
A Mixed Logical Dynamical Model of the
Hegselmann–Krause Opinion Dynamics

C. Bernardo, F. Vasca

Department of Engineering, University of Sannio, 82100, Benevento, Italy.
Email: cbernardo@unisannio.it, vasca@unisannio.it

Abstract: The heterogeneous bounded confidence Hegselmann–Krause (HK) model has been widely
considered in the literature for describing opinion dynamics. In this paper a mixed logical dynami-
cal (MLD) representation of the HK model is proposed. The linear MLD model provides a compact
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model inequalities. Numerical experiments of the proposed model are used to analyze how consensus
and clustering are influenced by different agents confidence bounds.
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1. INTRODUCTION

Opinion dynamics are widely used for the analysis of social
networks, see Proskurnikov and Tempo (2017, 2018). In such
models the state of each agent represents a measure of the
intensity of his attitude toward a particular action or goal,
see Friedkin (2015).

In Hegselmann and Krause (2002) the authors proposed a rep-
resentation of opinion dynamics in which the time evolution
of each agent attitude, also called opinion, depends on similar
opinions through suitable influence functions which are acti-
vated within some connectivity thresholds. In particular, at each
time-step the state of each agent is determined as the average
of the opinions of the agents who are inside his interval of
influence, i.e. his neighbors, see Lorenz (2005); Meng et al.
(2016). The Hegselmann–Krause (HK) model is called homo-
geneous when all agents have the same connectivity thresholds,
heterogeneous otherwise. The HK model is called symmetric
when the connection between two agents depends on the abso-
lute value of their distance, asymmetric if any agent may have
different lower and upper thresholds which select lower and
upper neighbors, respectively. In the homogeneous symmetric
model, the highest (smallest) opinion is non-increasing (non-
decreasing) and the agents attitudes preserve their order in time,
as shown in Blondel et al. (2009); Motsch and Tadmor (2014).
The convergence to the consensus for the homogeneous HK
model has been analyzed in the literature, see Lorenz (2005);
Blondel et al. (2010).

The heterogeneous HK model exhibits more complex behav-
iors. In Fu et al. (2015); Chazelle and Wang (2017) the agents
are classified as open-minded, middle-minded and closed-
minded based on different confidence thresholds; the number
of final opinion clusters is determined by the closed-minded
agents, see Fu and Zhang (2014); Fu et al. (2015). In Tangredi
et al. (2017) specific influence functions have been chosen to
model the interaction between two agents that cooperate and
compete at the same time. Other variations of the heteroge-
neous HK model have been proposed by considering a limited

connectivity in Parasnis et al. (2018) and opinions which are
influenced by group pressure in Cheng and Yu (2019).

The analysis of consensus and clustering in heterogeneous
asymmetric HK networks is an open issue far from trivial even
for few agents, see Liang et al. (2013); Scafuti et al. (2015).
In order to tackle this complex problem several restrictive
assumptions are typically introduced, such as the connectivity
preservation of the graph in Olfati-Saber et al. (2007); Etesami
(2019) or a very limited number of agents in Iervolino et al.
(2016); Tangredi et al. (2017). Special cases of heterogeneous
HK model which reach a partial convergence are analyzed in Su
et al. (2017). An heterogeneous symmetric continuous-time
HK model has been considered in Frasca et al. (2019) where
the thresholds of pairwise agents are adapted according to the
average distances of the neighbors and a hybrid dynamical
model is proposed by studying its stability properties too.

The possibility to include the heterogeneous HK model into the
classical hybrid systems modeling framework can represent a
useful preliminary step for future theoretical analysis aimed at
achieving formal proofs of convergence. This paper provides a
contribution in this direction, by proposing a reformulation of
a quite general heterogeneous HK model in the mixed logical
dynamical (MLD) form, see Bemporad and Morari (1999).
MLD models have been shown to be a useful description for the
analysis of a wide class of hybrid systems, see Heemels et al.
(2001). By introducing the HK model based on the differences
of the opinions between pairs of agents, in this paper we
derive a corresponding MLD model which explicitly takes into
account the thresholds of the confidence intervals. Simulation
results show that the model is useful for capturing the consensus
and clustering emergent behaviors of the network in terms of
sensitivity with respect to the connectivity thresholds.

The rest of the paper is organized as follows. In Section 2 the
discrete-time heterogeneous HK model is presented. In Sec-
tion 3 the representation in the MLD framework of the logical
conditions adopted for the model are recalled. In Section 4 it
is shown how the proposed MLD model of the HK opinion dy-
namics is derived. In Section 5 a numerical steady state analysis
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of the network behavior for different connectivity thresholds is
presented. Section 6 concludes the paper by proposing possible
future directions for the exploitation of the proposed MLD
model.

2. HEGSELMANN–KRAUSE MODEL

In this section we recall the discrete-time heterogeneous HK
model described through the confidence thresholds that charac-
terize the agents.

Let us consider a set of N agents whose attitudes are state
variables xi ∈ [0,1], i = 1, . . . ,N. For the sake of notation,
we indicate xi , xi(k) and x+i , xi(k + 1), where k ∈ N0
is the discrete-time variable. The corresponding dynamics is
described by

x+i = xi +
1

νi(x)

N

∑
j=1

φi j(xi,x j)(x j− xi) (1)

for any i = 1, . . . ,N, where x is the vector of all attitudes and
νi(x) represents the number of agents connected to the agent i
at each time-step, called the neighbors of i. The term 1/νi(x) is
called susceptibility of the agent i, see Iervolino et al. (2018).

The function φi j(xi,x j) represents the influence of the agent j
on the agent i and it includes a nonlinear dependence on the
agents attitudes xi and x j. In particular, φi j(xi,x j) : [0,1]2 →
{0,1} is equal to 1 when x+i is influenced by the opinion x j
and 0 otherwise. The influence of the agent j on the dynamics
of the agent i is characterized by a threshold policy depending
on the difference x j− xi as follows

φi j(xi,x j) =

{
1, if −dG

i ≤ x j− xi ≤ dC
i

0, otherwise.
(2)

The thresholds dG
i ∈ [0,1] and dC

i ∈ [0,1] are called generosity
and competition thresholds of the agent i respectively, see Tan-
gredi et al. (2017). The interval [−dG

i ,d
C
i ] is the confidence

interval of the agent i. The so-called cooperosity and coope-
tition behaviors can be described by considering Fig. 1. If the
attitude xi is larger than x j, the term x j−xi of (1) in the dynam-
ics of xi is negative, i.e. the interaction of the agent i with the
agent j contributes with a negative sign to the determination
of the attitude x+i . This identifies a generosity behavior of i
versus j if j is not influenced by i, i.e. φ ji(x j,xi) = 0. Moreover,
if also φ ji(x j,xi) = 1, i.e. the agents i and j influence each other,
the generosity is combined with the cooperation by obtaining a
cooperosity behaviour of i versus j. Analogously, if x j−xi > 0.
the interaction of the agent i with the agent j contributes with a
positive sign to the determination of the attitude x+i . This iden-
tifies a competitive behaviour if φ ji(x j,xi) = 0 and a coopetitive
behaviour if φ ji(x j,xi) = 1. Moreover, if dG

i = 0 the agent i is a
pure selfish, while if dC

i = 0 the agent i is a pure altruist. If both
thresholds of the agent i are equal to 0 he is a stubborn.

In the HK model the connectivity thresholds can be different
from each other. The HK model is symmetric if dG

i = dC
i for

all i = 1, . . . ,N, asymmetric otherwise.

From (2) it follows

νi(x) =
N

∑
j=1

φi j(xi,x j) (3)

for i = 1, . . . ,N. From (2) it is φii(xi) = 1 and then νi(x) ≥ 1
for all i = 1, . . . ,N, i.e. any agent is self-interacting and it may

+1−1 −dG
j dC

j

1

x j− xi

φ ji

0

−1−dG
i dC

i
+1

1

x j− xi

φi j

0

Fig. 1. Example of influence functions φi j(xi,x j) and φ ji(x j,xi).

happen that no agent j 6= i exists that has an opinion within the
confidence interval of the agent i. By substituting (3) in (1) one
obtains

x+i =
1

∑
N
j=1 φi j(xi,x j)

N

∑
j=1

φi j(xi,x j)x j (4)

for i = 1, . . . ,N. Since the influence function φi j(xi,x j) can only
be 0 (i is not influenced by j) or 1 (i is influenced by j), the
model (4) has an interesting interpretation. Indeed, the right
hand side of (4) is the average of the attitudes of the agents
connected to i.

3. MODEL INEQUALITIES

The representation of the HK model in MLD form is based
on the application of some typical expressions which involve
logical and real variables in terms of linear inequalities. In
this section we recall those formulations for the structures of
interest for our model.

Consider a real vector x ∈ Rn and a logical variable δ ∈ {0,1}`.
Say f (x,δ ) : Rn×{0,1}` → R an affine function and assume
that m ≤ f (x,δ ) ≤ M for all x and δ , where m ∈ R is a lower
bound for the function and M ∈ R is an upper bound of the
function. Define the logical scalar variable µ ∈{0,1} as follows

[µ = 1]↔ [ f (x,δ )≤ 0] . (5)
This definition is equivalent to the set of inequalities

f (x,δ )≤M(1−µ) (6a)
f (x,δ )≥ ε +(m− ε)µ (6b)

where ε > 0 is a small scalar parameter. The equivalence
between (5) and (6) can be easily verified. If µ = 0 from (6b)
it must be f (x,δ ) > 0, while if µ = 1 from (6a) one obtains
the right hand side of (5). Viceversa, if f (x,δ ) ≤ 0 from (6b)
one obtains ε +(m− ε)µ ≤ 0 which is verified only for µ = 1.
Finally, if f (x,δ )> 0 from (6a) it follows M(1−µ)> 0 which
is verified only for µ = 0.

The AND operator can be written in terms of inequalities too.
Consider two logical scalar variables µ1 ∈ {0,1} and µ2 ∈
{0,1}. Then the logical variable

µ3 = µ1µ2 (7)
which represents the AND operator between µ1 and µ2 can be
equivalently written as the solution of the following set of linear
inequalities

µ3 ≤ µ1 (8a)
µ3 ≤ µ2 (8b)
µ3 ≥ µ1 +µ2−1. (8c)
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In particular, the first two determines that µ3 = 0 if either µ1 or
µ2 are zero, while the third inequality ensures that if both µ1
and µ2 are equal to 1, then µ3 cannot be zero.

By combining (5) and (7) it is easy to determine the inequality
representation for

[µ = 1]↔ [ f (x,δ ) = 0] (9)
which can be obtained by considering the following set of
conditions

[µ1 = 1]↔ [ f (x,δ )≤ 0] (10a)
[µ2 = 1]↔ [− f (x,δ )≤ 0] (10b)

µ = µ1µ2 (10c)
where (10a) and (10b) can be expressed through inequalities in
the form (6) while (10c) can be expressed through inequalities
in the form (8).

Finally, the product between a logical variable µ and a scalar x
can be written as a real variable

w = µx (11)
which can be equivalent defined through the following set of
inequalities

w≤Mµ (12a)
w≥ mµ (12b)
w≥ x−M(1−µ) (12c)
w≤ x+m(1−µ) (12d)

with M ≥ x and m≤ x. If µ = 0 the inequalities (12a) and (12b)
imply w = 0 and (12c) and (12d) are irrelevant. Otherwise, the
inequalities (12a) and (12b) are irrelevant and (12c) and (12d)
imply w = x.

4. MIXED LOGICAL DYNAMICAL HK MODEL

In this section, we obtain the MLD representation for the HK
model (4).

4.1 Influence functions

Let us first consider how to represent the influence functions
in the MLD framework. For each pair (i, j), i = 1, . . . ,N,
j = 1, . . . ,N, the scalar inequality constraint in (2) can be
equivalently rewritten with the two inequalities

x j− xi ≤ dC
i , (13a)

x j− xi ≥−dG
i . (13b)

Let us introduce the logical variables δC
i j ∈ {0,1} and δ G

i j ∈
{0,1}, i = 1, . . . ,N, j = 1, . . . ,N, which are defined from (13)
as follows [

δ
C
i j = 1

]
↔
[
−xi + x j−dC

i ≤ 0
]
, (14a)[

δ
G
i j = 1

]
↔
[
xi− x j−dG

i ≤ 0
]
. (14b)

Each definition in (14) can be equivalently represented in terms
of a set of linear inequalities by using (6). In particular, for (14a)
the logical variable δC

i j takes the role of µ in (6) and the function
−xi + x j − dC

i is used for f (x,δ ). The parameters M and m
in (6) can be chosen for (14a) such that M ≥ max

j=1,...,N
{−xi +

x j−dC
i } and m≤ min

j=1,...,N
{−xi+x j−dC

i } for i= 1, . . . ,N. Since

all differences of the opinions belong to the set [−1,1] and the
thresholds belong to the set [0,1], for the representation of (14a)
in the form (6) one can choose M = 1 and m =−2.

Analogously for (14b) the logical variable δ G
i j takes the role

of µ in (6) and the function xi−x j−dG
i is used for f (x,δ ). The

values M = 1 and m = −2 are valid also for the representation
of (14b) in the form (6).

In order to definite the influence function (2) in MLD form we
need to define for each pair (i, j), i = 1, . . . ,N, j = 1, . . . ,N, a
further auxiliary logical variable

δi j = δ
C
i j δ

G
i j . (15)

By using (7), the logical variable δi j can be equivalently defined
in terms of a set of linear inequalities in the form (8) where δi j

takes the role of µ3, δC
i j for µ1 and δ G

i j for µ2.

From (2) and (15) the influence functions are given by
φi j(xi,x j) = 1δi j +0(1−δi j) = δi j (16)

for i= 1, . . . ,N, j = 1, . . . ,N, and by the set of linear inequalities
defined in terms of the state variables xi and the boolean vari-
ables δC

i j , δ G
i j , δi j. By looking at (6), each of the definitions (14a)

and (14b) requires 2 linear inequalities in order to be repre-
sented in the MLD form. Moreover, by looking at (8), the rep-
resentation of (15) for all pairs (i, j), i = 1, . . . ,N, j = 1, . . . ,N
requires 3N2 inequalities and then in total one requires 7N2

inequalities for the representation of the influence functions.

4.2 Susceptibility

As a further step towards the representation of the HK model (4)
in the MLD form we need to represent the susceptibility

1
νi(x)

=
1

∑
N
j=1 φi j(xi,x j)

(17)

for i = 1, . . . ,N in this hybrid framework. Since the number of
agents is finite, the possible value assumed by the susceptibility
belongs the set {1, 1

2 , . . . ,
1

N−1 ,
1
N }. For each i = 1, . . . ,N we

introduce N further logical variables µik, k = 1, . . . ,N, defined
as

[µik = 1]↔

[
N

∑
j=1

δi j = k

]
(18)

for i = 1, . . . ,N and k = 1, . . . ,N. The meaning of each logical
variable µik is that it is equal to 1 if the i-th agent is influenced
by k − 1 neighbors (excluding himself) at some time-step.
The equivalence of (18) in term of linear inequalities can be
obtained by using (9) and (10) where the logical variable µik
takes the role of µ and the function ∑

N
j=1 δi j − k is used for

f (x,δ ). The correspondent (10a) and (10b) can be written in
form (6) with the parameters M and m such that

M ≥ max
i=1,...,N

{
N

∑
j=1

δi j− k

}
, m≤ min

i=1,...,N

{
N

∑
j=1

δi j− k

}
(19)

respectively. Since ∑
N
j=1 δi j belongs to the set [1,N] and k =

1, . . . ,N, for the representation of (18) in the form (10) and (6)
one can choose M = N−1 and m =−M.

Clearly at each time-step only one logical variable µik, k =
1, . . . ,N, is equal to 1. Therefore the susceptibility of the agent i
can be written as

1

∑
N
j=1 φi j(xi,x j)

=
N

∑
k=1

1
k

µik (20)

for i = 1, . . . ,N, together with the inequalities required for (18).
By looking at (10), each of the conditions (18) requires 7 linear
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inequalities in order to be represented in the MLD form and
then in total one requires 7N2 inequalities for the representation
of the susceptibility of the model.

4.3 Opinion dynamics

By substituting (16) and (20) in (4) one obtains

x+i =
N

∑
k=1

1
k

µik

N

∑
j=1

δi jx j =
N

∑
j=1

N

∑
k=1

1
k

µikδi jx j (21)

for i = 1, . . . ,N. For each triple (i, j,k) with i = 1, . . . ,N, j =
1, . . . ,N, k = 1, . . . ,N, one can define the logical variable

γi jk = µikδi j. (22)

The meaning of this logical variable is that γi jk is equal to 1
if the agent i is influenced by the agent j and he has k −
1 neighbors excluding himself, and it is zero otherwise. By
using (7), each logical variable γi jk can be equivalently defined
in terms of a set of linear inequalities in the form (8) where γi jk
takes the role of µ3, µik for µ1 and δi j for µ2. The representation
of (22) for all triples (i, j,k) with i = 1, . . . ,N, j = 1, . . . ,N,
k = 1, . . . ,N requires 3N3 inequalities.

By using (22) in (21) the HK model (4) can be rewritten as

x+i =
N

∑
j=1

N

∑
k=1

1
k

γi jkx j (23)

for i = 1, . . . ,N. Let us define the scalar variables

wi jk = γi jkx j (24)

for i = 1, . . . ,N, j = 1, . . . ,N, k = 1, . . . ,N. Each of these vari-
ables is the product of a logical variable and a real variable.
By using (11) each wi jk can then be written as a set of linear
inequalities in the form (12) where wi jk takes the role of w, γi jk
takes the role of µ and x j takes the role of x. Moreover, one
choose M = 1 and m = 0 for (24) in form (8), since it must
be M ≥ x j and m ≤ x j for j = 1, . . . ,N and it is x j ∈ [0,1],
j = 1, . . . ,N. By looking at (12), each of the definitions (24)
requires 4 linear inequalities in order to be represented in the
MLD form. Therefore, by taking into account also the inequal-
ities corresponding to the logical variable γi jk defined in (22),
one requires in total 7N3 inequalities for the representation of
the model dynamics.

By using (24) in (23) the model (4) can be rewritten as

x+i =
N

∑
j=1

N

∑
k=1

1
k

wi jk (25)

for i = 1, . . . ,N. The MLD HK model consists of (25) for
i = 1, . . . ,N together with the 7N3 + 14N2 inequalities corre-
sponding to (24), (22), (18), (15), (14).

For the sake of completeness we now report the inequalities
of the model. By considering (24), from (12) with M = 1 and
m = 0 the corresponding 4N3 inequalities can be rewritten as

0≤−wi jk + γi jk (26a)
0≤ wi jk (26b)
−1≤−x j +wi jk− γi jk (26c)

0≤ x j−wi jk (26d)

for i = 1, . . . ,N, j = 1, . . . ,N, k = 1, . . . ,N. By considering (22),
from (8) the corresponding 3N3 inequalities can be rewritten as

0≤−γi jk +µik (27a)
0≤−γi jk +δi j (27b)
−1≤ γi jk−µik−δi j (27c)

for i = 1, . . . ,N, j = 1, . . . ,N, k = 1, . . . ,N. By considering (18),
from (10) the corresponding 7N2 inequalities in the form (6)
and (8) with the choice M = N − 1 and m = −M can be
rewritten as

−k−N +1≤−
N

∑
j=1

δi j− (N−1)µik1 (28a)

k+ ε ≤
N

∑
j=1

δi j− (1−N− ε)µik1 (28b)

k−N +1≤
N

∑
j=1

δi j− (N−1)µik2 (28c)

−k+ ε ≤−
N

∑
j=1

δi j− (1−N− ε)µik2 (28d)

0≤−µik +µik1 (28e)
0≤ µik +µik2 (28f)
−1≤ µik−µik1−µik2 (28g)

for i = 1, . . . ,N, k = 1, . . . ,N, where µik1 and µik2 take the role
of µ1 and µ2 in (10), respectively. By considering (15), from (8)
the corresponding 3N2 inequalities can be rewritten as

0≤−δi j +δ
C
i j (29a)

0≤−δi j +δ
G
i j (29b)

−1≤ δi j−δ
C
i j −δ

G
i j (29c)

for i = 1, . . . ,N, j = 1, . . . ,N. By considering (14), from (6) the
corresponding 4N2 inequalities can be rewritten as

−dC
i −1≤ xi− x j−δ

C
i j (30a)

dC
i + ε ≤−xi + x j +(2+ ε)δC

i j (30b)

−dG
i −1≤−xi + x j−δ

G
i j (30c)

dG
i + ε ≤ xi− x j +(2+ ε)δ G

i j (30d)
for i = 1, . . . ,N, j = 1, . . . ,N.

By collecting (25)–(30) the MLD HK model can be easily
written in the matrix form

x+ = Aw (31a)
b≤ Bxx+Bww+Bγ γ +Bµ µ +Bδ δ (31b)

with the real variables x ∈ [0,1]N and w ∈ [0,1]N
3
, the logi-

cal variables γ ∈ {0,1}N3
, µ ∈ {0,1}3N2

and δ{0,1}3N2
, the

constant matrices A and B• with suitable dimensions, and the
constant vector b ∈ R7N3+14N2

whose components are the left
hand side of the inequalities (26)–(30). It should be noticed
that the thresholds parameters {dC

i }N
i=1 and {dG

i }N
i=1 are part

of the entries of the vector b and do not influence the other
matrices of the MLD model (31). Clearly, all matrices of the
model (31) are constant and do not depend on the particular
initial conditions which can be arbitrary chosen provided that
0≤ xi(0)≤ 1, i = 1, . . . ,N.

The number of inequalities which define the model (31b) is
quite large, i.e. 7N3 +14N2. This number depends only on the
number of agents and does not depend on the fact that the
thresholds may be different among the agents. On the other
hand the model (31) represents the heterogeneous HK opinion
dynamics for a quite general scenario where the influence func-
tions of the agents can be characterized by different thresholds.
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This compact matrix representation is linear in the MLD frame-
work and this property might be exploited in future works for
obtaining formal results on the convergence properties of the
model.

Note that the MLD form of the HK model preserves the
distributed nature of the original HK model, in the sense that if
a new agent is added to the network, the corresponding model
can be incrementally obtained form (25)–(30). In particular, for
N +1 agents the dynamics (25) can be written as

x+i =
N

∑
j=1

N

∑
k=1

1
k

wi jk +
N+1

∑
k=1

1
k

wi,N+1,k +
N

∑
j=1

1
N +1

wi j,N+1 (32)

for i = 1, . . . ,N + 1, the inequalities (26), (27), (29) and (30)
remain the same and one must add the corresponding ones for
i = N + 1, j = N + 1 and k = N + 1, and the inequalities (28)
must be rewritten by substituting N with N+1 for i= 1, . . . ,N+
1, k = 1, . . . ,N +1.

5. SIMULATION RESULTS

In this section we provide a steady state analysis for differ-
ent confidence thresholds. Consensus, clustering and time to
convergence are considered. The term consensus indicates the
steady state solution corresponding to all attitudes converging
to the same opinion. For simplicity, in this section we consider
the homogeneous model in which dC

i = dC and dG
i = dG for all

i = 1, . . . ,N.

We now analyze the consensus value and the convergence time
by varying the competition and generosity thresholds. In order
to examine the relationship between the steady state and the
bounds of the confidence interval we use a “walking along
lines” approach in the plane (dC,dG), see Hegselmann and
Krause (2002).

Let us consider the symmetric HK model, i.e. dC = dG. The
distribution of agents for different confidence intervals in this
symmetric HK model is shown in Fig. 2. The colored bar
denotes the number of agents which are included within a range
of opinions of amplitude equal to 0.05. The results are obtained
from 100 agents characterized by a uniform initial distribution
of opinions. Under these conditions, the consensus is reached
for dC ≥ 0.25, i.e. for confidence intervals larger than about 0.5.
Moreover, the preserving average condition is satisfied and then
the consensus value is equal to the average of initial opinions.
The number of steady state clusters increases by decreasing dC.

The convergence time to the consensus can be evaluated from
the time-step kc in which the graph associated to the net-
work becomes complete (φi j(xi,x j) = 1 for all i = 1, . . . ,N,
j = 1, . . . ,N). Indeed for a complete graph the dynamics (4)
becomes x+i = 1

N ∑
N
j=1 x j, which corresponds to the same right

hand side for all i = 1, . . . ,N, i.e. xi(k) = xc =
1
N ∑

N
i=1 xi(kc) for

all k > kc and for all i = 1, . . . ,N. Then the convergence time kc
to the consensus is kc +1. Figure 3 shows that kc decreases by
increasing the confidence interval.

Now we focus the analysis on the HK model with a constant
confidence interval given by dG + dC = α with α ∈ [0,2]. The
results in Fig. 4 show the distributions of agents opinions for
different values of the connectivity interval α by varying the
competition threshold dC. Obviously, the generosity threshold
is given by dG = α − dC. The results are obtained from 100
agents and a uniform initial distribution of opinions. The first
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Fig. 2. Distribution of steady state values of the agents attitudes
for different confidence thresholds in the symmetric HK
model. Colors indicate the number of agents in each steady
state group.
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Fig. 3. Convergence time kc and consensus value xc in the
symmetric HK model, i.e. dC = dG.

three cases indicate that the consensus is not reached because
the confidence thresholds are too small. The number of clusters
increases by decreasing α . Moreover, when the confidence
threshold is equal to 0.3 and 0.4, the consensus is reached for
high values of dC or dG. For α ≥ 0.5 the consensus is reached
for all values of dC and the strictly increasing curves show
that xc increases with the competition threshold dC and then
decreases with the generosity threshold dG. Roughly speaking a
more competitive behavior of the agents helps to reach a higher
consensus value. This analysis can be useful for developing a
consensus strategy based on the increase of the competition
threshold in order to obtain a high attitude for all agents.

The convergence time kc is shown in Fig. 5. The results high-
light that the convergence is usually slower for a larger dif-
ference between the two thresholds. Analogously, asymmetric
confidence intervals polarized towards the competition allow
the agents to reach a larger consensus.

6. CONCLUSION

The heterogeneous HK opinion dynamics has been expressed
in the MLD framework. The model takes into account the
different agents confidence thresholds which explicitly appear
into the system inequalities. Simulation results have shown the
capability of the model to detect consensus and clustering for
different values of the thresholds bounds. It is shown that by
increasing the competition threshold of the agents the consen-
sus corresponds to a larger attitude. The MLD model provides
a compact representation of the HK model which could be
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Fig. 4. Distribution of steady state values of the agents attitudes
in the HK model with fixed confidence interval, i.e. dC +
dG = α for different values of α .
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Fig. 5. Convergence time kc and consensus value xc in the sce-
narios where the consensus is reached, i.e. for confidence
interval α ≥ 0.5.

exploited in future work in order to investigate for possible
stability conditions for the opinion dynamics convergence to
the consensus.
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