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Abstract: This paper proposes new tuning methods for both the famous proportional-integral-
derivative (PID) control and the active disturbance rejection control (ADRC) of multi-input
multi-output (MIMO) coupled nonlinear uncertain systems. Firstly, a quantitative lower bound
to the bandwidth of the parallel extended state observers (ESOs) of ADRC is given, which is
not necessarily of high gain. Then, inspired by an inherent but less noticed relationship between
PID and ADRC, a new and concrete PID tuning rule is introduced, which can achieve both
the strong robust decoupling control and good tracking performance of the MIMO closed-loop
systems. Finally, the theoretical results, which reveal that why and how both PID control and
ADRC can effectively deal with decoupling problem for MIMO coupled nonlinear uncertain
systems, are verified by simulations.
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1. INTRODUCTION

It is well-known that the classical PID (proportional-
integral-derivative), which has nearly 100 years of history,
is still the most widely and successfully used controller
in engineering practice by far even though numerous ad-
vanced control techniques have been proposed (see Samad
(2017)). Even though the classical PID control achieves
such an amazing success in practice, the design of PID
parameters is still lack of theoretical support and most
methods are based on the experience and experiments (see
O’Dwyer (2006)). Recently, some theoretical studies about
the global convergence of the PID controller for nonlinear
uncertain systems are proposed (see Zhao and Guo (2017),
Zhao and Guo (2019), Zhang and Guo (2019)). In Zhao
and Guo (2017), for second order nonlinear uncertain
dynamical systems, necessary and sufficient conditions on
the selection of the PID parameters have been discussed
and provided. Moreover, Zhang and Guo (2019) extends
the results of Zhao and Guo (2017) to higher dimensional
uncertain systems and improves the results significantly.
Although these results have provided open unbounded
manifolds for the selection of the PID parameters, how to
design a concrete tuning rule, which can guarantee both
strong robustness as well as good tracking performance,
especially for MIMO coupled nonlinear uncertain systems,
is still a challenging problem to be resolved.

? This work was supported by the National Key R & D Program
of China under Grant 2018YFA0703800 and the National Center
for Mathematics and Interdisciplinary Sciences, Chinese Academy of
Sciences.

The active disturbance rejection control(ADRC) was orig-
inally proposed by Han in 1998 (see Han (1998)). Because
of its strong ability in dealing with a vast range of uncer-
tainties/disturbances and great transient response, ADRC
has become quite attractive to applied researchers (see
Huang and Xue (2014), Xue et al. (2015), Sun et al. (2016),
Chen et al. (2017), Zheng and Gao (2018)). For MIMO
coupled nonlinear uncertain systems, the key of ADRC
is to estimate and compensate for the total disturbance,
which lumps the coupling effect, the internal uncertainties
and the external disturbances, by several parallel designed
extended state observers (ESOs) in real time. Although
there have been some literatures for the theoretical anal-
ysis about ADRC (see Guo and Zhao (2013), Xue and
Huang (2015), Xue and Huang (2017), Chen et al. (2020)),
research on how to tune the ADRC parameters to achieve
satisfactory performance of the closed-loop system under
practical restrictions still lacks, especially for MIMO cou-
pled nonlinear uncertain systems.

Recently, a parameter formula connecting PID and ADRC
is studied for a kind of single-input single-output (SISO)
second-order uncertain systems (see Zhong et al. (2020)).
What marvelous is that, for MIMO coupled nonlinear
uncertain systems, both PID control and ADRC take
simple laws to solve decoupling problem, which do not
depend on the coupled nonlinear model. A comprehensive
understanding why PID and ADRC are widely effective
for real world MIMO coupled nonlinear uncertain systems
may help to further push forward the product quality in
the widespread practice. This is the motivation of the
paper.
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In this paper, new and simple tuning methods of both
PID controller and ADRC for MIMO coupled nonlinear
uncertain systems are given. With the aid of the condition,
provided in Zhang and Guo (2019), a quantitative lower
bound for the bandwidth of the parallel extended state
observers (ESOs), the core in ADRC design, is obtained.
This lower bound, which is not necessarily of high gain,
can be used as the necessary condition to design ADRC
parameter for MIMO coupled nonlinear uncertain systems.
Then, inspired by the design of a reduced-order ESO
based linear ADRC, a new and concrete tuning rule for
PID parameters is provided for MIMO coupled nonlinear
uncertain systems. It is proved that the PID controller,
tuned by the new tuning rule, also has the capability of
estimating and compensating for the coupling, uncertain-
ties and disturbances such that the strong robustness and
great transient performance can be achieved. Furthermore,
what striking is that the P-term and the D-term also
contribute to the estimation and compensation for the
unknown nonlinear disturbances, rather than the single
I-term of PID controller.

The rest of the paper is organized as follows. Section
2 presents the detailed problem description. The main
results are introduced in Section 3. Section 4 gives some
simulations to verify the theoretical analysis. Finally, Sec-
tion 5 concludes the paper.

2. PROBLEM FORMULATION

Consider the following MIMO coupled nonlinear uncertain
system: {

Ẋ1 = X2,

Ẋ2 = F (X1, X2, t) + U(t),
(1)

where X1 = [x11, x12, ..., x1n]T ∈ Rn and X2 =
[x21, x22, ..., x2n]T ∈ Rn are the system states and can be
measured, U(t) ∈ Rn is the control input, F (X1, X2, t) :
Rn × Rn × R+ → Rn is an unknown nonlinear vector
function of the state (X1, X2) and time t, which consists
of the coupling effect of the state, the uncertainty of the
system and the external disturbances.

Remark 1. The system (1) can present lots of practical
systems, such as moving bodies in R3 and multi-agent
systems (see Yuan et al. (2018)), in which each agent can
be described as:{

ẋ1j = x2j ,

ẋ2j = fj(X1, X2, t) + uj , j = 1, ...,m,
(2)

where m is the number of agents.

The control objective is to make the controlled variable X1

of any initial value track a given bounded reference signal
Y ∗(t) ∈ Rn, which satisfies

lim
t→∞

Y ∗(t) = Y ∗∗, lim
t→∞

Ẏ ∗(t) = 0, lim
t→∞

Ÿ ∗(t) = 0,

where Y ∗∗ is a constant vector.

To make the closed-loop system have a good tracking
performance, the following desired transient process r(t) =
[r1, ..., rn]T ∈ Rn can be designed:

r̈i = −2cri ṙi − c2ri(ri − y
∗
i (t)),

ri(0) = x1i(0), ṙi(0) = x2i(0), i ∈ n,
(3)

where cri > 0 is a parameter, n denotes the set {1, ..., n}.

Denote the tracking error as ei(t) = ri(t) − x1i(t), i ∈ n.
Then, the PID law and the ADRC law are described as
follows.

First, the classical PID UPID = [uPID1 , ..., uPIDn ]T for
the MIMO coupled nonlinear uncertain system (1) takes
the form:

uPIDi
= kpiei + kdi ėi + kIi

∫ t

0

ei(τ)dτ + r̈i, i ∈ n, (4)

where kpi , kdi , kIi are the parameters to be determined
in the paper and r̈i is a feedforward term. Note that the
control signal uPIDi

only utilizes the i-th tracking error ei
and r̈i, which makes the PID a simple decoupling control
law.

On the other hand, based on the idea of ADRC, the
unknown nonlinear vector function F (X1, X2, t), which
consists of the coupling effect of the state, the internal
uncertainties and the external disturbances, can be re-
garded as the total disturbance of the system and treated
as an extended state vector to be timely estimated and
compensated for, by n parallel ESOs.

According to the measurement X2, the following n parallel
reduced-order ESOs can be designed (see Huang and Xue
(2014)):{

ξ̇i = −ωoξi − ω2
ox2i − ωoui, ξi(0) = −ωox2i(0),

f̂i = ξi + ωox2i, i ∈ n
(5)

where f̂i is an estimate of fi(X1, X2, t), f̂i(0) = 0 and ωo
is the bandwidth of the parallel ESOs (5) for estimating
the total disturbance F , which can be tuned.

Then, to track the transient process r(t), the correspond-
ing ADRC law U = [u1, ..., un]T takes the following struc-
ture:

ui = kapiei + kadi ėi − f̂i + r̈i, i ∈ n (6)

where kapi , kadi > 0 are parameters to be designed. In (6),

f̂i is used to timely compensate for the total disturbance.
Specially, it can be seen from (6) that, similar to the PID
(4), the ADRC law ui, which is independent on the coupled
model, also handles decoupling control problem only using
the signals x1i and x2i.

Remark 2. The transient process r(t) and the feedforward
r̈, which can improve the dynamic accuracy of the closed-
loop system, will play a prominent part in the design
of both controllers to deduce an inherent relationship
between the PID (4) and the ADRC (6).

In the next section, a lower bound to the bandwidth ωo
of the parallel ESOs (5) is quantitatively proposed. Then,
inspired by the structure of the ADRC (5) and (6), a new
and concrete tuning rule for the classical PID controller
(4) with guaranteed performance is given.

3. MAIN RESULTS

Define F (X1, X2, t) as follows:
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F =

{
F ∈ C1(Rn ×Rn ×R+)

∣∣∣F (X1, X2, t) = H(X1, X2) +W (t),∥∥∥ ∂H

∂X1

∥∥∥ ≤ L1,

∥∥∥ ∂H

∂X2

∥∥∥ ≤ L2,

∥∥∥W (t)

∥∥∥ ≤ L3,

∥∥∥Ẇ (t)

∥∥∥ ≤ L4,

lim
t→∞

W (t) exists, ∀(X1, X2) ∈ Rn ×Rn, ∀t ∈ R+
}
,

(7)

where L1, L2, L3 and L4 are positive constants, C1(Rn ×
Rn×R+) is denoted as the space of all functions from Rn×
Rn×R+ to Rn, which have continuous partial derivatives
with respect to (X1, X2, t), W (t) is unknown disturbance.

3.1 A quantitative lower bound to the bandwidth of the
parallel ESOs (5) with guaranteed performance

In this subsection, a quantitative lower bound to the
bandwidth ωo of the parallel ESOs (5) is given. To that
end, denote kap = min

i∈n
kapi , kad = min

i∈n
kadi , k̄ap =

max
i∈n

kapi , k̄ad = max
i∈n

kadi and

Ω =
{
ω ∈ R

∣∣n0ω4 + n1ω
3 + n2ω

2 + n3ω + n4 = 0
}
,

where n0 = k2ad and

n1 = 2kad[kad(kad − L2)− k̄ap + kap − L1],

n2 = k2ad(kad − L2)2 + 2kad(kad − L2)[2(kap − L1)

− k̄ap]− L2(L1k̄ad + L2k̄ap) + k̄2ap

+ (kap − L1)(kap − L1 − 2k̄ap),

n3 = 2(kap − L1)(kad − L2)[kad(kad − L2)− k̄ap + kap

− L1]− L2
2k̄ap(k̄ad − L2)− L2

1k̄ad

− L1L2[2k̄ap − L1 + k̄ad(kad − L2)],

n4 = (kap − L1)2(kad − L2)2 − L1(k̄ap − L1)[L1

+ L2(kad − L2)].
(8)

Define

ω∗o = max

{
0,
L1 − kap
kad

, L2 − kad, ω̄o
}
,

ω̄o =

{
0, Ω = ∅ or max{Ω} ≤ 0,

max{Ω}, max{Ω} > 0,

(9)

where ∅ represents the empty set.

The following theorem will show that ω∗o is a suitable
lower bound to the parallel ESOs parameter in order to
guarantee the global boundness and global attractivity of
the steady state.

Theorem 1. (Stability). Consider the ADRC controlled
MIMO coupled nonlinear uncertain system (1),(5) and
(6), where F ∈ F . Then, for any given L1, L2, kapi and
kadi , i ∈ n, the closed-loop system will be bounded and
satisfy

lim
t→∞

X1(t) = Y ∗∗, lim
t→∞

X2(t) = 0,

for any initial value (X1(0), X2(0)) ∈ Rn × Rn and any
Y ∗∗, as long as the bandwidth of the parallel ESOs satisfies
ωo > ω∗o .

Remark 3. From (9), it shows that the lower bound ω∗o
is only decided by the constants L1, L2, kap, kad, k̄ap, k̄ad
and independent of the unknown disturbance W (t), initial
values of the state and the reference signal Y ∗(t).

Proof.

Denote e = [e1, ..., en]T . Substituting equation (6) into (5),
it can be deducted that

F̂i(s) =− ωokadiEi(s)− ωosEi(s)−
ωokapiEi(s)

s
, (10)

where Ei(s) and F̂i(s) are the Laplace transform of ei(t)
and fi(t), respectively. Take the inverse Laplace transform
for (10), there is

f̂i = −ωokadiei − ωoėi − ωokapi
∫ t

0

ei(τ)dτ. (11)

Thus, the ADRC law (6) can be rewritten as

U = kpe+ kdė+ kI

∫ t

0

e(τ)dτ + r̈, (12)

where kp = kap + ωokad, kd = kad + ωoIn, kI = ωokap, In
represents n-dimensional identity matrix,

kap =


kap1 0 · · · 0

0 kap2
. . .

...
...

. . .
. . . 0

0 · · · 0 kapn

 , kad =


kad1 0 · · · 0

0 kad2
. . .

...
...

. . .
. . . 0

0 · · · 0 kadn

 .
Since lim

t→∞
W (t) exists, there exists a constant vector C,

such that lim
t→∞

W (t) = C. Denote

eI(t) =

∫ t

0

e(τ)dτ +
H(Y ∗∗, 0) + C

ki
, eD(t) = ė(t),

G(e, eD) = −H(Y ∗∗ − e,−eD) +H(Y ∗∗, 0).

From (7), there is G ∈ F and G(0, 0) = 0. Thus, the
closed-loop system (1) and (12) can be rewritten as

ėI = e,

ė = eD,

ėD = −kIeI − kpe− kdeD +G(e, eD) + ∆(·),
(13)

where

∆(·) = G(e+ Y ∗∗ − r, eD − ṙ)−G(e, eD) + C −W (t)

and

‖G(e+Y ∗∗−r, eD− ṙ)−G(e, eD)‖ ≤ L1‖Y ∗∗−r‖+L2‖ṙ‖.
Thus,

‖∆‖ ≤ L1‖Y ∗∗ − r‖+ L2‖ṙ‖+ ‖C‖+ L3.

Furthermore, (0, 0, 0) is an equilibrium of (13), when t
approaches infinity.

Based on the analysis in Zhang and Guo (2019), G(e, eD)
can be expressed as

G(e, eD)

=
{∫ 1

0

∂G(ē, 0)

∂ē
dλ
}
e+

{∫ 1

0

∂G(e, ēD)

∂ēD
dλ
}
eD

,b(e)e+ a(e, eD)eD,

(14)

where ē = λe, ēD = λeD, λ ∈ [0, 1],‖b(e)‖ ≤ L1,‖a(e, eD)‖ ≤
L2.

Hence, the closed-loop system (13) turns into
ėI = e,

ė = eD,

ėD = −kIeI − φ(e)e− ψ(e, eD)eD + ∆(·),
(15)

where

φ(e) = kp − b(e), ψ(e, eD) = kd − a(e, eD).
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Denote kp = λmin(kp), kd = λmin(kd), kI = λmin(kI), k̄p =

λmax(kp), k̄d = λmax(kd), k̄I = λmax(kI), where λmin(·)
and λmax(·) are the minimum and maximum eigenvalues
of the corresponding matrix, respectively.

Similar to Zhang and Guo (2019), the following positive
define matrix P is considered:

P =
1

2

[
µkI kI δIn
kI kp + µkd µIn
δIn µIn In

]
, (16)

where µ is a constant defined by

µ =
2((kp − L1)(kd − L2) + k̄I)− L1L2

4(kp − L1) + L2
2

,

and δ is a positive constant, which is small enough.

Then, design the following Lyapunov function:

V (eTI , e
T , eTD) = [eTI , e

T , eTD]P [eTI , e
T , eTD]T . (17)

It can be obtained that

λmin(P )
∥∥[eTI , e

T , eTD]
∥∥2 ≤ V ≤ λmax(P )

∥∥[eTI , e
T , eTD]

∥∥2 .
The time derivative of V (eTI , e

T , eTD) along the trajectories
of (15) is

V̇ =− [eTI , e
T , eTD]B(·)[eTI , eT , eTD]T+

[eTI , e
T , eTD][δ∆T , µ∆T ,∆T ]T ,

≤− [‖eI‖, ‖e‖, ‖eD‖]Q[‖eI‖, ‖e‖, ‖eD‖]T+

[‖eI‖, ‖e‖, ‖eD‖][δ, µ, 1]T ‖∆‖,

(18)

where

B(·) =


δkI

δφ

2

δψ

2
δφ

2
w22 −µa+ bT + δIn

2
δψ

2
−µa+ bT + δIn

2
w33

 ,

w22 = −kI + µ(kp −
b+ bT

2
),

w33 = kd − µIn −
a+ aT

2
,

and Q is a positive define matrix, expressed by

Q =


δkI

−δ(k̄p + L1)

2

−δ(k̄d + L2)

2
−δ(k̄p + L1)

2
−k̄I + µ(kp − L1) −µL2 + L1 + δ

2
−δ(k̄d + L2)

2
−µL2 + L1 + δ

2
−µ+ kd − L2

 .
From (18), there is

V̇ ≤ −λmin(Q)‖[eTI , eT , eTD]‖2 + c0‖[eTI , eT , eTD]‖‖∆‖
≤ −c1V + c2

√
V ‖∆‖,

where c0 = max{δ, µ, 1}, c1 = λmin(Q)
λmax(P ) , c2 = c0√

λmin(P )
.

Since ‖∆‖ is bounded, there exists a constant M0, such
that ‖∆‖ ≤ M0. Then, with the help of Gronwall Lemma
Corduneanu (2008), it can be obtained that
√
V ≤ e

−c1t

2

√
V (eTI (0), eT (0), eTD(0)) +

c2M0

c1
(1− e

−c1t

2 ).

Therefore, V (eTI , e
T , eTD) is bounded and eTI , e

T and
eTD are bounded. Since lim

t→∞
r(t) = Y ∗∗, lim

t→∞
ṙ(t) = 0 and

lim
t→∞

W (t) = C, it can be obtained that lim
t→∞

∆(·) = 0.

Therefore, there exists T > 0, such that for any t > T ,
ε > 0, there is

V̇ ≤ −c1V + ε.

In sum, lim
t→∞

X1(t) = Y ∗∗, lim
t→∞

X2(t) = 0. �

Denote the estimation error of the parallel ESOs (5)

as efi = f̂i − fi(X1, X2, t). Since ëi(t) + kadi ėi(t) +
kapiei(t) = 0 is the ideal tracking performance for a
double integrator system, determined by the given pole-
placement via feedback parameters kapi and kadi , Theorem
2 will show that by increasing the parallel ESOs parameter
ωo > ω∗o , the real closed-loop tracking performance can be
closer to the ideal one in the whole time-domain.

Theorem 2. (Tracking Performance). Consider the
ADRC controlled MIMO coupled nonlinear uncertain sys-
tem (1),(5) and (6), where F ∈ F . Then, there exists
a positive constant η, which is independent of ωo, such
that for all ωo > ω∗o , the tracking error has the following
property:

|ëi(t) + kadi ėi(t) + kapiei(t)| = |efi(t)|

≤ |efi(0)|e−ωot +
η

ωo
, t ≥ 0.

(19)

The proof of Theorem 2 is omitted here due to space
limitation.

3.2 A new and concrete tuning rule for PID

In this subsection, via an inherent but rarely noticed
relationship between PID and ADRC, a novel and concrete
tuning rule for the parameters of the PID controller (4) will
be proposed.

The formula (11) in the proof of Theorem 1 shows that
the output of the ESO (5) can be rewritten as a linear
combination of the three terms in PID. Hence, setting

kpi = kapi + ωokadi , kdi = kadi + ωo, kIi = ωokapi ,

then, the PID (4) has the same function of the reduced-
order ESO based linear ADRC law (6). Therefore, a new
tuning rule for the PID law (4), inspired by ADRC design,
can be proposed as follows:

kpi = kapi + ωokadi , kdi = kadi + ωo, kIi = ωokapi ,

kapi > 0, kadi > 0, ωo > ω∗o .
(20)

From this meaningful relationship between ADRC (6)
and PID (4), similar to Theorem 1 and Theorem 2, the
following corollary gives the properties of the MIMO
closed-loop system based on the PID (4) and the new
tuning rule (20).

Corollary 1. Consider the PID controlled MIMO coupled
nonlinear uncertain system (1),(4) and (20), where the
unknown nonlinear function F ∈ F . Then, there exists
a positive constant η, which is the same as in Theorem 2,
such that for any given L1, L2, kapi , kadi > 0, any initial
value (X1(0), X2(0)) ∈ Rn × Rn and any Y ∗∗,the closed-
loop system has the following properties:

(1) lim
t→∞

X1(t) = Y ∗∗, lim
t→∞

X2(t) = 0.

(2) |ëi(t) + kadi ėi(t) + kapiei(t)| ≤ |fi(0)|e−ωot + η
ωo
, t ≥ 0,

whenever ωo > ω∗o .

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

1350



To further compare the estimation capacity of the ESOs
(5) and the integral term of the PID controller (4),
Theorem 3 is given as follows:

Theorem 3. Consider the ADRC controlled MIMO closed-
loop system (1),(5) and (6) and the PID controlled MIMO
closed-loop system (1),(4) and (20). For any unknown
nonlinear F ∈ F , the setting time of the ESO (5), which
depends on the parameter ωo, is shorter than that of the
integral term of the PID controller (4), when ωo > ω∗o .

The proof of Theorem 3 is omitted here due to space
limitation.

4. SIMULATIONS

In this section, some simulations on a moving body in R3

are given.

Assume that the unknown coupled nonlinear dynamics is
represented by vector F = [f1, f2, f3]T ,

f1(t) =x11 + 3sin(x12)cos(x13) + 0.5x21 + sin(x23)

+ cos(x22)− 1,

f2(t) =2x12 + sin(x11) + x13 + x22
+ sin(x23)cos(x21) + 1,

f3(t) =x13 + sin(x12) + x11 + 0.5x23
+ sin(x22)cos(x21) + w1(t),

(21)

where

w1(t) =

{
cos(t), if t < 4,

cos(4), else.

X1(0) = 0, X2(0) = 0 and the discontinuous reference
signal is

Y ∗(t) =

{
[2, 0,−3]T , if t < 4,

[2, 1,−3]T , else.

The ideal transient process r(t) is:

r̈i = −2cri ṙi − c2ri(ri − y
∗
i (t)),

cri = 5, ri(0) = 0, ṙi(0) = 0, i = 1, 2, 3.
(22)

According to Theorem 1, it can be calculated that the
lower bound of the bandwidth of ESOs is ω∗o = 4.5. Then,
the parameters of the ADRC (6) and PID (4) are set as

kapi = 1, kadi = 2, ωo = 15,

kpi = 31, kdi = 17, kIi = 15, i = 1, 2, 3.

Figures 1 ∼ 3 are the response curves of the state (X1, X2)
based on the ADRC (5) and (6), and the PID controller
(4) and (20). From Fig. 1 ∼ 3, it can be seen that under
the new tuning rule (20), the dynamic response of the PID
controlled system is similar to that of the ADRC (5),(6)
controlled system. Moreover, both of them can make the
tracking error converge to zero and have nice tracking
performance.

Figures 4∼6 compare the estimations of the unknown
nonlinear coupled function vector F , given by the parallel
ESOs (5), the single I-term of the PID controller (4) tuned
by the new rule (20), and the linear combination of the
three terms of P-I-D (11) of PID controller. In Fig. 4∼6,
the real value of F of the ADRC based closed-loop system
(1),(5) and (6) is expressed by the blue line, and F of the
PID based closed-loop system (1), (4) and (20) is expressed
by the red dash line.
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Fig. 1. The response curves of the states x11 and x21
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Fig. 3. The response curves of the states x13 and x23

Figures 4∼6 further verify that compared to the single I-
term of the PID, the parallel ESOs (5) can track various
unknown nonlinear disturbances more quickly. Moreover,
under the new tuning rule (20), inspired by the ADRC (5)
and (6), the combination of the three terms of PID (11)
has the strong ability to estimate the unknown coupled
nonlinear function F .

5. CONCLUSION

In this paper, new design methods for both PID and
ADRC of MIMO coupled nonlinear uncertain systems are
presented. On the one hand, a lower bound ω∗o to the
bandwidth ωo, which can be quantitatively calculated, is
introduced for ensuring the global boundness and global
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Fig. 6. The estimations of the unknown dynamics f3

attractivity of the ADRC, indicating that the parallel
ESOs (5) are not necessary of high gain. It is further
illustrated that the tracking performance in the whole
time-domain can be improved by increasing ωo > ω∗o . On
the other hand, a novel and concrete PID controller tuning
rule (20), stimulated by the design of the linear ADRC
based on a reduced-order ESO, is given, such that both
the strong robustness and nice tracking performance can
be achieved. Moreover, it is proved that the parallel ESOs
(5) can estimate the coupling uncertain disturbances more
quickly than the single I-term.
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