Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

A clique graph based merging strategy for
decomposable SDPs

Michael Garstka*

Mark Cannon*

Paul Goulart *

* Department of Engineering Science, University of Ozford, UK
Email: {michael.garstka, mark.cannon, paul.goulart}@eng.ox.ac.uk

Abstract: Chordal decomposition techniques are used to reduce large structured positive
semidefinite matrix constraints in semidefinite programs (SDPs). The resulting equivalent
problem contains multiple smaller constraints on the nonzero blocks (or cliques) of the original
problem matrices. This usually leads to a significant reduction in the overall solve time. A
further reduction is possible by remerging cliques with significant overlap. The degree of overlap
for which this is effective is dependent on the particular solution algorithm and hardware to
be employed. We propose a novel clique merging approach that utilizes the clique graph to
identify suitable merge candidates and that is suitable for any SDP solver algorithm. We show
its performance in combination with a first-order method by comparing it with two existing
approaches on selected problems from a benchmark library. Our approach is implemented in
the latest version of the conic ADMM-solver COSMO.

Keywords: convex optimisation, semidefinite programming, chordal decomposition, clique

merging

We consider the primal-form semidefinite program (SDP):
minimize (C, X)
subject to (4;, X) = b;,
X €8y,

with variable X and coefficient matrices A;,C € S™. The
corresponding dual problem is

i=1,...,m (1)

maximize b'y

m
subject to ZAiyi +S=C (2)

i=1

S e sy,
with dual variable y € R™ and slack variable S. Semidefi-
nite programming is used to solve problems that appear in
a variety of applications such as portfolio optimisation, ro-
bust control, and optimal power flow problems. Algorithms
to solve SDPs, most notably interior point methods, have
been known since the 1980s (Nesterov and Nemirovsky,
1988). However, the recent trend to use models based on
large quantities of data leads to SDPs whose dimensions
challenge established solver algorithms.

Two main approaches are commonly used to deal with this
challenge. The first approach is to use first-order methods
(FOMs) as in O’Donoghue et al. (2016) or in Zheng
et al. (2020). FOMs typically trade-off moderate accuracy
solutions for a lower per-iteration computational cost and
can therefore handle large problems more easily.

The second approach is to exploit sparsity in the problem
data. Fukuda et al. (2001) showed that if the coefficient
matrices A;, C' exhibit an aggregate sparsity structure rep-
resented by a chordal graph G(V,E), then the original
primal and dual forms in (1) and (2) can be decomposed.

* M. Garstka is supported by the Clarendon Scholarship.

Copyright lies with the authors

These equivalent problems involve only positive semidef-
inite constraints on the nonzero blocks of the sparsity
pattern, which can lead to a significant reduction in the
dimension of each constraint, thereby reducing solve time.
The equivalent primal problem is given by

minimize (C,X)

subject to (4;, X) =b;, i=1,...,m 3)
Xg ZTZXTZT, = 1,...,p

Xpeslel =1, p,

where the blocks X, are represented by subgraphs, called
cliques, denoted C,. Additional constraints using entry-
selector matrices Ty, see (6), enforce equality of the over-
lapping entries in X. Following Fukuda et al. (2001) we
refer to this conversion as the domain-space decomposition.
The dual of this problem can be obtained by applying the
range-space decomposition:

maximize b’y

m P
subject to Z Ay + Z TJS@T@ =C (4)
i=1 (=1
Spesl® e=1,...p

Notice that the number and dimension of the block vari-
ables X, and S, depend only on the choice of cliques
in the graph. Starting from an initial decomposition we
can merge two cliques C; and C; into a single clique with
dimension |C; U C;|. Consequently, merging blocks has two
opposing effects. It increases the size of the blocks while
decreasing the number of equality constraints. Therefore,
to evaluate the effect of a merge on the per-iteration time
of a solver algorithm one has to take into account both the
overlap between the cliques and the main linear algebra
operations involved in each iteration.

7445

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

Related work

Heuristic methods to merge cliques have been proposed
for interior-point methods. Nakata et al. (2003) suggest
traversing the clique tree, a subset of all clique pairs
with overlapping entries. For each edge in the tree they
merge corresponding cliques if the number of common
entries relative to the cardinality of the individual cliques
is higher than some threshold value, chosen heuristically
to balance the block sizes and the number of additional
equality constraints. The methods are implemented in the
SparseCoL0 package (Fujisawa et al., 2009).

Similarly, Sun et al. (2014) suggest to traverse the clique
tree and merge cliques if the amount of fill-in and the cardi-
nality of the supernodes are below certain thresholds. This
approach is implemented in the CHOMPACK package (Ander-
sen and Vandenberghe, 2015).

Molzahn et al. (2013) discuss clique merging in the context
of a solver designed for large optimal power flow problems.
For each pair of adjacent cliques in the clique tree they de-
termine how a merge would affect the problem dimension,
i.e. the change in total number of variables and linking
constraints. They then greedily merge the blocks with the
biggest reduction until the number of cliques decreases by
a predefined percentage.

A limitation of existing methods is that they rely on
heuristic parameters designed for a specific interior point
implementation. Furthermore, they consider only pairs of
cliques that are adjacent in the clique tree. We show in
Section 2 that two cliques with an advantageous merge
are not necessarily adjacent in the clique tree.

With this paper we make the following contributions:

1. We propose a clique merging strategy based on the
clique intersection graph which considers all possible
pair-wise merges and which can be tailored to the
platform-specific matrix factorisation time.

2. We use a weighting function for each pair of overlap-
ping cliques that can be tailored to the specific algo-
rithm used to solve the SDP. Specifically, we propose
a weighting function for first-order methods that lever-
ages the simpler relationship between clique sizes and
per-iteration time, compared to interior-point meth-
ods. Consequently, we achieve consistently lower per-
iteration times than with existing merging strategies.

3. We provide a customisable implementation of our
method in the latest version of the conic solver package
COSMO (Garstka et al., 2019).

Outline

In Section 1 we define graph related concepts and describe
how a graph-represented sparsity pattern can be used
to decompose the primal and dual form of an SDP. In
Section 2 we briefly outline two existing merging strategies
based on the construction of the clique tree and describe
our clique graph based approach. In Section 3 we then
preprocess a number of benchmark problems using the
different strategies and solve them with the same first
order solver. Consequently, we compare the impact of each
strategy on the number of iterations, the per-iteration

time, and the total solve time of the algorithm. Section 4
concludes the paper.

1. GRAPH PRELIMINARIES

In the following we define graph related concepts and
how they relate to the sparsity structure of a matrix. A
good overview on this topic is provided by Vandenberghe
and Andersen (2015). We consider the undirected graph
G(V, E) with vertex set V and edge set E C V x V. Two
vertices vy, vy are adjacent if {vi,v2} € E. A cycle is a
path of edges (i.e. a sequence of distinct edges) joining
a sequence of vertices in which only the first and last
vertices are repeated. A graph is called complete if all
vertices are pairwise adjacent. We follow the convention of
Vandenberghe and Andersen (2015) by defining a clique
as a subset of vertices C C V that induces a mazimal
complete subgraph of G.

The decomposition theory described in Section 1b relies
on a subset of graphs that exhibit the important property
of chordality. A graph is chordal (or triangulated) if every
cycle of length greater than three has a chord, which is an
edge between nonconsecutive vertices of the cycle. A non-
chordal graph can always be made chordal by adding extra
edges. An undirected graph with n vertices can be used
to represent the sparsity pattern of a symmetric matrix
S € S™. Every nonzero entry S;; # 0 in the lower (or
upper) triangular part of the matrix introduces an edge
(i,j) € E. An example of a sparsity pattern and the
associated graph is shown in Fig. 1(a—b).

For a given sparsity pattern G(V, E), we define the follow-
ing symmetric sparse matrix cones:

S"(E,0) ={S €S" | S =85 =0,ifi # j, (4,7) ¢ E},
St (E,0) ={S €S"(#£,0) | S = 0}.

This means that for a matrix S € S” (E,0) the diagonal
entries S;; and the off-diagonal entries S;; with (4,5) € E
may be zero or nonzero. Moreover, we define the cone of
positive semidefinite completable matrices:

St (B,7) = {Y | IV e S, Yy = Vi, ifi = jor (i, §) eE}.

For a matrix Y € S% (¥, ?) we can find a positive semidef-
inite completion by choosing appropriate values for all
entries (i,7) ¢ F. An algorithm to find this completion
is described in Vandenberghe and Andersen (2015).

An important structure conveying substantial information
about the nonzero blocks of a matrix, or equivalently the
cliques of a chordal graph, is the clique tree (or junction
tree). For a chordal graph G let B = {C1,...,Cp} be
the set of cliques. The clique tree T(B,€) is formed by
taking the cliques as vertices and by choosing edges from
€& C B x B such that the tree satisfies the running-
intersection property:

Definition 1. (Running intersection property).

For each pair of cliques C;, C; € B, the intersection C; NC;
is contained in all the cliques on the path in the clique tree
connecting C; and C;.

This property is also referred to as clique-intersection
property in Nakata et al. (2003) and induced subtree
property in Vandenberghe and Andersen (2015). For a

7446

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

KA

123456789

OO0~ U W -
[]
LK J
[]

Cs 6,7,8,9
6,7,8 8
C ; Cs i
3,6
o c2
i

Fig. 1. (a) Aggregate sparsity pattern, (b) sparsity graph G(V, E), (c) clique tree T(B,£), and (d) clique graph G(B,¢)
with edge weighting function e(C;,C;) = ci|* + |Cj|3 —|C;u Cj|3.

given chordal graph, a clique tree can be computed using
the algorithm described in Pothen and Sun (1990).

The clique tree for an example sparsity pattern is shown
in Fig. 1(c). For a clique C; we refer to the first clique
encountered on the path to the root as its parent clique
Cpar- Conversely C; is called the child of Cpa,. If two cliques
have the same parent clique we refer to them as siblings.
For each clique define the functions par(Cy) and ch(Cy) that
return its parent clique and its set of child cliques. Note
that each clique in Fig. 1(c) has been partitioned into two
sets. The upper row represents the separators n, = Cp N
par(Cy), i.e. all clique elements that are also contained
in the parent clique. We call the sets of the remaining
vertices shown in the lower rows the clique residuals or
supernodes vy = C; \ ng. Keeping track of which vertices
in a clique belong to the supernode and the separator is
useful as the information is needed to perform a positive
semidefinite completion. For a set of vertices V', the power
set {W | W C V'} is denoted as 2.

1b. CHORDAL DECOMPOSITION

We next briefly describe how to apply chordal decomposi-
tion to an SDP. Let us assume that the problem matrices
in (1) and (2) each have their own sparsity pattern

A; € S™(E4,,0) and C € S"(E¢,0).

The aggregate sparsity of the problem is given by the graph
G(V, E) with edge set

EZEAlLJEAQU-”UEAmUEc.

In general G(V,E) will not be chordal, but a chordal
extension can be found by adding edges to the graph.
We denote the extended graph as G(V, FE). Finding the
minimum number of edges to make the graph chordal is
an NP-complete problem (Yannakakis, 1981). Consider a
matrix M of ones corresponding to the edge set FE. A
commonly used heuristic method to find an extension is
first to apply a reordering with approximate minimum
fill-in (Amestoy et al., 1996). Afterwards, a symbolic
Cholesky factorisation is applied to the reordered matrix.
The Cholesky factor L then defines a chordal extension
with edge set E.

Given sparsity information of the problem we can modify
the matrix constraints in (1) and (2) to the respective
sparse positive semidefinite matrix spaces:

X € SY(E,?) and S € S (E,0). (5)

We further define the entry-selector matrices T, € RIC¢xn

for a clique Cy:

(Tg)ij — {é, if CZ(Z) :] (6)

where Cy(7) is the ith vertex of Cy. We can express the
constraints in (5) in terms of multiple smaller coupled

constraints using the theorems by Grone et al. (1984)
and Agler et al. (1988).

Theorem 2. (Grone’s theorem). Let G(V, E) be a chordal

otherwise,

graph with a set of maximal cliques {C1,...,Cp}. Then
X € ST (E,?) if and only if
X, =T, XT] el ve=1,...p. (7)

Applying this theorem to (1) while restricting X to the
positive semidefinite completable matrix cone as in (5)
yields the decomposed problem in (3). For the dual prob-
lem we utilise Agler’s theorem, which is the dual to Thm. 2:

Theorem 3. (Agler’s theorem). Let G(V,E) be a chordal
graph with a set of maximal cliques {Ci,...,Cp}. Then

S € ST(E,0) if and only if there exist matrices S, € S‘fd
for £ =1,...,p such that

p
S = ZT;SKT@. (8)

(=1

With this theorem, we transform the dual form SDP in (2)
with the restriction on S in (5) to arrive at (4). Next, we
show how to shape the sparsity pattern in the problem to
reduce the per-iteration time of an SDP solver.

2. CLIQUE MERGING

Given an initial decomposition with edge set £ and a set
of cliques {C1,...,Cp}, we are free to merge any number
of cliques back into larger blocks. This is equivalent to
treating structural zeros in the problem as numerical zeros,
which leads to additional edges in the graph. Looking at
the decomposed problem in (3) and (4), the effects of
merging two cliques C; and C; are twofold:

1. We replace two positive semidefinite matrix constraints
of dimensions |C;| and |C;| with one constraint on
a larger clique with dimension |C; UC;|, where the
increase in dimension depends on the size of the overlap.

2. We remove consistency constraints for the overlapping
entries between C; and C;, thus reducing the size of the
linear system of equality constraints.

7447

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

When merging cliques these two factors have to be bal-
anced. The correct balance depends foremost on the used
solver algorithm. Nakata et al. (2003) and Sun et al.
(2014) use the clique tree to search for favourable merge
candidates. We will call these two approaches SparseCoL0
and parent-child strategy in the following sections. Before
describing these methods, we define a procedure in Alg. 1
that describes how to merge a set of cliques within the set
B and update the edge set £ accordingly.

Algorithm 1: Function mergeCliques(B, &, B,,).

Input : A set of cliques B with edge set &£, a subset
of cliques By, = {Crn.1,Cm,25 -+ ,Cimr } CB
to be merged.

Output: A reduced set of cliques B with edge set &
and the merged clique C,,

E¢& ;

Cm <_Cm,1 UCm,2U~-~

B+ (B\ By) U{Cui};

Remove edges {(C;,C;) | i # j, Ci,C; € By} in &;

Replace edges {(C;,C;) | C; € B, Cj ¢ By, } with
(Cm, Cj) in &;

UCm,r;

2.1 FExisting clique tree-based strategies

The parent-child strategy described in Sun et al. (2014)
traverses the clique tree in depth-first order and merges a
clique C¢ with its parent clique Cpar(¢) = par(Ce) if at least
one of the two following conditions are met:

—[nel) (ICel = Inel) < tan, (9)
() ’} < tsizev (10)
with heuristic parameters tg; and tg,.. The conditions
keep the amount of extra fill-in and the supernode car-
dinalities below the specified thresholds. The SparseCoL0
strategy described in Nakata et al. (2003) and Fujisawa
et al. (2006) considers parent-child as well as sibling rela-
tionships. Given a parameter ¢ > 0, two cliques C;,C; are
merged if the following merge criterion holds

|CiﬁCj| |ClﬂCJ}
n) >0 (11)
{ |Ci] 1G5
This approach traverses the clique tree depth-first, per-
forming the following steps for each clique Cy:

1. For each clique pair {(C;,C;) | C;,C; € ch(Cy)}, check
if (11) holds, then:
e C; and C; are merged, or
o if (C;NC;) D Cy, then C;, C;, and C, are merged.
2. For each clique pair {(C;,C/) | C; € ch(C¢)}, merge C;
and Cp if (11) is satisfied.

(ICpar(o)|
max { |ve

We remark that the implementation of SparseCoL0O fol-
lows the algorithm outlined here, but also employs a few
additional heuristics.

An advantage of the two approaches is that the clique tree
can be computed easily and the conditions are inexpensive
to evaluate. However, a disadvantage is that choosing
parameters that work well on a variety of problems and
solver algorithms is difficult. Secondly, in some cases it is
beneficial to merge cliques that are not directly related

on the clique tree. To see this, consider a chordal graph
G(V, E) consisting of three connected subgraphs:

Go(Va, Ey), with V, = {3,4,...,m,},
Gy(Vp, Ep), with Vi, = {mgy +2,mq +3,...,mp},
G.(V., E.), with V. = {mp + 1,mp + 2,...,m.},

and some additional vertices {1,2,m, + 1}. The graph
is connected as shown in Fig. 2(a), where the complete
subgraphs are represented as nodes V,,V, V.. A corre-
sponding clique tree is shown in Fig. 2(b). By choosing the

C
@ A7
V. V.
C C
'@ @ ’ 2,Va ’ mat1
O |
©

Ci

1

(b)

Fig. 2. Sparsity graph (a) that can lead to a clique tree (b)
with an advantageous “nephew-uncle” merge between
C; and Cs.

cardinality |V.|, the overlap between cliques C; = {1,2} U
V. and C5 = {m, + 1} UV, can be made arbitrarily large
while |V,|, |V4| can be chosen so that any other merge is
disadvantageous. However, neither the parent-child strat-
egy nor SparseCoL0 would consider merging C; and Cs
since they are in a “nephew-uncle” relationship.

2.2 A new clique graph-based strategy

To overcome the limitations of existing strategies we pro-
pose a merging strategy based on the clique-(intersection)
graph G(B,), where the edge set £ is defined as
Let us further define an edge weighting function
e: 2V x 2V — R that assigns a weight w;; to each edge
(Ci,Cj) S f:
e (C“C]) = Wij-

This function is used to estimate the per-iteration com-
putational savings of merging a pair of cliques depending
on the targeted algorithm and hardware. It is chosen to
evaluate to a positive number if a merge would reduce the
per-iteration time and to a negative number otherwise. For
a first-order method, whose per-iteration cost is dominated
by an eigenvalue factorisation with complexity (’)(|C|3), a
naive implementation would be:

e(Ci,Cj) = |G’ + I — [ciu ey (12)
More sophisticated weighting functions can be determined
empirically; see Section 3. After a weight has been com-
puted for each edge (C;,C;) in the clique graph, we merge
cliques as outlined in Alg. 2. Our strategy considers the
edges in terms of their weights, starting with the clique
pair (C;,C;) with the highest weight w;;. If the weight is
positive, the two cliques are merged and the edge weights
for all edges connected to the merged clique C,, = C; UC;
are updated. This process continues until no edges with
positive weights remain.

7448

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

Algorithm 2: Clique graph-based merging strategy.

Input : A weighted clique graph G(B,¢).
Output: A merged clique graph g(& §).
B+ Band £ < &;
STOP <«false;
while /STOP do
choose (C;,C;) with maximum w;;;
if w;; > 0 then
Bm — {Ci, Cj};
B, é, Cp, < mergeCliques (B, é, Bm);

for each edge (Cm,Cy) € € do
| update wpe < e(Cm,Cr);

else
L STOP <true;

The clique graph for the clique tree in Fig. 1(c) is shown
in Fig. 1(d) with the edge weighting function in (12).
Following Alg. 2 the edge with the largest weight is
considered first and the corresponding cliques are merged,
ie. {3,6,7,8} and {6,7,8,9}. The revised clique graph
Q(B, é) is shown in Fig. 3. Since no edges with positive
weights remain, the algorithm stops.

-191

Fig. 3. Clique graph G(B,¢) after merging the cliques
{3,6,7,8} and {6,7,8,9} in Fig. 1(d) and updating
edge weights.

After Alg. 2 has terminated, it is possible to recompute a
valid clique tree from the rev1sed clique graph. This can
be done in two steps. First, the edge weights in G(B, £) are
replaced with new Welghts

Wij = ‘Cz ﬁCj|, for all (C“CJ) S é

Second, a clique tree is then given by any mazimum
weight spanning tree of the newly weighted clique graph,
which can be computed using e.g. the algorithm described
in Kruskal (1956).

Our merging strategy has some advantages over competing
approaches. Since the clique graph covers a wider range of
merge candidates, it will consider edges that do not appear
in clique tree-based approaches (such as the “nephew-
uncle” example in Fig. 2. Moreover, the edge weighting
function allows one to make a merge decision based on
the particular solver algorithm and hardware used. One
downside is that this approach is more computationally
involved than the other methods. However, experiments
show that the extra time spent on finding the clique graph,
merging the cliques, and recomputing the clique tree is
only a fraction of the total computational savings.

3. IMPLEMENTATION AND RESULTS

To compare the proposed merge approach with the clique
tree-based strategies of Nakata et al. (2003) and Sun
et al. (2014), all three methods were used to preprocess
sparse SDPs from SDPLib, a collection of SDP bench-
mark problems (Borchers, 1999). Each strategy was given
the same initial clique decomposition, and the resulting
decomposed SDPs were solved using the first-order solver
COSMO (Garstka et al., 2019). This section discusses how
the different decompositions affect the per-iteration com-
putation times of the solver.

For the strategy described in Nakata et al. (2003) we used
the SparseCoL0 package to decompose the problem. The
parent-child method by Sun et al. (2014) and our clique
graph-based method are available in the latest version
of our conic solver COSMO. We further investigate the
effect of using different edge weighting functions. Since
COSMO is an ADMM-solver, the major operation affecting
the per-iteration time is the projection step (see Garstka
et al., 2019, for more details). This operation involves an
eigenvalue decomposition of the matrices corresponding
to the cliques. Since the eigenvalue decomposition of a
symmetric matrix of dimension N has a complexity of
@ (N 3), we define a nominal edge weighting function as
n (12). However, the exact relationship will be different
because the projection function involves copying of data
and is affected by hardware properties such as cache size.
We therefore also consider an estimated edge weighting
function. To determine the relationship between matrix
size and projection time, the execution time of the relevant
function inside COSMO was measured for different matrix
sizes. We then approximated the relationship between
projection time, ¢py0j, and matrix size, IV, as a polynomial:

toroj(N) = aN?® + bN?,
where a, b were estimated using least squares (Fig. 4). The
estimated weighting function is then defined as

e(Ci; Cj) = toroj (ICil) + troj (IC5]) = tproj (ICi UC4[) - (13)

8 1| —— measured time
6 | | — polynomial fit

proj. time tpyoj (ms)
=~
|

T T T T
0 50 100 150 200 250
matrix dimension N

Fig. 4. Measured and estimated relationship between ma-
trix size and execution time of the projection function
in COSMO.

We emphasize that the same strategy could also be used
for other solver algorithms. For an interior-point method
this would mean replacing (13) with a (more complex)
weighting function that takes into account both the impact
of the merge on the clique sizes and the number of
additional equality constraints.

The merging strategies were compared for large, sparse
SDP problems with chordal sparsity patterns from the

7449

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

Table 1. Benchmark results for different merging strategies.

problem Solve time (s) Projection time (ms)

NoDe! NoMer? SpCo® ParCh* CG1° CG26 NoDe NoMer SpCo ParCh CG1 CG2
maxG11 29.7 4.11 7.9 3.69 2.72 2.82 99.1 15.3 11.8 12.3 12.1 9.2
maxG32 320.98 21.12 27.08 13.09 12.47 15.79 1105.0 58.1 57.8 46.4 38.3 34.5
maxG51 29.12 28.04 19.86 9.59 5.67 8.25 171.4 182.9 191.9 89.6 54.3 43.2
mcp500-1 10.28 1.04 1.19 0.78 0.47 0.37 40.4 5.9 6.9 4.5 3.4 2.7
mcp500-2 8.9 10.25 7.61 5.97 2.08 1.95 35.2 37.7 34.5 18.9 11.6 8.8
mcp500-3 7.66 22.69 30.45 15.76 5.41 4.35 35.7 82.3 83.9 49.9 24.2 16.3
mcp500-4 11.63 51.37 60.52 21.92 5.32 8.74 39.6 180.9 132.3 93.8 36.8 28.3
qpG11 173.81 6.05 6.48 7.65 4.14 3.87 397.2 16.9 11.9 12.5 13.4 10.9
qpG51 607.61 138.38 155.04 150.14 113.87 85.19 749.9 201.6 185.6 99.7 58.8 48.9
thetaG11l 225.89 8.28 37.16 10.24 9.01 5.95 292.4 20.9 15.6 14.8 15.6 12.8
thetaG51 505.33 82.48 587.79 103.47 28.28 78.08 193.4 199.5 204.6 93.5 58.8 43.1
problem Iterations Number of cliques / Maximum clique size

NoDe NoMer SpCo ParCh CG1 CG2 NoDe NoMer SpCo ParCh CG1 CG2
maxG11 280 240 640 280 200 280 1/800 598/24 13/80 207/32 473/28 411/38
maxG32 280 320 440 240 280 400 1/2000 1498/76 21/210 478/76 1164/92 468/126
maxG51 160 120 80 80 80 160 1/1000 674/326 181/322 172/326 448/362 256/422
mcp500-1 240 160 160 160 120 120 1/500 457/39 451/44 111/44 437/54 334/65
mcp500-2 240 240 200 280 160 200 1/500 363/138 144/138 111/140 316/156 223/177
mcp500-3 200 240 320 280 200 240 1/500 259/242 101/242 70/242 211/263 134/301
mcp500-4 280 240 400 200 120 280 1/500 161/340 63/346 52/341 105/368 85/413
qpG11 400 320 520 560 280 320 1/1600 1398/24 813/80 296/32 1273/28 1211/38
qpG51 760 600 720 1360 1800 1640 1/2000 1674/326 1182/304 284/326 1448/362 1256/422
thetaG1ll 760 360 2280 640 520 400 1/801 598/25 13/81 207/33 494/29 423/41
thetaG51 2500 320 2500 920 360 1560 1/1001 676/324 150/323 169/324 424/358 202/425

! no decomposition; 2 no merging; 3 gparseCoL0 merging;
5 clique graph with nominal edge weighting (12);

SDPLib benchmark library. This problem set contains
maximum cut problems, SDP relaxations of quadratic pro-
grams and Lovasz theta problems. Six different cases were
considered: no decomposition (NoDe), no clique merging
(NoMer), decomposition using SparseCoL0 (SpCo), parent-
child merging (ParCh), and the clique graph-based method
with nominal edge weighting (CG1) and estimated edge
weighting (CG2). All experiments were run on a MacBook
with a 2.6 GHz Intel Core i5-8259U CPU and 8 GB of
DDR3 RAM. COSMO was configured to terminate with
ACCUTraCy €ahs = €rel = D X 10—, SparseCoL0 was used
with default parameters. Tab. 1 shows the total solve time,
the mean projection time, the number of iterations, the
number of cliques after merging, and the maximum clique
size of the sparsity pattern. The minimum value of each
row is highlighted.

Our clique graph-based methods lead to a reduction
in overall solve time. The method with estimated edge
weighting function CG2 achieves the lowest average pro-
jection times. The geometric mean of the ratios of projec-
tion time of CG2 compared to the best non-graph method
is 0.613, with a minimum ratio of 0.458 for problem
mcp500-3. Considering the number of cliques we see that
SparseCoL0 and ParCh merge more aggressively. More-
over, if the initial decomposition has a small maximum
clique size, SparseCoL0 seems to favor larger clique sizes.
The merging strategies ParCh, CG1 and CG2 result in
similar maximum clique sizes, with CG1 being the most
conservative in the number of merges.

4 parent-child merging;
6 clique graph with estimated edge weighting (13)

4. CONCLUSION

A novel clique graph merging strategy to combine overlap-
ping blocks in the aggregate sparsity pattern of structured
SDPs is proposed. The method considers all possible pair-
wise merges and is customisable to the solver algorithm
and hardware used. An extension to our method would
include information about the number of available CPU
threads in the edge weighting function. This would allow
us to optimise the strategy for the parallel execution of the
block-specific projection steps. Benchmark tests show that
our approach is able to reduce the projection time and the
solve time of our first-order solver significantly compared
to existing clique merging methods.

ACKNOWLEDGEMENTS

We would like to thank Vidit Nanda and Heather
Harrington for their helpful suggestions.

REFERENCES

Agler, J., Helton, W., McCullough, S., and Rodman, L.
(1988). Positive semidefinite matrices with a given
sparsity pattern. Linear Algebra and its Applications,
107, 101-149.

Amestoy, P.R., Davis, T.A., and Duff, I.S. (1996). An ap-
proximate minimum degree ordering algorithm. SIAM
Journal on Matriz Analysis and Applications, 17(4),
886-905.

Andersen, M. and Vandenberghe, L. (2015). CHOM-
PACK: A Python package for chordal matrix compu-
tations.

7450

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

Borchers, B. (1999). SDPLIB 1.2, A library of semidefinite
programming test problems. Optimization Methods and
Software, 11(1-4), 683-690.

Fujisawa, K., Kim, S., Kojima, M., Okamoto, Y., and
Yamashita, M. (2009). User’s manual for SparseCoLO:
Conversion methods for sparse conic-form linear opti-
mization problems. Report B-453, Dept. of Math. and
Comp. Sci. Japan, Tech. Rep., 152-8552.

Fujisawa, K., Fukuda, M., and Nakata, K. (2006). Prepro-
cessing sparse semidefinite programs via matrix comple-
tion. Optimization Methods and Software, 21(1), 17-39.

Fukuda, M., Kojima, M., Murota, K., and Nakata, K.
(2001). Exploiting sparsity in semidefinite programming
via matrix completion I: General framework. STAM J.
on Optimization, 11(3), 647-674.

Garstka, M., Cannon, M., and Goulart, P. (2019).
COSMO: A conic operator splitting method for large
convex problems. In FEuropean Control Conference.

Grone, R., Johnson, C.R., Sa, E.M., and Wolkowicz,
H. (1984). Positive definite completions of partial
Hermitian matrices. Linear Algebra and its Applications,
58, 109-124.

Kruskal, J.B. (1956). On the shortest spanning subtree of
a graph and the traveling salesman problem. Proceedings
of the American Mathematical Society, 7(1), 48-50.

Molzahn, D.K., Holzer, J.T., Lesieutre, B.C., and De-
Marco, C.L. (2013). Implementation of a large-scale
optimal power flow solver based on semidefinite pro-
gramming. [EEE Trans. on Power Systems, 28(4),

7451

3987-3998.

Nakata, K., Fujisawa, K., Fukuda, M., Kojima, M., and
Murota, K. (2003). Exploiting sparsity in semidefinite
programming via matrix completion II: Implementation
and numerical results. Math. Prog., 95(2), 303-327.

Nesterov, Y. and Nemirovsky, A. (1988). A general ap-
proach to polynomial-time algorithms design for convex
programming. Report, Central Economical and Mathe-
matical Institute, USSR Academy of Sciences, Moscow.

O’Donoghue, B., Chu, E., Parikh, N., and Boyd, S. (2016).
Conic optimization via operator splitting and homo-
geneous self-dual embedding. J. of Opt. Theory and
Applications, 169(3), 1042-1068.

Pothen, A. and Sun, C. (1990). Compact clique tree data
structures in sparse matrix factorizations. Large-Scale
Numerical Optimization, 180-204.

Sun, Y., Andersen, M.S., and Vandenberghe, L. (2014).
Decomposition in conic optimization with partially sep-
arable structure. SIAM J. on Optimization, 24(2),
873-897.

Vandenberghe, L. and Andersen, M.S. (2015). Chordal
graphs and semidefinite optimization. Foundations and
Trends® in Optimization, 1(4), 241-433.

Yannakakis, M. (1981). Computing the minimum fill-in is
NP-complete. SIAM J. on Algebraic Discrete Methods,
2(1), 77-79.

Zheng, Y., Fantuzzi, G., Papachristodoulou, A., Goulart,
P., and Wynn, A. (2020). Chordal decomposition in
operator-splitting methods for sparse semidefinite pro-
grams. Mathematical Programming, 180(1), 489-532.

