤ x1(t) ≤ H,

the disturbance d(t) as

d(t) =
fTotal(t)

m(x1)
, (12)

the hydraulic flows

QA(x3(t)) =

{

Bνsgn(p0 − x3(t))
√

| p0 − x3(t) |, u ≥ 0

Bνsgn(x3(t) − pt)
√

| x3(t) − pt |, u < 0

QB(x4(t)) =

{

−Bνsgn(x4(t) − pt)
√

| x4(t) − pt |, u ≥ 0

−Bνsgn(p0 − x4(t))
√

| p0 − x4(t) |, u < 0

with

Bν =
QN√

0.5∆pN
, (13)

and the bulk modulus of elasticity

Eoil(p) =
1

2
Eoil,max log10(90

p

pmax

+ 3).

The input u(t) is the electrical current which is limited as
−Imax ≤ u(t) ≤ Imax. The flow characteristic of the valve
is assumed to be proportional. No internal and external
leakage effects are considered. The friction of spool, piston,
and cart are neglected in the modeling of cylinder valve
(Jelali and Kroll (2012)). The variables and constants are
defined in Table 1.

Table 1. Definition of parameters and variables

Variable Physical meaning Value (Unit)

x1(t) = xcyl(t) Displacement of the mass cart - (m)

x2(t) = ẋcyl(t) Velocity of the mass cart - (m/s)

x3(t) = pA(t) Pressure in chamber A - (pa)

x4(t) = pB(t) Pressure in chamber B - (pa)

fd(t) External force acting on the piston - (N)

mbasic Basic mass of the cart 279.6 (kg)

ρfl Density of the hydraulic oil 870 (kg/mm3)

p0 Supply pressure 8×106 (pa)

pt Tank pressure 5×105 (pa)

AA Cylinder piston area 3117.2 (mm2)

AB Cylinder ring area 1526.8 (mm2)

ϕ =
AA

AB

Area ratio 2.042 (-)

Eoil,max Max. bulk modulus of elasticity 1.8×109 (pa)

pmax Max. supply pressure 2.8 ×107 (pa)

VcA Pipeline and dead volume (A) 198.6 (cm3)

VcB Pipeline and dead volume (B) 297.8 (cm3)

H Stroke of the cylinder 0.5 (m)

Imax Max. input current 0.63 (A)

QN Nominal valve flow 85 (L/min)

∆pN Pressure drop of valve 9×105 (pa)

5. RESULTS AND DISCUSSION

To evaluate the performance of proposed approach a
criterion

Ccriteria = [
∫ T

0 e2(t)dt,
∫ T

0 u2(t)dt], (14)

considering the input energy
∫ T

0 u2(t)dt (Integral Square

Input (ISI)) and control error
∫ T

0 e2(t)dt (Integral Square

Table 2. Experimental conditions and param-
eter selection considered for evaluation of the

proposed structured MPC approach

Gain vector Supply pressure

Case I K1 = [1, 5, 10, 15] 8×106 pa
Case II K2 = [10, 15, 20, 25] 8×106 pa
Case III K3 = [10, 15, 20, 25, 30] 8×106 pa
Case IV K2 = [10, 15, 20, 25] 4×106 pa
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Fig. 3. Position control of hydraulic differential cylinder using structured MPC approach and considering different cases
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Fig. 6. Input signal for the hydraulic differential cylinder
using structured MPC approach and considering dif-
ferent cases (sinusoidal signal as reference signal).

Error (ISE)) is used. The interval length T denotes the
time window where the performance is compared. With
the same input energy, the result which has lower output
error or correspondingly with the same output error which
uses less input energy (closer to the origin) provides better
performance.
Different cases are considered (Table 2) to compare the
effects of gain selection and experimental conditions on
the performance of proposed structured MPC. In ’Case I’
a gain vector is selected based on the working point and
physical limitations regarding hydraulic cylinder. In ’Case
II’ the gain vector is weighted and increased to see the
effects on control performance. In ’Case III’ the number
of gains are increased. Finally, in ’Case IV’ the gain is
considered as ’Case II’ and the supply pressure is decreased
to see the effects of experimental conditions. In figure 3 the
tracking results are illustrated for a sinusoidal signal as
reference. Gain values selected by the proposed structured
MPC approach for Cases I-IV are shown in figure 5. The
input signal is shown in figure 6 for all cases. It is evident
that the input signal related to Case III is more aggressive
compared to other cases.
Criteria (14) is calculated and shown in figure 4 for
all cases. For each controller the experiment is done
and repeated three times (Test I-III) considering same
conditions and gains. Furthermore, the results related to
standard P-controller is illustrated. From the results it can
be concluded that the proposed structured MPC approach
is not only applicable in real time but also produces better
tracking error compared with standard approaches (P-
Controller) when the vector gain is designed in a suitable
way (Case III).

6. CONCLUSIONS

This paper proposes a new MPC approach to reduce the
computational effort of MPC for implementation in real
time considering systems with fast dynamical behavior.
The proposed structured MPC is implemented on a hy-
draulic differential cylinder test rig considering a non-
constant reference value (setpoint). Experimental results

show the ability of this controller to achieve suitable track-
ing performance besides using the advantages of MPC.
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