
Sampled-Data Set Stabilization of Switched
Boolean Control Networks

Amol Yerudkar ∗ Carmen Del Vecchio ∗ Luigi Glielmo ∗

∗ Department of Engineering, University of Sannio, Piazza Roma 21,
Benevento 82100, Italy (e-mail: ayerudkar, c.delvecchio,

glielmo@unisannio.it).

Abstract: In this paper, the set stabilization of switched Boolean control networks (SBCNs)
under sampled-data feedback control is addressed. Here, the control input is switching signal-
dependent, and SBCNs can switch only at the sampling instants. First, the sampled point
control invariant subset (SPCIS) of SBCNs is defined, and an algorithm is provided to obtain
the largest SPCIS under arbitrary switching signal. Based on the largest SPCIS, some necessary
and sufficient conditions are presented for the set stabilization of SBCNs by switching signal-
dependent sampled-data (SSDSD) state feedback control. Furthermore, a constructive procedure
is given to design all possible SSDSD state feedback controllers. Finally, some examples are
presented to illustrate the effectiveness of the obtained results.
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1. INTRODUCTION

Boolean Networks (BNs) were first proposed by Kauff-
man for the analysis of metabolic stability of gene reg-
ulatory networks (GRNs) (Kauffman, 1969). Since then
there has been a widespread interest in BNs, as an effective
model for intricate GRNs. Moreover, topological structure
analysis of BNs plays significant role in the treatment of
various diseases. For instance, treatment of breast cancer
and leukemia (Choi et al., 2012). Exogenous perturbations
have also been observed in many biological systems, which
can be characterized as control (Fauré and Thieffry, 2009).
Thus, by adding Boolean inputs to BNs we can develop
control strategies; BNs with inputs and outputs are called
Boolean control networks (BCNs).

In the last decade, D. Cheng and co-authors proposed
an algebraic framework for BNs and BCNs that resorts
to the semi-tensor product (STP), and allows to cast
the logical dynamics of BNs (BCNs) into discrete-time
linear (bilinear) systems (Cheng and Qi, 2010; Cheng
et al., 2010). Thus, one can study BCNs with methods
resembling classical control theory. Many control-theoretic
problems on BCNs have been investigated, including but
not limited to, controllability and observability (Laschov
and Margaliot, 2012; Cheng et al., 2016; Zhang and Jo-
hansson, 2020), stability and stabilization (Cheng et al.,
2011; Li et al., 2013; Bof et al., 2015; Li and Wang, 2017),
optimal control (Laschov and Margaliot, 2013; Fornasini
and Valcher, 2014; Wu et al., 2019).

In reality, most biological systems exhibit switching
behavior compared with the purely discrete dynamics of
the typical BN model (El-Farra et al., 2005). Switching can
be triggered by inherent system mechanisms or by uncer-
tainties and exogenous disturbances, which are very often
observed in biological systems. Such biological systems can
be modeled using a class of BNs, namely switched Boolean

networks (SBNs). The research on SBNs and switched
Boolean control networks (SBCNs) has spurred signifi-
cant interest from the control community. And, indeed,
within this setting, controllability and control design (Li
and Wang, 2015), synchronization (Chen et al., 2015), set
stability (Guo et al., 2017) of SBNs, disturbance decou-
pling (Li et al., 2014), output tracking control (Yerud-
kar et al., 2019b), and stabilization (Li and Tang, 2017;
Yerudkar et al., 2020) of SBCNs, have been successfully
investigated.

Stabilization of SBCNs is one of the crucial issues. It is
of great importance in medical practice to modify system
behavior to make it desirable by using control inputs.
This can help to decide therapeutic intervention strategies
to achieve a healthy and robust state in specific GRNs.
For example, a disease progression modeling in terms of
the tumor (diseased cell) growth and designing treatment
methods to eradicate diseases cells. In fact, SBCNs facil-
itate such modeling and offer a natural choice to model
the development of cellular systems from a practical per-
spective. Therapeutic efficacy requires an optimal control
policy for administrating an adequate dose of medicine
that causes maximum tumor damage while reducing the
associated side effects (Vahedi et al., 2009). If one can
design all possible feedback controllers for treating the
disease under consideration, it can be advantageous to
identify optimal control policies.

In this paper, we address the problem of designing
all possible switching signal-dependent sampled-data (SS-
DSD) state feedback controllers (i.e., a complete solution)
to set stabilize SBCNs under arbitrary switching signal.
The sampled-data control technique has been extensively
studied in recent decades (Oishi and Fujioka, 2010; Hau-
roigne et al., 2011; Fujioka, 2009; Hetel and Fridman,
2013). In practice, where the aim is to achieve stabi-
lization or synchronization, the traditional state feedback
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controller is updated at every instant resulting in higher
energy consumption. On the other hand, the sampled-data
state feedback controller is updated during each sampling
period. The sampled-data control can, therefore, reduce
the number of controller updates while achieving the same
desired effect (Zhu et al., 2020).
Recently, the sampled-data state feedback control tech-
nique is studied in (Zhu et al., 2020) and (Xu et al., 2019;
Liu et al., 2019) to set stabilize BCNs and probabilistic
BCNs, respectively. In (Liu et al., 2018), the synchro-
nization problem of BCNs is investigated by the sampled-
data state feedback control. Nonetheless, the sampled-data
control for SBCNs has not been investigated yet. Although
SBCNs represent the generalized version of BCNs with
switching, results on BCNs do not apply to SBCNs di-
rectly, and further research is required to address the issue
of sampled-data state feedback control for SBCNs.

By following this stream of research, in this paper the
problem of finding a complete solution to the set stabi-
lization problem of SBCNs under SSDSD state feedback
control considering arbitrary switching signal is studied.
By resorting to the algebraic state-space representation
of SBCNs, a new algorithm is presented to obtain the
largest sampled point control invariant subset (SPCIS)
followed by some necessary and sufficient conditions for
the sampled-data set stabilizability of SBCNs. Here, the
switching can occur only at sampling instants. Further,
an algorithm is presented to obtain all possible complete
families of controllable sets thereby all possible SSDSD
state feedback controllers are designed under arbitrary
switching signal through a constructive method.

The paper is organized as follows. Preliminaries and
problem formulation are stated in Section 2. In Section 3,
we present a new algorithm to obtain the largest SPCIS,
and investigate how to design all possible SSDSD state
feedback controllers based on all the complete families of
controllable sets of SBCNs. Some illustrative examples are
given in Section 4 to validate the presented results. Finally,
a brief conclusion is provided in Section 5.

2. PRELIMINARIES AND PROBLEM
FORMULATION

In this section, some necessary preliminaries which will
be used in the sequel are given.

R, N and Z+ denote the sets of real numbers, natural
numbers and nonnegative integers, respectively. Given
k, n ∈ Z+, with k ≤ n, we denote the integer set
{k, k + 1, . . . , n} by the symbol [k, n]. B := {0, 1},
and Bn := B × . . .× B︸ ︷︷ ︸

n

. ∆n := {δin | i = 1, . . . , n}, where

δin denotes the ith canonical vector of size k. A matrix L ∈
Rn×r is called a logical matrix, if L =

[
δi1n δi2n . . . δirn

]
.

It is shortly denoted by L = δn [i1 i2 . . . ir]. Denote
the set of all m × n logical matrices by Lm×n. A n × m
matrix A = (aij) is called a Boolean matrix, if aij ∈ B,
∀i, j. Denote the set of n×m Boolean matrices by Bn×m.
Coli(A) and (A)i,j denote the ith column and the (i, j)th
element of matrix A, respectively. |·| represents the number
of elements in a set.

Definition 1. (Cheng et al., 2010) Let A ∈ Rm×n, B ∈
Rp×q. Denote the least common multiple of n and p by
t = lcm{n, p}. Then the STP of A and B is defined as

A n B := (A ⊗ I t
n

)(B ⊗ I t
p
), where ⊗ is the Kronecker

product of matrices.

Remark 2. Henceforth, Boolean state, input and output
variables are identified by uppercase letters and their
equivalent vector form by lowercase letters. We omit the
symbol “n” throughout this paper.

Lemma 3. (Cheng et al., 2010) Let f(X1, . . . , Xn) : Dn →
D be a logical function. Then there exists a unique logical
matrix Mf ∈ L2×2n , called the structure matrix of f ,
representing f so that f(X1, . . . , Xn) ⟷ Mf nni=1 xi,
xi ∈ ∆2, where nni=1xi = x1 n x2 n . . .n xn.

A SBCN with n nodes, m control inputs, and a switch-
ing signal with p values leading to p sub-networks is de-
scribed as follows:

X1(t+ 1) = f
σ(t)
1 (U(t), X(t)) ,

⦙
Xn(t+ 1) = fσ(t)n (U(t), X(t)) ,

(1)

where σ : Z+ → P := {1, 2, . . . , p} is the switching
signal, X(t) :=

(
X1(t), . . . , Xn(t)

)
∈ Bn is the state,

U(t) :=
(
U1(t), . . . , Um(t)

)
∈ Bm is the control input, and

f ji : Bn+m → B, i = 1, 2, . . . , n, j = 1, 2, . . . , p, is logical
function. Given a switching signal σ(t) and a switching
signal-dependent control sequence Uσ(t)(t) : Z+×P → Bm,
t ∈ Z+, starting from an initial state X0 = X(0) ∈
Bn, denote the state trajectory of the system (1) by
X
(
t; X(0), Uσ

)
.

Based on Lemma 3, by setting x(t) = nni=1xi(t),
u(t) = nmi=1ui(t), y(t) = nqi=1yi(t), the algebraic form
of SBCN (1) can be given as

x(t+ 1) = Lσ(t)u(t)x(t), (2)

where x(t) ∈ ∆2n , u(t) ∈ ∆2m , and Lσ(t) ∈ L2n×2n+m is
the network transition matrix of (1).

The aim of this paper is to design all possible SSDSD
state feedback controllers of the form

Ui,σ(t)(t) = Ki,σ(tι) (X1(tι), . . . , Xn(tι)) , t ∈ [tι, tι+1),
(3)

where Ki,σ(tι), i = 1, 2, . . . ,m are logical functions, con-
stant sampling period is denoted by τ := tι+1 − tι ∈ Z+,
and tι = ιτ ≥ 0, ι = 0, 1 . . . are sampling instants.

The algebraic form of (3) leads to

uσ(t)(t) = Kσ(tι)x(tι), t ∈ [tι, tι+1), (4)

where with a slight abuse of notation, Kσ(tι) ∈ L2m×2n is
the state feedback gain matrix.

Let S = {δl12n , δ
l2
2n , . . . , δ

ls
2n} be a subset of ∆2n .

Definition 4. The SBCN (2) is said to be S-stabilizable
if, for any switching signal σ(t) and any initial state
x(0) ∈ ∆2n , there exists uσ(t)(t) of the form (4), and an
integer T ∈ Z+ such that x(t; x(0), uσ) ∈ S, for every
t ≥ T .

Definition 5. A subset S̃ Ď S is called a sampled point
control invariant subset (SPCIS) of S for system (2) with
sampling period τ , if for any switching signal σ(t), there
exists a control sequence of the form (4) such that for any

initial state x(tι) ∈ S̃, x(t; x(tι), uσ) ∈ S, ∀t ∈ [1, τ −
1], and x(τ ; x(tι), uσ) ∈ S̃. The union of two control
invariant subsets is still invariant. The union of all SPCISs
contained in S Ď ∆2n is called the largest SPCIS of S for
SBCN (2), denoted by S̃I .
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3. MAIN RESULTS

This section investigates designing all possible SSDSD
state feedback controllers to globally feedback stabilize the
SBCNs under arbitrary switching signal.

3.1 SPCIS and family of controllable sets

In this subsection, we present a new algorithm to obtain
the largest SPCIS included in S, followed by necessary and
sufficient conditions for the global feedback stabilization
of SBCNs. Further, we provide a constructive algorithm to
find all possible families of controllable sets under arbitrary
switching signal, which play a crucial role in the control
design.

For every choice of the switching signal-dependent

control, namely for every δc
θ

2m , cθ ∈ [1, 2m] we denote by

Lθ
cθ

= Lθδ
cθ

2m ∈ L2n×2n , where θcθ ∈ [1, p]. We present
Algorithm 1 to find the largest SPCIS included in S.

Algorithm 1 To find the largest sampled point control
invariant subset

Input: S =
{
δl12n , δ

l2
2n , . . . , δ

ls
2n

}
Ď ∆2n with 1 ≤ l1 <

· · · < ls ≤ 2n, τ , and the network transition matrices
Output: The largest SPCIS, S̃I , contained in S
1: Initialization: η ← 0, Sη ← S
2: while η ≤ |S0| do
3: η ← η + 1

4: Sη =
{
δli2n ∈ Sη−1 | ∀θcθ ∈ P, Lκθ

cθ
δli2n ∈ S ∀κ ∈

[1, τ − 1] and Lτθ
cθ
δli2n ∈ Sη−1, where cθ ∈ [1, 2m]

}
5: if Sη = Sη−1 then break;
6: end if
7: end while
8: S̃I ← Sη

From Algorithm 1 the largest SPCIS can be obtained,
and according to Definition 4 and Definition 5 we consider
the S-stabilization problem for SBCN (2) as: for any
switching signal σ(t), any initial state x(0) ∈ ∆2n can

be driven to S̃I in Tτ steps and it always stays in S̃I after
Tτ steps only when there exists an integer T .

Here, we present the following example to verify Algo-
rithm 1 and to show the need for calculating SPCIS.

Example 6. Consider a SBCN of the form (2), with n = 3,
m = 2 and p = 4, and suppose that

L1 =δ8[1 1 1 2 5 8 2 3 1 5 4 1 7 1 1 6

4 1 8 1 5 5 1 1 3 1 1 7 1 7 3 5],

L2 =δ8[1 2 2 2 5 8 4 3 1 5 4 1 7 2 1 6

4 2 8 1 5 6 1 1 3 2 1 7 1 7 3 5],

L3 =δ8[1 3 5 3 7 8 6 3 1 7 4 5 7 5 1 8

8 5 8 1 7 7 3 1 3 3 1 8 5 8 4 6],

L4 =δ8[1 4 6 3 7 8 8 3 1 7 4 5 7 6 1 8

8 6 8 1 7 8 3 1 3 4 1 8 5 8 4 6].

(5)

Given S = {δ18 , δ48 , δ88} Ď ∆8 and τ = 2, we aim to find
the largest SPCIS included in S.
By following Algorithm 1, for δ18 ∈ S we get cθ = 1 such
that ∀θ1 ∈ P , Lθ1δ

1
8 ∈ S and L2

θ1
δ18 ∈ S holds. Similarly,

for both δ48 and δ88 we get cθ = 3 such that the conditions in
Step 4 of Algorithm 1 hold. Thus, we obtain the largest

SPCIS as S̃I = S.
Further, for δ68 we get cθ = 1 such that ∀θ1 ∈ P , Lθ1δ

6
8 ∈ S,

but L2
θ1
δ68 /∈ S. Here, the state δ68 enters the set S but

does not remain there for a given sampled period. Thus,
it is crucial to design the largest SPCIS to study the
state stabilization problem of SBCNs using sampled-data
technique.

In the following, we define the set Ek(S̃I) consisting of

all the states that can be steered to S̃I in kτ steps under
any switching signal sequence.

Lemma 7. For SBCN (2), we have

i. E1(S̃I) =
{
x0 ∈ ∆2n : ∃cθ ∈ [1, 2m] such that(
Lτθ

cθ
x0 ∈ S̃I

)
holds for every θcθ ∈ P

}
.

ii. Ek+1(S̃I) =
{
x0 ∈ ∆2n : ∃cθ ∈ [1, 2m] such that(

Lτθ
cθ
x0 ∈ Ek(S̃I)

)
holds for every θcθ ∈ P

}
.

Proof. Statement (i) is clear from the algebraic state-
space form (2) of SBCN and (ii) follows immediately by
induction. 2

Next, based on Lemma 7, the following basic properties
of the set Ek(S̃I) can be derived straightforwardly.

Lemma 8. i. If S̃I Ď E1(S̃I), then Ek(S̃I) Ď Ek+1(S̃I),
for all k ≥ 1;

ii. If E1(S̃I) = S̃I , then Ek(S̃I) = S̃I , for all k > 1;

iii. If Ek+1(S̃I) = Ek(S̃I) for some k ≥ 1, then Ej(S̃I) =

Ek(S̃I), for all j ≥ k.

Then, we have the following theorem.

Theorem 9. The set stabilization problem to the set S̃I
is solvable for the SBCN (2) by SSDSD state feedback
control (4) if and only if the following conditions hold

(1) S̃I 6= ∅;
(2) there exists an integer T such that ET (S̃I) = ∆2n .

Proof. [Sufficiency] Assume that S̃I 6= ∅ and there exists

an integer T such that ET (S̃I) = ∆2n . Consequently, for
any switching signal σ(t), ∀x(0) ∈ ∆2n , one can obtain an
input uσ(t)(t), t ∈ [0, T − 1] steering the state trajectory

from x(0) to x(Tτ) ∈ S̃I . Since S̃I is nonempty, for any
switching signal σ(t), ∃uσ(t)(t), t ∈ [T, +∞), such that

x(tτ) ∈ S̃I , ∀t ≥ T . Thus, the system (2) is set stabilizable

to S̃I under arbitrary switching signal by control law (4).

[Necessity] Assume that the set stabilization problem is
solvable under any switching signal by a state feedback (4).
Then, there exists an integer T such that for t ≥ T , we
have x(tτ) ∈ S̃I .

Necessity is proved by contradiction. If S̃I = ∅, then
the condition (2) is not satisfied. Hence, it suffices to
assume that only condition (2) is not satisfied. This means

that, for any integer T , ET (S̃I) 6= ∆2n . Then, there exists
an initial state x(0) and a switching sequence σ(t), such
that for every input sequence uσ(t)(t), t ∈ [tι, tι+1) the

state x
(
Tτ ; x(0), uσ

)
does not belong to S̃I for any T .

Thus, the set stabilization problem is not solvable under
arbitrary switching signal, which is a contradiction to
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the solvability of the set stabilization by (4). Therefore,
condition 2) must hold. This completes the proof. 2

To this end, for any subset Γk of ∆2n , k ∈ Z+, we define
the one-step controllable set as follows:

R1(Γk) =
{
x0 ∈ ∆2n : ∃cθ ∈ [1, 2m] such that(
Lτθ

cθ
x0 ∈ Γk

)
holds for every θcθ ∈ P

}
.

(6)

We now present Algorithm 2, the aim of which is to
obtain a sequence of sets Γj0, Γj1, . . . , ΓjTj for SBCNs

under arbitrary switching signal, where j represents the
jth sequence of sets. In the sequel, we call this sequence of
sets, {Γj0, Γj1, . . . , ΓjTj}, as a family of controllable sets.

Some additional comments are provided at the end of the
algorithm.

Algorithm 2 To find a family of controllable sets for
SBCNs under arbitrary switching signal

Input: The network transition matrix Lσ(t)
Output: A family of controllable sets
1: Initialization: j ← 1, kj ← 0, Γjkj ← S̃I ,
2: while Γjkj 6= ∅ do
3: kj ← kj + 1
4: Choose any non-empty subset

Γjkj Ď R1

(⋃kj−1
i=0 Γji

)
\
(⋃kj−1

i=0 Γji

)
5: end while
6: Tj ← kj − 1

7: if
⋃Tj
i=0 Γji = ∆2n then

8: {Γj0, Γj1, . . . , ΓjTj} is a valid solution

9: else The solution is invalid
10: end if

Definition 10. A set {Γj0,Γ
j
1, . . . ,Γ

j
Tj
} is called a fam-

ily of controllable sets, if Γjij ∩ Γjkj = ∅, ∀ij 6= kj ,

Γjkj Ď R1

(⋃kj−1
i=0 Γji

)
\
(⋃kj−1

i=0 Γji
)
, kj = 1, . . . , Tj , and

R1

(⋃Tj
i=0 Γi

)
\
(⋃Tj

i=0 Γi

)
= ∅.

A family of controllable sets is complete if
⋃Tj
i=0 Γji = ∆2n .

Denote all possible complete families of controllable sets
by Θj , j = 1, . . . , ω.

From Algorithm 2 it is clear that all the states in Γjkj
can take maximum kjτ steps to reach S̃I under arbitrary
switching signal. Since a family comprises all disjoint sets,
Γjkj , kj = 1, 2, . . . , Tj , one can find an integer Tj satisfying

Tj ≤ 2n−|S̃I | and Γji 6= ∅, i ≤ Tj such that R1

(⋃Tj
i=0 Γji

)
\(⋃Tj

i=0 Γji

)
= ∅. Hence, Algorithm 2 always provides a

family of controllable sets {Γji : i = 0, 1, . . . , Tj}, which

describes a backward path to S̃I .
It is worthwhile noticing that, by iterating the algo-

rithm several times and considering all possible combina-

tions of R1

(⋃kj−1
i=0 Γji

)
\
(⋃kj−1

i=0 Γji

)
in the selection of

Γjkj , one can obtain all possible families of controllable

sets {Γji : i = 0, 1, . . . , Tj}, j ∈ [1, ω], where Tj depends

on the selection of non-empty subset Γji , i = 1, . . . , Tj −1.

With this setting, in the next subsection we discuss the
design of all possible SSDSD state feedback controllers.

3.2 All possible SSDSD state feedback control design

From Definition 10, it can be noted that for each
Θj = {Γj0, Γj1, . . . , ΓjTj} and each δυ2n ∈ ∆2n , since⋃Tj
kj=0 Γjkj = ∆2n and Γjkj Ď R1

(⋃kj−1
i=0 Γji

)
\
(⋃kj−1

i=0 Γji
)
,

kj = 1, . . . , Tj , one can find a unique integer kυ ∈ [0, Tj ]

such that δυ2n ∈ Γjkυ . In other words, each state δυ2n

belongs to a unique set Γjkυ , kυ ∈ [0, Tj ]. Further, for
each complete family of controllable sets we denote by
Φi, i = 1, . . . , ω, the sets of switching signal-dependent
state feedback controllers, Kθ = δ2m [cθ1 c

θ
2 . . . cθ2n ], i.e.,

Φi :=
{
Kθ = δ2m [cθ1 c

θ
2 . . . c

θ
2n ]
}

, where θ ∈ [1, p] and

cθυ ∈ [1, 2m]. Now, we present the following algorithm to
design all possible SSDSD state feedback gain matrices to
set stabilize the SBCN (2) to S̃I under arbitrary switching
signal. The algorithm is based on (Yerudkar et al., 2019a,
Th. 3.5).

Algorithm 3 To find all possible SSDSD state feedback
gain matrices Kθ

Input: Lσ(t) and all complete families of controllable sets

Θj = {Γj0, Γj1, . . . , ΓjTj}, j ∈ [1, ω]

Output: All possible Kθ

1: Initialization: Kθ = δ2m [cθ1 c
θ
2 . . . cθ2n ], Φj := {Kθ},

cθυ ∈ [1, 2m], θ ∈ [1, p]
2: for j ← 1 to ω do
3: for θ ← 1 to p do
4: for υ ← 1 to 2n do
5: if δυ2n ∈ S̃I then
6: Find cθυ ∈ [1, 2m] such that(

Lθδ
cθυ
2m

)τ
δυ2n ∈ S̃I

7: else Find cθυ ∈ [1, 2m] such that(
Lθδ

cθυ
2m

)τ
δυ2n ∈

kυ⋃
l=1

Γjl−1

8: end if
9: end for

10: end for
11: end for

The algorithm tries to set a value in [1, 2m] for each
integer cθ1, c

θ
2, . . . , c

θ
2n , that amounts to a possible choice

of input. Such inputs, corresponding to the specific value
of switching sequence and of the state, allow the desired
transitions. In particular, for each complete family of

controllable sets, we obtain control inputs δ
cθυ
2m ∈ ∆2m such

that under arbitrary switching signal and given sampling
period τ , (i) δυ2n ∈ Γ0 = S̃I , will remain at S̃I , (ii) the
states in Γkυ , kυ = 1, . . . , Tj will be steered to Γ0 in at
most kυτ steps. Thus, we obtain the set of all possible
switching signal-dependent state feedback controllers as
ω⋃
j=1

Φj , where Φj =
{
Kθ = δ2m [cθ1 c

θ
2 . . . cθ2n ]

}
.

Example 11. We continue with Example 6 to calculate
all possible SSDSD state feedback controllers. By iter-
ating Algorithm 2 once we get the following complete
family of controllable sets:

{
Γ1
0 = {δ18 , δ48 , δ88}, Γ1

1 =
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{δ28 , δ38 , δ58 , δ68 , δ78}
}

. By iterating the same algorithm for
system (5) one can obtain all possible complete families of
controllable sets, which are not listed in the paper due to
space limitation.
Next, by utilizing all complete families of controllable
sets and following Algorithm 3 we get all possible
SSDSD state feedback controllers as follows: K1 =
δ4[c11 c12 c13 c14 c15 c16 c17 3] : c11 = 1, 2, 3; c12 = c13 =
c17 = 1, 2, 3, 4; c14 = 2, 3; c15 = 2, 4; c16 = 1, 2, 4.
K2 = δ4[c21 2 c23 c24 c25 c26 c27 3] : c21 = 1, 2, 3; c23 =
2, 3, 4; c24 = 2, 3; c25 = 2, 4; c26 = 1, 2, 4; c27 = 1, 2, 3, 4.
K3 = δ4[c31 c32 c33 3 c35 c36 c37 c38] : c31 = 1, 2, 3; c32 =
c33 = c36 = c37 = 1, 2, 3, 4; c15 = 1, 2, 3; c18 = 2, 3.
K4 = δ4[c41 c

4
2 c

4
3 c

4
4 c

4
5 c

4
6 c

4
7 δ

4
8 ] : c41 = c45 = 1, 2, 3; c42 =

c43 = c47 = 1, 2, 3, 4; c44 = 3, 4; c16 = 1, 3, 4; δ48 = 2, 3.

Remark 12. When τ = 1, the problem reduces to the set
stabilization of SBCNs under arbitrary switching signal,
and all possible switching signal-dependent state feedback
controllers can be obtained straightforwardly. Further,
when both τ and p are 1, the problem boils down to the
set stabilization of BCNs and one can easily design all
possible state feedback controllers. In this case, compared
to the method presented in (Li and Wang, 2017) less
computational efforts are needed. In particular, one need
not find the reachable sets El(xe) while obtaining all
possible families of controllable sets by Algorithm 2,
where xe is the given equilibrium point. Finding El(xe),
l ∈ [1, T ], involves calculating the series of matrices

M l, where M :=
∑2m

i=1 Coli(L) and M ∈ L2n×2n . Thus,
Algorithm 2 reduces the computational complexity by
O((T − 1)23n).

4. EXAMPLES

In this section we show with the help of two biological
examples, how the SSDSD control technique introduced in
Section 3 can be applied to control the dynamics of GRNs.

Example 13. Consider a GRN with four genes, namely
WNT5A, pirin, S100P and STC3, which was derived
in (Pal et al., 2004) to study metastatic melanoma. Assum-
ing that WNT5A and S100P are states X1(t) and X2(t),
respectively; pirin and STC3 are control inputs U1(t) and
U2(t), respectively, we consider the GRN dynamics as:

X1(t+ 1) = f
σ(t)
1 (U1(t), U2(t), X1(t), X2(t)),

X2(t+ 1) = f
σ(t)
2 (U1(t), U2(t), X1(t), X2(t)),

X3(t+ 1) = f
σ(t)
3 (U1(t), U2(t), X1(t), X2(t)),

(7)

where σ : Z+ → P := {1, 2} and we have: f11 = U1(t) ∧
[U2(t) ∧ (X1(t) → X2(t)) ∨ (¬U2(t) ∧ (X1(t) ∧ X2(t)))] ∨
[¬U1(t)∧U2(t)∧(X1(t) ⟷ X2(t))], f21 = U1(t)∧(¬X1(t)∧
X2(t)) ∨ U2(t) ∧ (¬X2(t)), f2 = ¬U1(t) ∧ U2(t) ∧X2(t) ∨
(¬X1(t)) ∨X2(t).

The state transition matrices are given as:

L1 =δ4[1 2 3 2 1 2 3 4 3 4 3 4 3 4 3 4],

L2 =δ8[1 2 1 2 3 2 3 4 3 4 1 2 3 4 3 4].
(8)

Here, S = {δ14 , δ34 , δ44}, τ = 2, and the aim is to design all
possible SSDSD state feedback controllers to set stabilize
the system (8) to the largest SPCIS included in S under
arbitrary switching signal.

By following Algorithm 1 we obtain that S̃I = S.
Further, by following Algorithm 2 and Algorithm 3,

we design all possible SSDSD state feedback controllers as
follows: K1 = δ4[c11 c

1
2 c

1
3 c

1
4] : c11 = c13 = 1, 2, 3, 4; c12 =

3, 4 c14 = 2, 3, 4. K2 = δ4[c21 c
2
2 c

2
3 c

2
4] : c11 = c13 =

1, 2, 3, 4; c12 = 3, 4 c14 = 2, 4.

Example 14. Consider the following SBCN of apoptosis
network derived in (Chaves, 2009),
X1(t+ 1) = f

σ(t)
1 (U1(t), U2(t), X1(t), X2(t), X3(t)),

X2(t+ 1) = f
σ(t)
2 (U1(t), U2(t), X1(t), X2(t), X3(t)),

X3(t+ 1) = f
σ(t)
3 (U1(t), U2(t), X1(t), X2(t), X3(t)),

(9)
where X1(t), X2(t) and X3(t) denote the concentration
levels of the inhibitor of apoptosis proteins (IAP), the
active caspase 3 (C3a), and the active caspase 8 (C8a),
respectively. Here, we assume U1(t), U2(t) as two control
inputs and σ : Z+ → P := {1, 2, 3, 4}.

In the algebraic form (2), we give the network transition
matrices for four sub-networks as follows:

L1 =δ8[1 1 1 2 1 1 1 1 1 2 1 2 1 2 1 2

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 6],

L2 =δ8[3 1 3 2 3 1 3 1 3 4 3 4 3 2 3 2

4 4 4 2 4 2 4 2 4 4 4 4 4 2 4 6],

L3 =δ8[5 3 5 4 5 1 5 5 5 6 5 6 5 6 5 6

6 6 6 4 6 2 6 2 6 6 6 6 6 6 6 8],

L4 =δ8[7 3 7 4 7 1 7 5 7 8 7 8 7 6 7 6

8 8 8 4 8 2 8 2 8 8 8 8 8 6 8 8].

(10)

We aim to design all possible SSDSD state feedback
controllers to set stabilize the apoptosis network (10),
given that S = {δ28 , δ48 , δ68 , δ88} and τ = 2.

We get S̃I = S from Algorithm 1. Then, by following
Algorithm 2 one can obtain all possible complete families
of controllable sets, which are not listed here due to
space restriction. We obtain all possible SSDSD state
feedback controllers as follows: K1 = K2 = K3 = K4 =
δ4[c11 c

1
2 c

1
3 c

1
4 c

1
5 c

1
6 c

1
7 c

1
8] : c11 = c13 = c15 = c17 = 3, 4; c12 =

c16 = c18 = 2, 3, 4; c14 = 1, 2, 3, 4.

5. CONCLUSION

In this paper, we have investigated the design of all
possible SSDSD state feedback stabilizers for SBCNs un-
der arbitrary switching signal. A new algorithm has been
presented to find the largest SPCIS followed by necessary
and sufficient conditions to ensure the sampled-data set
stabilizability of SBCNs to the largest SPCIS. Further,
an algorithm to obtain all possible complete families of
controllable sets has been presented. A constructive pro-
cedure has been presented to design all possible SSDSD
state feedback controllers by utilizing all the complete
families of controllable sets. In case the complete solution
is superfluous, one can also design a subset of controllers
by using the presented results. Finally, some illustrative
examples have been presented to demonstrate applications
of the proposed approach.

Computational load is a major challenge in the STP-
based techniques for controlling SBCNs. Future research
includes finding efficient methods to resolve the time and
space complexities and scalability issues.
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