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Abstract: In classical paradigm of model identification, a single prediction value is returned as
a point estimate of the output. Recently, the interval prediction model (IPM) has been receiving
increasing attentions. Different from generic models, an IPM gives an interval of confidence as the
prediction that covers the majority of training data while being as tight as possible. However, due
to the randomness of sampling training data, the reliability of IPM constructed is uncertain. In
this paper, we focus on a general class of IPMs where a fraction of data samples can be discarded
to pursue robustness, and establish an appropriate a posteriori reliability guarantee. It relies on
counting the “decisive” constraints associated with the optimal solution, and generally leads to
reduced conservatism and better estimation performance than the existing performance bounds.
Moreover, the guarantee holds irrespective of the data generation mechanism, which informs
the decision maker of the prediction confidence in the absence of precise knowledge about data
distribution. Its effectiveness is illustrated based on numerical examples.

Keywords: Interval prediction model, system identification, uncertainty quantification,
robustness.

1. INTRODUCTION

In standard routes of system identification, one typically
uses a parametric model to fit the observed input-output
data, and then makes predictions on out-of-sample inquiry
inputs. The prediction value, however, will be no longer in-
formative if its accuracy is insufficient (Box et al. (2015)).
Hence it is important to not only deliver the prediction
value but also establish a confidence interval around the
prediction value as an indicator of reliability and accuracy.

For effective uncertainty quantification, interval predictor
model (IPM), which returns an interval instead of a point
estimate as the output, has been receiving consistent at-
tentions since its invention. Early contributions in this vein
include Chryssolouris et al. (1996); Heskes (1997); Jaulin
et al. (2001); Calafiore and Campi (2002), in different
forms of interval analysis, set-membership prediction, con-
fidence interval prediction, and so on. Later on, widespread
applications have been motivated in multifarious areas,
such as energy clearing price prediction (Zhang et al.
(2003)), river flow prediction (Shrestha and Solomatine
(2006)), demand prediction in power systems (Morita et al.
(1996)), sensor fault detection (Fravolini et al. (2018)),
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model predictive control (Shang and You (2019a)), and
chemical process planning (Shang et al. (2017)).

For traditional parametric models, after the structure of
the system (e.g. some basis functions) is chosen and mod-
el parameters are determined, the confidence interval is
then constructed, which calls for the statistical postula-
tion made upon the true system, e.g. Gaussian-distributed
measurement noise (Ljung (1999)). If data distribution is
well characterized by statistical assumptions, one can effec-
tively recover the system and achieve desirable prediction
performance. However, in some cases of engineering prac-
tice, the exact probabilistic distribution based on which
data are generated is typically unknown. If inconsistency
exists between the physical truth and the underlying as-
sumption, then a heavily biased estimation of confidence
interval and model reliability will be attained.

To address this issue, we establish an a posterior-
i distribution-free guarantee for reliability of induced in-
tervals for a class of robust IPMs, where the outcome
interval covers the majority of observed outputs with the
interval being as “narrow” as possible to ensure accuracy.
Specifically, a fraction of data samples are allowed to reside
outside the interval, which leads to reduced conservatism
but enhanced robustness against outliers (Campi et al.
(2009)). By learning from data and excavating structural
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information within model parameters, which is expressed
in terms of the number of “decisive” data samples, we show
that the reliability, i.e. the probability that a new sample
falls into the interval, can be bounded probabilistically and
in a solution-dependent way. Most importantly, the relia-
bility guarantee exhibits a distribution-free nature, imply-
ing that no further assumptions on the data-generating
mechanism are needed. In comparison with existing a pri-
ori bounds in literature, the proposed a posteriori bound
has flexibility to adapt to the quality of realized model
parameters on training samples, and shows significantly
reduced conservatism in estimation performance. These
merits will be illustrated by numerical case studies.

2. ROBUST INTERVAL PREDICTOR MODEL

2.1 Problem setup

First we clarify some notations and definitions. We define
a set of continuous integer Na:b = {a, a + 1, · · · , b − 1, b}.
Cu[0, 1] denotes a class of u times differentiable functions
with continuous u-th order derivative over [0, 1]. 1A(·) is
the indicator function over set A. For two symmetric ma-
trices X and Y , X � Y denotes positive semi-definiteness
of X − Y .

We consider a system with φ ∈ Φ ⊆ Rm as the input and
y ∈ Y ⊆ R as the output, where Φ and Y are the input
set and the output set, respectively. It is assumed that
the mechanism of generating data samples {φi, yi}Ni=1 is
stationary, which is denoted with P and can be interpreted
as a joint probability measure in the Φ× Y space (Campi
et al. (2009)). Although P is unknown, a set of input-
output data {(φi, yi)|i ∈ N1:N} can be randomly sampled,
which are assumed to be independent from each other.
Such requirements of stationarity and independence just
indicate that the samples {(φi, yi)|i ∈ N1:N} are indepen-
dently and identically distributed (i.i.d).

Note that along generic routes of system identification,
the ideal output y is regarded as a function from φ to y:
y = f(φ). Rather, in our scheme the induced y could be
different with the same input φ due to various sources of
uncertainty. In this case, predicting the possible range of
output with an interval makes more sense than giving a
single value.

Formally speaking, an IPM gives a suitable output interval
in Y for each possible input φ, which can be seen as a
set-valued mapping F (φ) in φ, i.e., φ → F (φ) ⊆ Y .
As the true mechanism P is unknown, the goal of IPM
identification is to use a series of i.i.d samples {(φi, yi)|i ∈
N1:N} obtained from the system to find the mapping F (φ).
It is hoped that the interval can describe the distribution
of output y while being adequately informative. In other
words, the interval shall contain the majority of possible
outputs with a small volume. This inspires the following
general formulation of IPM identification from N i.i.d.
samples:

IPMN : min
F

Eφ {Size of F (φ)}

s.t. yi ∈ F (φi), ∀i ∈ N1:N .
(1)

To construct the set-valued mapping F (φ), one first choos-
es a proper parametric function ξ = g(φ,η), which is a

single-valued mapping from Φ to Y with η being model
parameters. For a fixed φ, F (φ) can be constructed by
considering possible values of ξ induced by variations of η
in a set Γ (Campi et al. (2009)):

F (φ) = {ξ|ξ = g(φ,η),∀η ∈ Γ}. (2)

Note that the function ξ = g(φ,η) used here has to be
continuous. Under this circumstance, if η is distributed in
a convex set, for any given φ, the value of ξ = g(φ,η) will
be distributed in an interval.

Obviously, the single-valued function g(φ,η) and the set Γ
for η specify the set-valued mapping F (φ). Once we have
chosen the parametric form of g(φ,η), the optimization
problem IPMN is a model with Γ as decision variables. In
this paper, the simple affine mapping g(φ,η) is considered:

ξ = g(φ,η) = θTφ+ e, (3)

where η := {θ, e} denotes model parameters.

Remark 1. Note that the input φ does not have to coincide
with real inputs of the system, and a linear structure has
abundant modeling power. In fact, it can be an appropriate
mapping of real inputs after transformations to attain a
nonlinear IPM. For example, if x is a one-dimensional
real input of the system, then φ can be chosen as φ =
[x, x2, x3, . . . ] as a polynomial expansion. Other nonlinear
basis functions such as wavelets can be adopted as well.

Two sets are individually designed to describe possible
variations in θ and e. For the set of θ, a standard choice
is to use a ball or an ellipsoid with center c:

{θ | ||θ − c|| ≤ r}, (4)

{θ | (θ − c)TP−1(θ − c) ≤ 1}, (5)

while the set of e can be chosen as a simple symmetric
interval [−γ, γ]. Under such choices, the induced set-valued
mapping F (φ) can be expressed as (Calafiore and Campi
(2003)): [

cTφ− (r||φ||+ γ) , cTφ+ (r||φ||+ γ)
]
, (6)[

cTφ−
(√

φTPφ+ γ

)
, cTφ+

(√
φTPφ+ γ

)]
. (7)

In these two cases, the identification of corresponding
IPMs can be described as tractable optimization problems
(Calafiore and Campi (2003)). For IPM (6) it suffices to
solve a linear programming program:

min
c,r,γ

αr + γ (8a)

s.t. − r||φi|| − γ ≤ yi − cTφi ≤ r||φi||+ γ,∀i, (8b)

r ≥ 0, γ ≥ 0, (8c)

where α > 0 is a weighting parameter to balance between
sizes of two sets. For IPM (7) induced by the ellipsoidal
parameter set, the following semi-definite program (SDP)
shall be resolved (Campi et al. (2009)):

min
c,P,γ2,ε1,...,εN

Tr[PW ] + γ2 (9a)

s.t. P � 0,

[
γ2 εi
εi 1

]
� 0, ∀i ∈ N1:N , (9b)[

φT
i Pφi yi − cTφi − εi

yi − cTφi − εi 1

]
� 0, (9c)

where W is a weighting matrix similar to α, and {εi, i ∈
N1:N} are auxiliary variables. Upon deriving the solution,
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for a query input φ, the center of the interval cTφ can be
used as the point estimate of output, with (6) or (7) as its
confidence interval. Notice that (8) and (9) are all convex
optimization problems.

2.2 Robust IPM

In formulation IPMN , the desired interval covers all ob-
served data, including bad ones. However, in many practi-
cal situations, some observed samples may show patterns
that are significantly different from the others, i.e. outliers.
If we still choose all data for modeling, the interval tends to
be over-conservative, which is an unwanted result. Because
of the considerable influence of outliers on the identifica-
tion performance, some robustness shall be imposed on the
model by purposely weakening the effect of potential out-
liers. The most straightforward way to deal with outliers is
to just discard them, which has already been extensively
used in system identification, see e.g. Bai et al. (2002),
Crespo et al. (2014) and Jaulin and Walter (2002). On the
other hand, there are indeed some occasions where a high
reliability is not so important, and the decision maker may
prefer a tighter interval for a reduced reliability (e.g. 0.6
or 0.7 is enough) even if there are no outliers at all. In
this case, discarding some samples are beneficial since the
correlation between input and output can be informatively
exhibited with a tight prediction interval.

Here in this paper, we carry out IPM identification allow-
ing a fraction of data samples to be discarded, through
which a narrower interval can be obtained to characterize
the region where data are densely distributed and yield ro-
bustness against outliers. Suppose that n out of N samples
are to be discarded, which shall be optimally selected by
the model. This leads to the following robust counterpart
of IPMN :

IPMN,n : min
F,IN,n

Eφ {Size of F (φ)}

s.t. yi ∈ F (φi), ∀i ∈ IN,n,
IN,n , {i(1), . . . , i(N−n)} ⊆ N1:N ,

(10)

where IN,n is a subset of N1:N containing N −n indices to
be decided by the algorithm, whose complement involves
samples that are discarded optimally.

However, due to its combinatorial nature, choosing IN,n
poses significant challenging in solving IPMN,n. One way
is to resort to mixed-integer formulations including binary
variables to indicate sample discarding (Luedtke et al.
(2010)), where IN,n can be optimized simultaneously with
the set-valued mapping F (·). Alternatively, we can adopt
the greedy algorithm based on solving the convex opti-
mization problem IPMN repeatedly. Every time discard
one sample whose removal leads to the minimal interval
width and repeat it for n times. Other methods, such as
optimal removal proposed in Campi et al. (2009); Campi
and Garatti (2011), can also be used.

3. A POSTERIORI RELIABILITY GUARANTEE

3.1 Reliability and a priori bound

By introducing the concept of discarding samples in IPM,
it is expected that the output interval becomes narrower,

and the prediction reliability decreases accordingly. A
decision maker can be aware of the risk of using the
derived interval for further uncertainty quantification if
the reliability of an IPM is known, whose definition is given
as follow:

Definition 2. Suppose the solution to IPMN is F ∗N . The
reliability R(F ∗N ) is defined as the probability that a new
sample (φ, y) is consistent with the derived set-valued
mapping F ∗N :

R(F ∗N ) = P{(φ, y)|y ∈ F ∗N (φ)}. (11)

The above definition also applies to IPMN,n, and its
reliability is denoted by R(F ∗N,n). An assumption related
to reliability is made below.

Assumption 3. (Existence and uniqueness) For every N
and 0 ≤ n < N and every sample set {(φi, yi)|i ∈ N1:N},
the solution of IPMN,n exists and is unique.

Under the above assumption, we wish to derive a (1− ε)-
reliability guarantee for F ∗N,n such that it satisfies the
following relationship:

PN{R(F ∗N,n) ≥ 1− ε} ≥ 1− β. (12)

As aforesaid, a sample pair (φi, yi) can be seen as a
random vector in some unknown probability space P. Since
the samples are all independently identically distributed,
the whole sample set {(φi, yi)|i ∈ N1:N} is on the N -
fold probability space PN . Under the Assumption 3, the
optimal solution F ∗N,n and the reliability R(F ∗N,n) can
be seen as relying on the sample set and thus both are
also random set and random variable in PN . As a result,
R(F ∗N,n) ≥ 1 − ε is a random event associated with a

probability, just as (12). If β decreases, the probability
for R(F ∗N,n) ≥ 1 − ε to happen will increase, and thus
there is an interplay between ε and β. Achievements in
such forms have been gained on the reliability of the
IPM in literature. Reliability in both independent and
weak-dependent situations are discussed in (Calafiore and
Campi (2003)). An a priori bound for a special kind of
IPM, minimax layers, is analyzed in Garatti et al. (2019).
When the problem is convex, the discarding method and
the a priori bound of the reliability after discarding is
also mentioned in Campi and Garatti (2008); Campi et al.
(2009); Campi and Garatti (2011), given as follow:

Theorem 4. (Campi et al. (2009)) Under Assumption 3,
(12) holds with

β = β0

n∑
i=0

(N − d)!

(N − d− i)!i!
· εi

(1− ε)i
,

β0 =
N !

(N − d)!d!
(1− ε)N−d,

(13)

where d is the number of free parameters. In the above
formulation, β can be determined with a given ε. For
practical use, it is desirable attain the reliability guarantee
1−ε with a pre-specified confidence level. For instance, β is
chosen as a very small positive number such as 10−6. Based
on the relationship between ε and β revealed in Theorem
4, the value of ε can be computed in a reverse order given
the value of β, which essentially provides an estimate of
upper ε-quantile of F ∗N,n with (1− β)× 100% confidence.
An exclusive advantage of Theorem 4 its distribution-free
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nature in that it holds for an arbitrary data-generating
mechanism P. Hence the case where P is unknown can be
tackled desirably.

3.2 A posteriori bound

Note that the above a priori bound can be obtained before
the sample set is obtained and the model is built, and thus
is essentially solution-independent. It implies that equal
values of ε will be attained for different realizations of F ∗N,n
provided that N and n are given, this bound remains the
same, and thus cannot reveal the difference of reliability
between different solutions. In fact, if the bound can be
combined with some a posteriori information encoded in
the solution and varies with sample sets, the deriving a
posteriori bound after seeing F ∗N,n could be more reliable.

Recent progress has been made on a posteriori bounds
of scenario programs without sample discarding. The a
posteriori bounds of reliability have been developed under
both the convex (Campi and Garatti (2018)) and non-
convex settings (Campi et al. (2018)). Shang and You
(2020) proposed a posteriori bounds for reliability esti-
mations combined with additional validation information.
Here we extend a posteriori bounds to cases with sam-
ple discarding as a major contribution of this work. The
construction relies on the concept of support sub-samples,
whose definition is given below.

Definition 5. (Support sub-samples, Campi and Garat-
ti (2018)) The support sub-samples of convex program
IPMN are defined as those whose removal does not affect
the optimal solution.

Definition 6. (Support sub-samples with sample discard-
ing) Suppose we have already got I∗N,n after solving
IPMN,n. With I∗N,n fixed, the optimization problem
IPMN−n reduces to a convex optimization problem, which
is denoted by IPMN−n. Then the support sub-samples of
IPMN,n are defined as those of IPMN−n.

It is worth mentioning that Definition 6 is new in litera-
ture, and Definition 5 given by Campi and Garatti (2018)
does not applies directly to the case with sample discard-
ing. Once discarded samples have been decided, IPMN,n

reduces to IPMN−n, and their optimal solutions F ∗N,n and

F
∗
N−n also coincide. Here we utilize useful information

in the “decisive” support sub-samples of convex program
IPMN−n for reliability assessment of IPMN,n, which is
non-convex. It is known that for convex programs, the
constraints of the support sub-samples are always active
constraints, which become strict equalities at the optimal
solution (Campi and Garatti (2018)). To establish an a
posteriori guarantee, the following assumption is made.

Assumption 7. (Non-degeneracy, Campi and Garatti (2018))
With probability 1 the solution to IPMN coincides with
the solution defined by its support sub-samples only.

Denote by s∗N,n the number of support sub-samples of
IPMN,n. Now we are ready to put forward an a posteriori
bound based on s∗N,n to give a guarantee on the reliability
of prediction interval of IPMN,n. Specifically, ε becomes a
function of s∗N,n, that is, ε(s∗N,n), which can be determined
after the problem is solved and s∗N,n is revealed. This

explains why it is called an a posteriori bound. The main
results are given as follows.

Theorem 8. Suppose that εn(k), k = 0, 1, . . . , u is a [0, 1]-
valued function given by the user, u = min{d,N−n} and β
is the optimal value of the following optimization problem:

inf
f(·)∈Cu[0,1]

f(1)

s.t.
1

k!

dk

dtk
f(t) ≥

(
N

k

)(
N − k
n

)
tN−n−k

· (1− t)n · 1[0,1−εn(k))(t),

∀t ∈ [0, 1], ∀ k ∈ N0:u,

1

k!

dk

dtk
f(t) ≥ 0, ∀t ∈ [0, 1], ∀ k ∈ Nu+1:d.

(14)

Under Assumption 7, it then follows that

PN{R(F ∗N,n) ≥ 1− εn(s∗N,n)} ≥ 1− β. (15)

Now β is dependent on the selection of functionals εn(·).
For convenience in practical use, the following theorem
suggests a sound choice of constructing εn(·) reversely with
β fixed.

Theorem 9. Define polynomial functions as:

ϕk,n(t)

=
β

N + 1

N−n∑
m=k

(
m

k

)
tm−k −

(
N

k

)(
N − k
n

)
tN−n−k(1− t)n,

n ∈ N0:N−1, k ∈ N0:u

(16)

If u = d, define t0k,n as the smallest root for ϕk,n(t) in

[0, 1]. It holds that {εn(k) = 1 − t0k,n} defines a group of

functions that satisfy PN{R(F ∗N,n) ≥ 1−εn(s∗N,n)} ≥ 1−β.

If u = N − n, for k < N − n, εn(k) is defined the same as
above. For k = N − n, εn(N − n) = 1.
Also the constructed εn(k) satisfies the monotonicity with
k and n, that is εn(k) > εn(k − 1), k ∈ N1:u, n ∈ N0:N−1
and εn(k) > εn−1(k), k ∈ N0:u, n ∈ N1:N−1.

Proof. The proofs of Theorems 8 and 9 can be made in a
similar way as those in Campi and Garatti (2018) and are
omitted due to space limitations.

To illustrate the characteristics of the established bounds,
the following remarks are made.

Remark 10. Theorems 8 and 9 hold in a distribution-free
manner, which can be used for reliability estimation of
IPMs without knowing the true data-generating mecha-
nism P.

Remark 11. To use the proposed reliability guarantee, one
has to first solve IPMN,n and then get I∗N,n and IPMN−n.
Afterwards, s∗N,n can be computed based on a greedy

method by removing samples one by one from IPMN−n
and checking the solution (Campi et al. (2018)). In fact,
the algorithmic efficiency can be improved by only search-
ing among active constraints, since the constraints of the
support sub-samples are always active in convex programs.
Hence it suffices to restrict attentions to constraints with
non-zero dual variables in IPMN−n as candidate support
sub-samples.

Remark 12. It is known that the number of support sub-
samples of a convex program cannot exceed d (Calafiore
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and Campi (2005)), provided that d < N − n. This is
a standing assumption in literature, indicating that suffi-
cient samples are used for problem formulation. However,
it may be the case that d ≥ N − n where there are no
adequate samples and the input dimensionality is high,
which calls for the use of an extra regularization term to
alleviate model over-fitting (Ljung et al. (2019)). Different
from most existing results, the proposed a posteriori bound
also applies to this situation when d ≥ N −n, as indicated
by Theorems 8 and 9.

4. SYSTEM IDENTIFICATION CASE STUDIES

In this section, we investigate the use of the proposed
guarantee in reliability estimation based the SDP formu-
lation (9). A system with one-dimensional input x and
one-dimensional output y is adopted in this case study
for clear illustrations. The original system for producing

the sample set is y = 10√
2π
e−x

2/2 − 10√
2π

. 300 input sam-

ples are taken uniformly in [−1, 1]. All the output y is
added with a Gaussian noise N (0, 0.032). Meanwhile, an
additional heavy noise term N (0, 0.32) is added to the
output y with probability 0.01 and this can be seen as
the procedure for generating exceptional data points. Note
that we present the structure of the system only for the
readers to repeat the case. When conducting the system
identification experiment, we regard the system as a black
box and use nothing but only the sample set. A sample set
with N = 300 is extracted from the sample space. We use
polynomials with order 0-4 as basis functions for nonlinear
model identification, such that input x is projected into
φ = [1, x, x2, x3, x4]. The number of discarded samples is
chosen as n = 3. A greedy algorithm is used to decide
which sample should be discarded, and in each iteration a
convex scenario program is solved with a candidate sample
removed. The final modeling result is visualized in Fig.
1. The red circles denote the support sub-samples after
discarding and the green stars are the samples that already
have been discarded.

-1 -0.5 0 0.5 1

x

-2

-1.5

-1

-0.5

0

0.5

1

y

Fig. 1. Results of regression

In this case, we choose β = 10−6. Recall that N = 300, n =
3, d = 31. After discarding n = 3 samples, the number
of support sub-samples of the reserved 297 samples turns
out to be s∗300,3 = 12. In virtue of Theorem 9, we can
know ε3(12) = 0.1759. So here comes the conclusion:
P300{R(F ∗300,3) ≥ 0.8241} ≥ 1− 10−6. It means that with

probability no less than 1 − 10−6, for an unknown input
x, the probability for the real output y falling into the
interval (7) is higher than 0.8241.

To testify the fidelity of the proposed a posteriori bound
in lower-bounding the true reliability, we carry out ex-
tensive Monte Carlo simulations. 106 new samples are
independently generated in the original sample space as a
“practically true” mechanism for validation. For each IPM
identified based on 300 random samples, the reliability of
its interval is estimated as the percentage of samples falling
into the interval in all 106 validation samples. For example,
in a particular validation sample set derived, there are
94455 out of 106 samples that fall into the interval. So
the empirical reliability is about 0.9446. As we can see,
the lower bound we get by using theoretical research is
0.8241, which effectively bounds the empirical reliability.
In comparison, the a priori bound in Theorem 4 is only
0.4491. Obviously the proposed a posteriori bound has
much lighter conservatism than a priori bound.

Note that this is just the result based on one instance
of sampling N = 300 samples. Next we carry out Monte
Carlo experiments by repeating the above procedure 1,000
times and make a comparison between the empirical reli-
ability and different probabilistic guarantees, as shown in
Fig. 2.
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A Priori Bound (Campi et al. (2009))
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Fig. 2. The comparison of different guarantees of interval
reliability under 1,000 Monte Carlo experiments

In 1,000 Monte Carlo experiments, samples are all in-
dependently sampled from the whole probability space.
As a result, the empirical reliability is random. The a
posteriori bound is also random because s∗N,n depends on
the sample set. Since the a priori bound does not relies on
the particular relaxation of datasets, in 1,000 Monte Carlo
experiments the a priori guarantee in Campi et al. (2009)
remains the same all the time. Although it successfully
lower-bounds the true reliability, significant conservatism
can be observed. In contrast, the proposed is always lower
than the empirical reliability and is much higher than
the a priori bound. The relationships of the a posteriori
bound and the a priori bound with support sub-samples
are further depicted in Fig. 3. With the increase of the
number of support sub-samples s, the a posteriori bound
decreases while the a priori bound remains the same. In
this case, the a posteriori bound is always less conservative
than the a priori bound for all possible realizations of s.
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Fig. 3. Comparison between a priori and a posteriori
guarantees with different numbers of support sub-
samples s

5. CONCLUSION

This paper establishes a probabilistic reliability guarantee
for confidence interval obtained by IPM identification with
sample discarding, which holds irrespective of the true
data-generating mechanism. Compared to the a priori
bound in literature, the proposed a posteriori bound is
solution-dependent and turns out to be less conservative.
Together with robust IPM and the a posteriori guarantee,
one has access to more accurate information about model
risk and reliability, which is particularly beneficial for
further uncertainty quantification and decision-making.
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