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Abstract: This paper considers networked discrete-event systems. Local state-feedback con-
trollers enable each subsystem to reach local target states. Due to the physical restrictions
between the subsystems, the local target states might not be reachable autonomously, but coop-
eratively with the help of other subsystems. Therefore, each subsystem is extended by a network
unit, which detects and resolves possible physical restrictions. If cooperation is necessary, the
network units temporarily modify their local target states while applying situation-dependent
communication. The proposed method is applied to the flexible manufacturing system HANS
and its applicability to real-life systems is demonstrated by experimental results.
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1. INTRODUCTION

1.1 Networked discrete-event systems

Networked discrete-event systems (Fig. 1(a)) consist of
controlled subsystems Σ̄i, which are able to use a digital
communication network ΣN. Each subsystem has a local
state-feedback controller to reach a target state zFi. The
physical couplings ΣK are represented as synchronous state
transitions of neighbouring subsystems. If they become
active, two subsystems have to execute these synchronous
state transitions together before the subsystems are able
to reach their local target states. The task to follow the
synchronous state transitions necessitates a cooperation
among the controllers.

Fig. 1. Networked system

This paper experimentally evaluates a cooperative control
method for networked discrete-event systems. If a sub-
system has to execute a cooperative task to satisfy its
local task, then the subsystems apply the communication
network to organise the execution of this cooperation. That
means, each subsystem is steered into target states zFi
to solve its local tasks. If a subsystem has to execute
a synchronous state transition to reach zFi, then the
subsystems temporarily modify the local target states zFi
to ensure the execution of this synchronous state transition.
? This work was supported by the German Research Foundation
(DFG) under grant LU 462/42.

Fig. 2. Flexible manufacturing system HANS

To this aim, the network units Σ′i in Fig. 1(a) are in-
troduced to enable each controlled subsystem Σ̄i to ex-
change situation-dependent information among each other
via the digital communication network ΣN. Based on a
reduced overall model, which mainly describes the physical
restrictions among the subsystems and abstracts from the
autonomous behaviour, the network units cooperatively de-
termine the modified target states z̃Fi for their subsystems.

As an example, the flexible manufacturing system HANS in
Fig. 2 is considered (Zgorzelski and Lunze, 2018a) (Modular
production system MPSr of the company FESTO), which
is a pick-and-place system for handling workpieces. It
consists of four subsystems: The area-gantry robot, the line-
gantry robot, the 3-axis robot and the conveyor belt. Each
subsystem can transport the workpieces autonomously in
the direction indicated by the solid red arrows (autonomous
mode). However, in the networked system, the subsystem
can cooperatively transfer the workpiecess between the
subsystems, which is shown by the red double arrows
(Fig. 2). It is clear to see that for the transfer the subsystem
have to cooperate temporarily (cooperative mode), which
is solved by the proposed method.

The first contribution of this paper is an extension of the
cooperative control method of Zgorzelski and Lunze (2019)
from two subsystems to an arbitrary number of coupled
subsystems. In order to do that, the method from Zgorzelski
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and Lunze (2019) is generalised through the application of
extended Input/Output (I/O)-automata (Drüppel et al.,
2008), which introduces a new form of model describing the
system structure. The second contribution is the experimen-
tal application of the proposed method to the cooperative
pick-and-place process HANS with four subsystems (Fig. 2),
which will demonstrate the applicability of the presented
method to real-life systems.

1.2 Literature

The supervisory control of discrete-event system proposed
by Ramadge and Wonham (1989) has been investigated
to connect decentralised supervisors via a digital commu-
nication network (Barrett and Lafortune, 2000),(Rudie
et al., 2003) to restrict the plant behaviour to a given
specification. Moreover, in the multi-agent supervisory con-
trol (Su and Lennartson, 2017) and distributed supervisory
control (Seow et al., 2009), (Cai and Wonham, 2010) the
communication network is used for the synchronous event
passing between the local supervisors. Other works on
networked supervisory control (Wang et al., 2016) consider
a communication network between the plant and the
supervisor, which causes a delayed transmission of events
and control actions.

In contrast, our control objective is the state-feedback
control of I/O automata (Zgorzelski and Lunze, 2017)
to steer physically coupled subsystems into local target
states. Although the state attraction problem (Brave and
Heymann, 1989) of the supervisory control is related to
this control problem, Brave and Heymann (1989) did not
discuss how to cope with more than one subsystem and a
control input that flexibly allows the subsystems to adapt
to its environment for reaching different target states given
at runtime. Moreover, our communication depends on the
plant behaviour but also on the control input, which requires
more flexibility.

The cooperative tracking control proposed in this paper
has similarities to the distributed optimal controller pro-
posed by Stursberg and Hillmann (2017), which has the
control objective to minimize the state trajectory cost
of subsystems into their goal states within a distributed
architecture with a priority structure. The difference is
that we do not want to minimize the costs and we do
not restrict our system to a certain priority structure.
Moreover, the physical restrictions in this paper have a
more generalised description and the solution presented in
this paper is given for arbitrary couplings and any number of
subsystems. Hence, in the literature, the networked discrete-
event systems appear with a different structure or a different
control objective.

1.3 Organisation of the paper and notation

In Section 2, the physically coupled controlled subsystems
are presented and the cooperative control problem is
formulated. The main result is presented in Section 3
that gives the solution of the cooperative control problem
for networked discrete-event systems. Finally, Section 4
presents the modelling and the cooperative control of the
flexible manufacturing system HANS.

In the following, sets are denoted by calligraphic letters
(e.g. Z) and scalars by lower cases italics (e.g. z0). To
denote sequences of scalars, upper case italics are used
(e.g. Z(0 . . . ke) = (z(0), v(1), . . . z(ke)) with ke being the
time horizon. State transitions are denoted by (zi → z′i)
and the empty symbol is denoted by ε. Z∗ denotes the

kleene closure of the set Z and
∏I

i Zi denotes the cartesian
product.

2. PHYSICALLY COUPLED CONTROLLED
SUBSYSTEMS

2.1 Physically coupled plants

Each controlled subsystem Σ̄i consists of a plant ΣPi and
a state-feedback controller ΣCi (Fig. 1(b)). The plant is
modelled by a deterministic extended Input/Output (I/O)-
automaton (Lunze, 2017) ΣPi = (Zi,Vi,Si,Ri, Gi, Fi, zi0)

ΣPi :

{
zi(k + 1) = Gi(zi(k), vi(k), si(k)), zi(0) = zi0

ri(k) = Fi(zi(k), vi(k), si(k))
(1)

with the state set Zi, the input set Vi, the coupling input
set Si and the coupling output set Ri. The state transition
function Gi : Zi × Vi × Si → Zi maps the current state
zi(k), the current input vi(k) and the coupling input si(k)
at time step k to the next state zi(k + 1), whereas the
coupling function Fi : Zi × Vi × Si → Ri maps the same
arguments to the current value of the coupling output ri(k).
In the following, the current state zi(k) is assumed to be
measurable and the next state zi(k + 1) is denoted by z′i.

Physically coupled state transitions are represented as
synchronous state transitions having a coupling input
si 6= ε, whereas physically uncoupled state transitions are
denoted as autonomous state transitions having the empty
symbol ε as the coupling input si = ε. The description of
the synchronous state transitions is similar to the notion
of γ introduced by Zgorzelski and Lunze (2019, 2018b),
however, in this paper, the generalised description with
extended I/O-automata is applied.

The couplings between the plants (1) are described by the

coupling function K :
∏I

i=1Ri →
∏I

i=1 Si
ΣK : (s1(k), . . . , sI(k))T = K((r1(k), . . . , rI(k))T), (2)

which maps all coupling outputs ri(k) to the coupling inputs

si(k), whereas the component Ki :
∏I

i=1Ri → Si of (2)
ΣKi : si(k) = Ki((r1(k), . . . , rI(k))T) does the same for
the i-th subsystem.

2.2 Local state-feedback controller

The plants ΣPi are connected to a local state-feedback
controller

ΣCi : vi(k) = Ci(zi(k), ei(k)) (3)

with the controller function Ci : Zi ×Zi → Vi that maps
the current state zi(k) and the control input ei(k) to an
input symbol vi(k) for the plant (1). The controller (3) has
the control aim to steer the plant (1) into the desired target
state zFi ∈ Zi given to the control input ei(k) = zFi.

The controller function Ci is designed by the Algorithm 1
with the active input set Vi(zi, z′i) = {vi | ∃si ∈ Si : z′i =
Gi(zi, vi, si)}.

Algorithm 1 Local state-feedback controller design

Input: Plant ΣPi
For ∀zi, zFi ∈ Zi do
(1) Search shortest state sequence: Zi(0 . . . ke) =(zi(0)=

zi, zi(1)=z′i . . . , z(ke)=zFi)
(2) Define: Ci(zi, zFi) ∈ Vi(zi, z′i)
Result: Controller function Ci
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The controlled subsystem Σ̄i = (Zi,Vi,Si,Ri, Ḡi, F̄i, zi0)

Σ̄i :

{
zi(k + 1) = Ḡi(zi(k), ei(k), si(k)), zi(0) = zi0

ri(k) = F̄i(zi(k), ei(k), si(k))
(4)

with Ḡi(zi, ei, si) = Gi(zi, Ci(zi, ei), si) and F̄i(zi, ei, si) =
Fi(zi, Ci(zi, ei), si) is obtained by the connection of the
plant (1) with the state-feedback controller (3).

The set of all local state transitions is given by

Gi = {(zi → ei) | ∃si ∈ Si : ei = Ḡi(zi, ei, si)}
and the set of all coupling output signals ri of a local state
transition (zi → z′i) is described by the active coupling
output set

Ri(zi, z
′
i)

= {ri | ∃si ∈ Si : ri = F̄i(zi, z
′
i, si) ∧ z′i = Ḡi(zi, z

′
i, si)}.

The overall state transition function Ḡ and coupling
function F̄ of all controlled subsystems are denoted by

Ḡ(z, e, s)=

Ḡ1(z1, e1, s1)
...

ḠI(zI , eI , sI)

,F̄ (z, e, s)=

F̄1(z1, e1, s1)
...

F̄I(zI , eI , sI)


with z = (z1, . . . , zI)T, e = (e1, . . . , eI)T, s = (s1, . . . , sI)T

and the overall state set is given by Z =
∏I

i=1Zi.

The active coupling input set is defined by

Si(zi, z′i) = {si | z′i = Ḡi(zi, z
′
i, si)} (5)

and the following behaviour is assumed that the plant
remain in the current state for the wrong coupling input:

Assumption 1. Ḡi(zi, ei, si) = zi if si /∈ Si(zi, ei)

In the proof of the following Lemma 2, it is shown
that the local control objective is met by the controlled
subsystem (4), if the coupling input si(k) is an element of
the active coupling input set (5).

Lemma 2. (Local target state control). In the controlled
subsystem (4) with the control input ei(k) = zFi, k ≥ 0,
the relation

∀zi, zFi ∈ Zi,∃ke : zi(ke) = zFi

holds if ∀k ≤ ke : si(k) ∈ Si(zi(k), zi(k + 1)). (6)

Proof. The proof is given by induction. For all state pairs
zi, zFi ∈ Zi and its connecting shortest state sequences
Zi(0 . . . ke) = (zi(0) = zi, . . . , z(ke) = zFi) in ΣPi, it
holds zi(k + 1) = Ḡi(zi(k), ei(k), si(k)) in the controlled
subsystem Σ̄i with ei(k) = zFi, if si(k) ∈ Si(zi(k), zi(k+1))
holds. Base case k = 0: zi(1) = Ḡi(zi(0), zFi, si(0)) if
si(0) ∈ Si(zi(0), zi(1)). Induction case k → k + 1: From
the optimality principle (Bellman, 1957) it follows that
each shortest path includes subpaths that are the shortest
subpaths. Hence, it holds that zi(k + 2) = Ḡi(zi(k +
1), zFi, si(k + 1)) if si(k + 1) ∈ Si(zi(k + 1), zi(k + 2)),
which concludes the proof. 2

2.3 Cooperative control problem

As shown in Lemma 2, the local control aim is satisfied
only if the physical coupling input si(k) of each local
subsystem (4) is an element of the active coupling input
set (5). si(k) depends on the synchronous state transitions
with other subsystems as explained below.

The coupling input si(k) of each subsystem depends on the
coupling output ri(k) of their neighbouring subsystems ac-
cording to the physical coupling network (2). Furthermore,

the current value ri(k) of each subsystem is determined by
the coupling output function Fi, which, in turn, depends on
the execution of synchronous state transitions with other
subsystems. These synchronous state transitions have to be
executed by the subsystems to solve physical restrictions
before reaching their local target states zFi.

Hence, the controlled subsystems cooperatively have
to change their local state trajectories Zi(0 . . . ke) =
(zi, . . . , zFi) from the current state into their target state
to include all necessary synchronous state transitions to
reach the required state zFi, respectively.

Problem 3. (Cooperative control problem). In the net-
worked discrete-event system, each controlled subsys-
tem (4) has to reach its individual local target state:

∀

z10...
zI0

,
zF1...
zFI

∈Z,∃
ke1...
keI

 :

z1(ke1)
...

zI(keI)

=

zF1...
zFI

 .

To solve the cooperative control problem, this paper
applies the network unit Σ′i introduced by Zgorzelski and
Lunze (2019) and extends Σ′i for its application to an
arbitrary number of subsystems. The network units Σ′i
with the control input ui are connected to each controlled
subsystem (4) and they are able to exchange information
via the communication network ΣN (Fig. 1(a)). Depending
on the current states zi(k) and the target states zFi being
set to the control inputs ui(k) = zFi, the network units
Σ′i temporarily modify the local target states ei(k) =
z̃Fi (zFi 6= z̃Fi) for their controlled subsystems Σ̄i to
cooperatively change the local state trajectories Zi(0 . . . ke)
such that all necessary synchronous state transitions are
executed to satisfy the Problem 3.

3. COOPERATIVE STATE-FEEDBACK CONTROL

3.1 Model abstraction

The challenge to solve Problem 3 is to ensure the execution
of the synchronous state transitions by modifying the local
target states. The main idea is to describe the cooperative
behaviour of the controlled subsystems by a reduced overall
model Σ̃. The modified target states z̃Fi that lead to the
new state trajectories solving Problem 3 are selected from
a state sequence Z̃(0 . . . ke) in the abstracted model Σ̃.
To obtain the simplified overall model, each subsystem is
reduced to an abstracted model based on an equivalence
relation and all abstracted subsystem models are combined
to the abstracted overall model afterwards.

The equivalence relation

zi ∼ ẑi if Pi(z) = Pi(z̃i) (7)

with Pi(zi) = {z̃i | ∃Zi(0 . . . ke) = (zi, . . . , z̃i) ∈ Z∗i : zi(k+
1) = Ḡi(zi(k), z̃i, ε)} defines local states zi, z̃i ∈ Zi to be
equivalent, if the states are strongly connected by state
sequences containing only autonomous state transitions.
The resulting equivalence classes

[zi] = {ẑi | zi ∼ ẑi} (8)

partition the local state sets Zi into disjoint subsets
Zm

i ⊆ Zi(m = 1, 2, . . . ,M). The states of the abstracted
local models are defined to be the abstracted state set
Z̃ = [Zi] = {[zi] | ∀ẑi ∈ Zi : ẑi ∈ [zi]} resulting form the
equivalence classes (8).

The local abstracted model is defined as an extended I/O-

automaton Σ̃i = (Z̃i, Ṽi, S̃i, R̃i, G̃i, F̃i, z̃i0)
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Σ̃i :

{
z̃i(k + 1) = G̃i(z̃i(k), ẽi(k), s̃i(k)), z̃i(0) = z̃i0

r̃i(k) = F̃i(z̃i(k), ẽi(k), s̃i(k))

(9)

with Z̃i = Ṽi = [Zi], S̃i = Si and R̃i = Ri. The state
transition function and the coupling function are defined
by G̃i([zi], [ei], si) = [Ḡi(zi, ei, si)] and

F̃i([zi], [ei], si) =

{
ri, if Ri(zi, ei) 6= ∅
ε, else,

with ri ∈ Ri(zi, ei). [Ḡi(. . .)] denotes the equivalence class
of the codomain of the function Ḡi. The set of all local
abstracted state transitions is given by

G̃i = {([zi]→ [ei]) | ∃si ∈ Si : ei = Ḡi(zi, ei, si)}
and the state transition function and coupling output
function of all abstracted models are denoted by

G̃(z̃, ẽ, s̃)=

G̃1(z̃1, ẽ1, s̃1)
...

G̃I(z̃I , ẽI , s̃I)

,F̃ (z̃, ẽ, s̃)=

F̃1(z̃1, ẽ1, s̃1)
...

F̃I(z̃I , ẽI , s̃I)

.
with z̃ = (z̃1, . . . , z̃I)T, ẽ = (ẽ1, . . . , ẽI)T and s̃ =
(s̃1, . . . , s̃I)T.

3.2 Properties of the abstracted model

This section investigates the properties of the proposed
model abstraction. The question to be answered is under
what condition is the abstracted model suitable for the
selection of the modified target states to include all
necessary synchronous state transitions.

The proof of Lemma 4 will show that the composition of
the abstracted subsystem models (9) with the coupling
network (2) is equal to the abstraction of the composition
of all original controlled subsystems (4), if the local coupling
signals of all synchronous state transitions connecting
the same abstracted states are equal according to con-
dition (11).

Lemma 4. (Compositional abstraction).

∀([z]→ [e])∈
I∏

i=1

G̃i ∀(z→e)∈
I∏

i=1

Gi∃!r∈
I∏

i=1

Ri :(
G̃([z], [e],K(r))
F̃ ([z], [e],K(r))

)
=

([
Ḡ(z, e,K(r))

]
F̄ (z, e,K(r))

)
, (10)

if

I∧
i=1

(Ri(zi, ei) = {ri} ∧ Si(zi, ei) = {Ki(r)}). (11)

with r=(r1, . . . , rI)T.

Proof.

∀([z]→ [e])∈
I∏

i=1

G̃i ∀(z→e)∈
I∏

i=1

Gi∃!r∈
I∏

i=1

Ri :

I∧
i=1

(Ri(zi, ei) = {ri} ∧ Si(zi, ei) = {Ki(r)})

⇒
I∧

i=1

(
G̃i(z̃i, z̃i,Ki(r))
F̃i(z̃i, z̃i,Ki(r))

)
=

([
Ḡi(zi, ei,Ki(r))

]
F̄i(zi, ei,Ki(r))

)
⇒ eqn. (10).

2

In the following, the state transitions of the composed
abstracted subsystem models (9) are described by the set

G̃ = {(z̃ → ẽ) | ∃r ∈ R :ẽ = G̃(z̃, ẽ,K(r))

∧ r = F̃ (z̃, ẽ,K(r))}. (12)

In the proof of Lemma 5 it is shown, that under the

condition (11), all original state transitions
∏I

i=1 Gi that cor-
respond to an abstracted state transition (12) are feasible
in the local controlled subsystems (4), which means that the
controlled subsystem (4) can follow each abstracted state
transition because it leads to state transitions satisfying
condition (6) in Lemma 2.
Lemma 5. (Feasibility of abstracted state transitions).

∀([z]→ [e])∈
I∏

i=1

G̃i ∀(z→e)∈
I∏

i=1

Gi∃!r∈
I∏

i=1

Ri :

e = Ḡ(z, e,K(r)) ∧ r = F̄ (z, e,K(r)) (13)

if condition (11) holds.

Proof.

∀([z]→ [e])∈
I∏

i=1

G̃i ∀(z→e)∈
I∏

i=1

Gi∃!r∈
I∏

i=1

Ri :

I∧
i=1

(Ri(z̃i, ẽi) = {ri} ∧ Si(z̃i, ẽi) = {Ki(r)})

⇒
I∧

i=1

ei = Ḡi(zi, ei,Ki(r)) ∧ ri = F̄i(zi, ei,Ki(r))

⇒ eqn. (13).
2

In the next subsection, an abstracted state-feedback con-
troller is designed to determine state sequences in the
abstracted model for selecting the temporary modified
target states.

3.3 Abstracted state-feedback controller

The abstract model Σ̃ is obtained from the composition
of the abstracted subsystem models (9) with the coupling

network (2). Σ̃ = (Z̃, Ṽ, G̃i, z̃0) is a deterministic I/O-
automaton

Σ̃ : z̃(k + 1) = G̃(z̃(k), ẽ(k)), z̃(0) = z̃0 (14)

with Z̃ = Ṽ =
∏I

i=1 Z̃i and the measurable abstracted
current state z̃(k).

To obtain a state sequence from the current abstracted
state z̃(k) = [z(k)] into the desired abstracted target state
z̃F = [zF], a state-feedback controller

Σ̃C : ẽ(k) = C̃(z̃(k), ũ(k)) (15)

is designed by applying the method from Zgorzelski and
Lunze (2017) with the abstracted controller function C̃ :

Z̃ × Z̃ → Z̃. The controller function C̃ maps the current
abstracted state z̃(k) = z̃ and the abstracted target state
ũ(k) = z̃F to the successor state ẽ(k) = z̃′ of z̃ in the

shortest state sequence Z̃(0 . . . ke) = (z̃, z̃′, . . . , z̃F) from z̃
towards z̃F in the abstracted model (14).

3.4 Network unit

The state-feedback controller (15) is decomposed into
components
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Σ̃Ci : ẽi(k) = C̃i(z̃(k), ũ(k)) (16)

with the local controller functions C̃i : Z̃ × Z̃ → Z̃i. Each
controller (16) is applied by the network unit Σ′i belonging
to the subsystem as shown in Fig. 1(a).

The network units

Σ′i :

{
ei(k) = ui(k), if [z(k)] = [u(k)]

ei(k) ∈ C̃i(z̃(k), ũ(k)), else
(17)

are defined to have an autonomous and a cooperative
mode. In the autonomous mode (ei(k) = ui(k)), any
controlled subsystem has to execute synchronous state
transitions ([z(k)] = [u(k)]) to reach its target state and no
cooperation is needed between the subsystems. However,
in the cooperative mode (ei(k) ∈ C̃i(z̃(k), ũ(k))), the
controlled subsystems have to execute synchronous state
transitions ([z(k)] 6= [u(k)]) and the network unit (17)
applies the controller (16) and connects all controlled
subsystems (4) to the cooperating subsystems

Σ̂i :


zi(k + 1) = Ḡi(zi(k), ei(k), si(k)), zi(0) = zi0

ri(k) = F̄i(zi(k), ei(k), si(k))

ei(k) ∈ C̃i(z̃(k), ũ(k))
(18)

by selecting the corresponding local target states ei(k) =
zFi ∈ ẽi(k) from its output by and by exchanging their
abstracted current states z̃(k) = [z(k)] and their target
states ũ(k) = [u(k)] via the communication network ΣN
(Fig. 1(a)).

Following from Lemma 5, Lemma 6 states that in the
cooperative subsystems (18), the abstracted target states
ũi(k) = z̃Fi are reached after a finite time step kei.

Lemma 6. (Abstracted state-feedback control). For the dig-
itally connected cooperating subsystem (18) with the con-
trol input ui(k) = zFi, k ≥ 0, it holds that

∀

z10...
zI0

,
zF1...
zFI

∈Z,∃
ke1...
keI

 :

[z1(ke1)]
...

[zI(keI)]

=

[zF1]
...

[zFI ]


if condition (11) holds and the abstracted state set Z̃ = [Z]
in the abstracted model (14) is strongly connected.

Proof. Similar to the proof of Lemma 2. 2

Finally, the Theorem 7 follows from Lemma 2 and Lemma 6
and states the main result:

Theorem 7. (Cooperative target state control). In the net-
worked discrete-event system

Σ̂ = (Σ̄1, . . . , Σ̄I ,ΣK,Σ
′
1, . . . ,Σ

′
I ,ΣN)

in Fig. 1(a), the Problem 3 is solved if condition (11) is

satisfied and if the abstracted state set Z̃ = [Z] in the
abstracted model (14) is strongly connected.

4. COOPERATIVE CONTROL OF THE FLEXIBLE
MANUFACTURING SYSTEM

4.1 Model of the flexible manufacturing system

In this experimental setup, we consider the flexible man-
ufacturing system (see Section 1.1) with three work-
pieces highlighted in Fig. 2 in grey, red and green. For
simplification we reduce each subsystem to handle only
one workpiece at the same time. Each subsystem ΣPi

is modelled by three extended I/O-automata ΣPij =
(Zij ,Vij ,Sij ,Rij , Gij , Fij , zij0) (j = 1, 2, 3)

ΣPij :


z′ij = Gij(zij , vij , s

L
ij , sij), zij(0) = zij0

rLij = FL
ij(zij , vij , s

L
ij , sij)

rij = Fij(zij , vij , s
L
ij , sij)

(19)

that are connected to the subsystems (1) by physical
couplings

ΣL
Ki : (sLi1, . . . , s

L
iJ)T = KL

i ((rLi1, . . . , r
L
iJ)T) (20)

with the coupling function KL
i :

∏3
j=1Rij →

∏3
j=1 Sij

(Fig. 3). In the following, all sets are modelled by natural

Fig. 3. Block diagram of local subsystem ΣPi

numbers Zij ,Vij ,Rij ,Sij ⊆ N0, which are noted as vectors
in the composed subsystem (1). Hence, the local coupling
functions (20) are modelled by coupling matrices KL

i and
the local coupling relation is written as

(sLi1, . . . , s
L
iJ)T = KL

i (rLi1, . . . , r
L
iJ)T (21)

for each subsystem.

The area gantry robot ΣP1, the line gantry robot ΣP2 and
the 3-axis robot ΣP3 are composed of the extended I/O-
automata (19) shown in Figs. 4-6 (abbreviations: gripper
i (Gi), handler i (Hi), workpiece i (Wi), magazine (M),
conveyor belt (C) and position i (Pi)).

Gripper model ΣPi1: Pneumatic gripper for gripping
workpieces with

ZP11={1=̂G1 up without W1, 2=̂G1 up with W1 gripped,
3=̂G1 down without W1, 4=̂G1 down with W1 gripped},
ZP21={1=̂G2 up without W2, 2=̂G2 up with W2 gripped,
3=̂G2 down without W2, 4=̂G2 down with W2 gripped},
ZP31={1=̂G3 up without W3, 2=̂G3 up with W3 gripped,
3=̂G3 down without W3, 4=̂G3 down with W3 gripped}.
Handler model ΣPi2: Handler for the movement of the
gripper with

ZP12 ={1=̂G1 over the M, 2=̂G1 above the C, 3=̂G1
above storage position 1, 4=̂G1 above storage position 2,
5=̂G1 above waiting position},
ZP22 ={1=̂G2 over the waiting position, 2=̂G2 at
handover position, 3=̂G2 above M, 4=̂G2 above storage
position 1, 5=̂G2 above storage position 2},
ZP32 ={1=̂G3 above the C, 2=̂ G3 above P1, 3=̂G3
above P2, 4=̂G3 above HP}.
Workpiece model ΣPi3: Position of the workpiece with

ZP13={1=̂No W1 in subsystem, 2=̂W1 at C and at G1,
3=̂W1 at C, 4=̂W1 at storage position 2, 5=̂W1 at
storage position 1, 6=̂W1 at the G1},
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ZP23={1=̂W2 at G2, 2=̂W2 at handover position,
3=̂No W2 in subsystem, 4=̂W2 at storage position 1,
5=̂W2 at storage position 2},
ZP33={1=̂ W in M, 2=̂W3 at G3, 3=̂W3 at HP of G2,
4=̂W3 at P1, 5=̂No W3 in subsystem, 6=̂W3 at HP
of C, 7=̂W3 at P2}.
The conveyor belt is composed of the motor model ΣP41,
the sensor model of the belt ΣP42 and the workpiece model
ΣP42 (Fig. 7).

Conveyor belt models: Motor, belt and workpieces with

ZP41={1=̂Motor on, 2=̂Motor off},
ZP42={1=̂C empty, 2=̂W4 at (HP1), 3=̂W4 at position 2,
4=̂W4 at position 3, 5=̂W4 at HP2},
ZP43={1=̂No WP4 in subsystem, 2=̂W4 at G1 at HP1,
3=̂W4 on C at HP1, 4=̂W4 at position 2, 5=̂ W4
at position 3, 6=̂W4 at HP2}.
Due to the space limitation, the description of the signals
cannot be given.

Fig. 4. Area gantry robot ΣP1

Fig. 5. Line gantry robot ΣP2

The state transitions of the extended I/O-automata in
Figs. 4-7 are represented in the form vij/s

L
ij/r

L
ij/si/ri

with vij/s
L
ij/r

L
ij being a short form for vij/s

L
ij/r

L
ij/ε/ε,

respectively, with the entry 0 representing the empty symbol
ε. Moreover, each state zij has a self-loop state transition

Fig. 6. 3-axis robot ΣP3

Fig. 7. Conveyor belt ΣP4

with the entry vij/ε/zij/ε/zij . The local coupling input
vectors sLi = (sLi1, s

L
i2, s

L
i3)T and output vectors rLi =

(rLi1, r
L
i2, r

L
i3)T are connected according to eqn. (21) with

the local coupling matrices

KL
1 =


0 0 1 0 0
0 0 0 0 1
1 0 0 0 0
0 1 0 0 0
0 0 0 1 0

 ,KL
2 =


0 0 1 0 0
0 0 0 0 1
1 0 0 0 0
0 1 0 0 0
0 0 0 1 0

 ,

KL
3 =


0 0 1 0 0
0 0 0 0 1
1 0 0 0 0
0 1 0 0 0
0 0 0 1 0

 and KL
4 =

1 0 0 0
0 0 0 1
0 1 0 0
0 0 1 0

 .

In the following section, the states of each subsystem (1)
are encoded from of the local states of the subsystems (19)
and decoded with

zi =

3∑
j=1

zij · 10j−1 and zij =

⌊
zi mod 10j

10j−1

⌋
(22)

and bxc := max{k ∈ Z | k ≤ x}.

The global coupling input vectors s = (s1, s2, s3, s4)T

and coupling output vectors r = (r1, r2, r3, r4)T of the
subsystems (1) are connected by the physical coupling
relation s = Kr with

K =


0 0 0 0 1 0
0 0 1 0 0 0
0 1 0 0 0 0
0 0 0 0 0 1
1 0 0 0 0 0
0 0 0 1 0 0

 .
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4.2 Model abstraction

The composed subsystems (1) (Figs. 4-7) are extended to
controlled subsystems (4) by local controllers (3), which are
designed by applying Algorithm 1. Finally, the controlled
subsystems (4) are abstracted with the equivalence rela-
tion (7) to the abstracted subsystems (9), whose extended
I/O-automata are shown in Fig. 8 with the following disjoint
state sets, which are encoded and decoded by applying
eqn. (22):

Z1 ={323} ∪ {212, 222, 232, 242, 252, 412, 422, 432,

442, 452} ∪ {123} ∪ {111, 121, 131, 141, 151, 311,

321, 331, 341, 351} ∪ {114, 115, 124, 125, 134, 135,
144, 145, 154, 155, 216, 226, 236, 246, 256, 314, 315,

324, 325, 334, 335, 344, 345, 354, 355, 416, 436, 456},

Z2 ={451} ∪ {113, 114, 123, 124, 133, 134, 143, 144,
153, 154, 215, 225, 235, 245, 255, 313, 314, 323, 324,

333, 334, 343, 344, 353, 354, 415, 425, 435, 445, 455}
∪ {112, 122, 132, 142, 152, 312, 322, 332, 342, 352},

Z3 ={316} ∪ {411} ∪ {213, 233, 243, 223, 413, 433, 443,

423} ∪ {115, 135, 145, 125, 315, 335, 345, 325}∪
{114, 117, 134, 137, 144, 147, 124, 127, 212, 232, 242,
222, 314, 317, 334, 337, 344, 347, 324, 327, 412, 442,

422}
and

Z4 ={223} ∪ {222} ∪ {156},∪{256} ∪ {134}
∪ {234} ∪ {144} ∪ {245} ∪ {111, 211}.

Fig. 8. Abstracted controlled subsystems Σ̃i

Note that only the states reachable from the initial states
zi0 are shown in the disjoint sets above. Moreover, condi-
tion (11) is satisfied because only one local subsystem ΣPi3
(Workpiece model) connects the controlled subsystems (4)
by physical couplings. Thus, the composed abstracted
subsystem models (9) in Fig. 8 satisfy condition (11). In the
following experiment, we apply only the strongly connected
and reachable abstracted state set Z̃ of the model (14)
satisfying the condition of Theorem 7.

4.3 Experimental results of the cooperative control

This section presents the experimental results of the coop-
erative control of the flexible manufacturing system HANS
(Fig. 2). Each controlled subsystem (4) can perform an
autonomous transportation task with a workpiece, however,
each subsystem is able to handle only one workpiece at
the same time. The area gantry robot ΣP1 is able to add
new workpieces to the process from a storage and the line
gantry robot ΣP2 is able to remove workpieces from the
process, autonomously.

Moreover, the subsystems can transfer the workpieces from
the area gantry robot ΣP1 to the conveyor belt ΣP4, from
the conveyor belt to the 3-axis robot ΣP3 and, finally, from
the 3-axis robot to the line gantry robot ΣP2 (double arrows
in Fig. 2). The cooperative mode of the network unit (17)
is necessary whenever any workpiece has to be transferred
between two subsystems.

Figure 9(a) presents the graphs of the experiment showing
the state output zi and control input ei of each controlled
subsystem (4) and the control input ui of the network
units (17). Figure 9(b) depicts the active physical couplings
between the subsystems ΣPi as black bars showing when
the transfer of the workpices between the subsystems is
performed.

In the time interval t = [0, t1), the network units (17) are
in the autonomous mode ei = ui (Fig. 9(a)) because each
subsystem receives a target state that is reachable without
synchronous state transitions and it holds [zi0] = [ui].

At time t = t1, the area gantry robot receives a new
target state to transfer its workpiece to the conveyor belt
ΣP4, which necessitates cooperation [z1(t1)] 6= [u1(t1)] and
the network units Σ′i switch into the cooperative mode
according to eqn. (17). As the conveyor belt ΣP4 has the
local task to remove the workpiece from the belt given by
the local target state u4, it has to transfer the workpiece to
the 3-axis robot ΣP3. However, as the 3-axis robot ΣP3
handles a workpiece (Fig. 2), ΣP3 has to transfer this
workpiece to the line gantry robot ΣP2, before ΣP3 is ready
for the cooperation with ΣP4.

In the physical coupling diagram in Fig. 2(b), it can be
seen that the area gantry robot ΣP1 transfers the workpiece
to the conveyor belt ΣP4 in the time interval t = [t1, t2).
This transfer results from the target states ei(t) 6= ui(t)
determined by the distributed controller (16) being applied
by the network unit (17). Moreover, in the time interval
t = [t2, t3), the line gantry robot ΣP2 brings its workpiece
into the storage to be ready for the next cooperation
with the 3-axis robot ΣP3, which also results from the
dependent target states e2(t) determined by the abstracted
state-feedback controller (Fig. 9(a)). In the time interval
t = [t3, t4), the application of the abstracted state-feedback
controller leads to the transfer of the green workpiece
(Fig. 2) from the 3-axis robot ΣP3 to the line gantry robot
ΣP2 (Fig. 9(b)).

In the time interval t = [t4, t5) the conveyor belt ΣP4
transfers its workpiece to the 3-axis robot ΣP3 (Fig. 9(b)).
Finally, at time t5 all cooperating subsystem switch into the
autonomous mode according to eqn. (17) and all subsystems
reach their target states zi(t6) = zi(t6) at time t = t6.

5. CONCLUSION

This paper has presented a cooperative control method for
networked discrete-event system. The control aim of each
subsystem is to reach a given target state, which necessitates

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

10564



200

300
400

200
300

400

200

300
400

100 200 300 400 500 600 700
100

200

100 200 300 400 500 600 700

Time in seconds

Time in seconds
0

0

Fig. 9. Experimental results of the cooperative control of the flexible manufacturing systems HANS

cooperation in certain situation due to physical restriction.
Each controlled subsystem is extended by a network unit
implementing a cooperative state-feedback controller that
temporarily organises the necessary cooperation between
them with the help of the digital communication network.
The proposed method has been applied to a flexible
manufacturing system and it has been shown that the
cooperative control method for networked discrete-event
system is applicable to real-life systems.
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