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Abstract: This paper presents an unknown input observer for the estimation of external
forces acting on mechanical systems from only acceleration measurements. To circumvent
arising stability issues, a classical unknown input observer extended with an additional filter is
proposed. The influence of the design parameter of the filter is analyzed. A guideline for the
parameter tuning depending on predefined estimation goals is given. In contrast to existing
methods, no prior knowledge about the unknown acting force is assumed in the design process.
The performance of the presented concept is compared to a state-of-the-art approach in both
simulation studies and on a experimental test setup.
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1. INTRODUCTION

External forces acting on mechanical structures like build-
ings, machinery or vehicles are of great interest, for ex-
ample in fault detection, structural analysis, or system
monitoring. However, direct force measurement is often
impossible and the forces have to be reconstructed via
measurements of the structure’s movements in combina-
tion with an a priori known system model. These move-
ments can be determined by different sensor types. The
most common ones are acceleration sensors due to their
simple mounting, high dynamic range and independence
of a reference point. This paper focuses on systems where
acceleration sensors are employed exclusively.

Force reconstruction from acceleration measurements is an
ill-posed inverse problem. An overview of regularization
methods for the solution of inverse problems is given in
Sanchez and Benaroya (2014). However, all regularization
methods are still sensitive with respect to measurement
noise. An alternative approach is to find a mathematical
system description with the external force as an unknown
input and to use observer concepts for force reconstruction.
These observers can either use deterministic models, as in
Klinkov (2011), or stochastic models, as the Kalman filter
concepts presented in Lourens et al. (2012) and Eftekhar
Azam et al. (2015). Both approaches encounter stability
issues for systems with acceleration-only measurement as
described in Maes et al. (2015). An augmented Kalman
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filter (AKF) with so-called dummy measurements for
circumventing the stability issues is proposed in Naets
et al. (2015). A drawback of this idea is that a realistic
estimate of the magnitude for the structure’s movements
is necessary for the tuning of the AKF, but the movement
depends on the amplitude and frequency of the excitation
force.

In the present paper a classical unknown input observer
(UIO) augmented with an additional filter for stabilization
is designed. In contrast to the AKF approach, no prior
knowledge of the excitation force amplitude nor frequency
is assumed in the design process. A filter parameter is used
for observer tuning and its influence on the observer perfor-
mance is analyzed. A guideline for choosing an appropriate
parameter depending on requirements for signal frequency
range and noise amplification is given.

2. SYSTEM MODELING

The motion of a linear mechanical system with propor-
tional damping discretized in space can be described by

Mü + Cu̇ + Ku = Sdd (1)

y = Saü, (2)

where u ∈ Rk is the vector of displacements of all
considered degrees of freedom (DOFs), M, C and K ∈
Rk×k are the mass, the damping and the stiffness matrices,
respectively, d ∈ Rq is the vector of excitation forces,
and Sd ∈ Rk×q is a selection matrix for the DOF, where
excitation forces act. In this paper all considered outputs of
the system are acceleration sensors y where Sa ∈ Rp×k is
a selection matrix for the DOFs at which the acceleration
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is measured. It is common to transform system (1) into
modal coordinates due to easier experimental parameter
identification and potential mode reduction.

2.1 Modal Model

Caughey (1960) describes a method for transforming (1)
into a modal model by solving the generalized eigenvalue
problem for the undamped system

KΦ = MΦΩ2 (3)

where the eigenvectors are collected in the matrix Φ ∈
Rk×k and Ω = diag(ω0,1, ω0,2, . . . , ω0,k) is a diagonal
matrix containing the resonance frequencies ω0,j , (j =
1, . . . , k), of the system. The additional design freedom in
eigenvector calculation is used for a scaling, such that the
mass matrix is normalized according to

ΦTMΦ = I. (4)

The matrix Φ can be used for a transformation

z = Φ−1u (5)

from displacement into modal coordinates z ∈ Rk. Apply-
ing the transformation to (1), results in system description

z̈ + Γż + Ω2z = ΦTSdd (6)

where Γ = diag(γ1, γ2, . . . , γk) is a diagonal matrix con-
taining the modal damping ratios γj , (j = 1, . . . , k). The
transformed output reads as

y = SaΦz̈ = −SaΦΩ2z− SaΦΓż + SaΦΦTSdd. (7)

In this paper the SISO case (p = q = 1) is considered
and only one column of Φ is selected through Sd and Sa.
Therefore the results of the matrix products

ϕd = ΦTSd = [ϕd1 ϕd2 . . . ϕdk]
T

(8)

ϕT
y = SaΦ = [ϕy1 ϕy2 . . . ϕyk] (9)

reduce to vectors ϕd and ϕT
y for input and output,

respectively, with entries for every mode k. Substituting
(8) and (9) into (6) and (7) gives

z̈ + Γż + Ω2z = ϕdd (10)

−ϕT
y Ω2z−ϕT

y Γż + ϕT
y ϕdd = y. (11)

By introducing the state vector x ∈ R2k

x =
[
zT żT

]T
(12)

the modal equation of motion (10) and the output equation
(11) can be rewritten as a linear state space model

Σ :
ẋ = Ax + ed

y = cTx + fd
(13)

with the system matrices A ∈ R2k×2k, e ∈ R2k, c ∈ R2k

and f ∈ R given by

A =

[
0 I
−Ω2 −Γ

]
, e =

[
0
ϕd

]
,

cT =
[
−ϕT

y Ω2 −ϕT
y Γ
]
, f = ϕT

y ϕd.

(14)

2.2 Test Setup

The test setup for the proposed observer concept is a
cantilever steel beam (see Fig. 1) with the parameters
given in Table 1 which can be modeled using the approach

abbreviation name value unit

l Length 0.3 m

w Width 0.04 m

h Height 0.004 m

ρ Density 8000 kg/m3

E Young’s modulus 200 GPa

ν Poisson coefficient 0.305 [−]

σ2
acc Sensor noise variance 1 (m/s2)2

Table 1. Names and values of parameters

y ... acceleration

d ... point load

1. Mode
2. Mode

Fig. 1. Cantilever beam with force and acceleration sensor

mode j 1 2 3

ω0,j in rad
s

216.8 1344 3843

γj in 1
s

12.0 13.6 17.0

Table 2. Eigenfrequencies ω0,j and correspond-
ing modal damping γj

shown in Sec. 2.1. The beam is fixed at one end and a
time varying load is applied on the opposing free end. An
acceleration sensor is installed at the free end. The sensor
introduces measurement noise with a variance of σ2

acc.

For this beam, the eigenmodes are analyzed by use of a
finite element simulation tool. The first three eigenmodes
of the cantilever beam are considered in the simulation.
Their frequencies and damping ratios are given in Table 2.
The corresponding eigenvectors depend on the considered
location on the beam. For the free end of the beam the
eigenvectors are given by ϕT

d = ϕT
y = [2.8 2 1]. From these

parameters a linear system description as given by (13) is
constructed. The transfer function from unknown input d
to output y is given by

Gyd(s) =

k∑
j=1

s2ϕyjϕdj

s2 + γjs+ ω2
0,j

=
s2ν(s)

µ(s)
(15)

and its Bode plot is shown in Fig. 2. The resonance
frequencies corresponding to the eigenvalues are clearly
visible as peaks in the gain plot.

2.3 Observability Analysis

In this section strong observability and strong detectability
as introduced by Hautus (1983) are briefly recapitulated
and used for analyzing the system (13).

A system is called strongly observable if the state vector x
is zero when the output y is zero, for every initial condition
x0 and unknown input d, i.e.

y(t) = 0 ∀ t ≥ 0⇒ x(t) = 0 ∀ d(t). (16)
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Fig. 2. Transfer function Gyd for the cantilever beam

A system is called strongly detectable if the state vector x
tends to zero asymptotically when the output y is zero, for
every initial condition x0 and unknown input d, i.e.

y(t) = 0 ∀ t ≥ 0⇒ lim
t→∞

x(t) = 0 ∀ d(t) (17)

Strong observability and strong detectability are con-
nected to the zeros ζi of the system. A system is strongly
detectable if and only if all zeros ζi are located in the left
open half plane of C (Re(ζi) < 0). A system is strongly
observable if and only if it has no zeros.

Maes et al. (2015) thoroughly analyzed the observability
properties of structural systems, especially for different
sensors, and concluded that the exclusive use of accelera-
tion sensors causes stability problems in standard observer
design. These stability problems will be briefly discussed
by means of the system transfer function (15). The zeros
of Gyd(s) can be split up into two groups. All zeros in
the first group ν(s) have negative real part for mechanical
systems. The second group consists of two zeros at ζi = 0,
which stem from the acceleration measurement. Since not
all zeros of the transfer function lie in the left open half
plane of C, the system is not strongly detectable and a
classical UIO for the system will not be stable.

The fact that a mechanical system with only acceleration
sensors is not strongly detectable can be seen intuitively if
one considers a constant force acting on it. A constant force
induces a static displacement in the system, but the output
y becomes zero and therefore condition (17) is violated.
This means that the acceleration measurement does not
contain any information about static displacement and the
constant part of a force can not be reconstructed.

3. MOTIVATING EXAMPLE

In order to motivate the proposed observer concept, the
potential drawbacks of an established method are dis-
cussed in the following section. The considered method
is an AKF with dummy measurements to circumvent sta-
bility issues, as described in Naets et al. (2015). The AKF
is given by

˙̂xe = Ax̂e + PcR−1(ye − cTx̂e)

Ṗ = −PcR−1cTP + AP + PAT + Q
(18)

with initial conditions

x̂e(t = 0) = 0 and P(t = 0) = Q, (19)

−100

0

100

y
in

m s2

y

0 1 2 3 4 5

−5

0

5

t in s

∆
=

d
−

d̄
in

N

Rdm = 1

Rdm = 10

Rdm = 100

Fig. 3. Measured acceleration y, estimation results d̄ and
estimation error ∆ = d − d̄ of the AKF for a chirp
signal as excitation force

where the augmented state vector ˙̂xe =
[
x̂ d̄

]T
includes

the estimate for the unknown input d̄. The measurement

vector ye = [y ydm]
T

includes the so-called dummy mea-
surement ydm, which is an artificial position output that
is kept at ydm = 0 to avoid a drift of the observer. The
covariances for the states and outputs are given by

Q =

[
0 0 0
0 Qst 0
0 0 Qui

]
, R =

[
Racc 0

0 Rdm

]
(20)

withQst,Qui,Racc andRdm as the covariance of the states,
the augmented state, the acceleration measurements and
the dummy measurements, respectively. Qst and Racc are
given by the system setup, but Qui and Rdm are design
parameters. The AKF is especially sensitive to Rdm. In
Naets et al. (2015) it is suggested that Rdm should be an
order of magnitude higher than the systems actual motion.

To illustrate the effects of changing Rdm, the AKF is
applied to system (13). The system is excited by a chirp
signal with linearly increasing frequency (150Hz – 250Hz)

d(t) = 2 sin
(
2π
(
150t+ 10t2

))
, (21)

which matches the resonance frequency ω0,2 of the system
at t = 3.25 s. Fig. 3 shows the results of the simulation
studies. After analyzing the systems movement for the
given disturbance, a variance of Rdm = 10 is chosen as
suggested in Naets et al. (2015). If the variance is chosen
too small (Rdm = 1) for the structures’ movement a high
estimation error occurs near the resonance frequency. If
it is chosen too high (Rdm = 100) the noise level in the
estimation result d̄ increases. The determination of Rdm

can be challenging because the systems actual motion
highly depends on the amplitude and frequency of the
excitation force d.

4. DESIGN OF A STABILIZED OBSERVER

In this section presents the design of a stable observer
that does not assume any prior knowledge of the excitation
force d. The general idea of the proposed observer design
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is to reconstruct only the dynamic forces acting on the
structure and make the observer insensitive with respect
to static forces. The observer design includes two steps.
First, an standard unknown input observer is designed
that reconstructs all dynamic forces but whose estimation
dynamics are not stable. And second, the observer is
extended with and additional filter to remove the unstable
poles and stabilize the estimation dynamics.

4.1 Unknown Input Observer Design

For the observer design, consider a system as in Sec. 2.1

Σ :
ẋ = Ax + ed

y = cTx + fd
(22)

with matrices defined by (14). Due to the acceleration
measurements, system (22) has a direct-feedthrough term
f 6= 0. Therefore it is possible to calculate the disturbance

d = −f−1cTx + f−1y (23)

from the system’s output through direct inversion. Insert-
ing (23) into the state equation of system (22) gives

ẋ =
(
A− ef−1cT

)
x + ef−1y. (24)

By introducing new system matrices

Â = A− ef−1cT, ê = ef−1,

ĉT = −f−1cT, f̂ = f−1
(25)

the system dynamics can be given as

ẋ = Âx + êy

d = ĉTx + f̂y
(26)

where all zeros of Σ become eigenvalues of Â as described,
for example, in Lunze (2017). The system (26) has no
measurable output. Therefore, it is only possible to use
a trivial observer, which is given by

Σ̂O :
˙̂x = Âx̂ + êy

d̂ = ĉTx̂ + f̂y.
(27)

All eigenvalues of Σ̂O are determined by the zeros ζi of the
system Σ. As described in Sec. 2.3 the system Σ has two
zeros ζi = 0 which result in two eigenvalues λ0 = 0 of the
observer. These two eigenvalues lead to high amplification
of low-frequency components and render the estimation
dynamics not asymptotically stable. A solution for this
problem is given in the next section.

4.2 Extension for Stabilization

In order to stabilize the observer Σ̂O, it is extended with
an additional filter

ΣE :
ẋE = AExE + bEd̂

d̃ = cT
ExE + dEd̂

(28)

with xE ∈ R2 and the system matrices

AE =

[
−ωg 0
−ωg −ωg

]
, bE =

[
ωg

ωg

]
,

cT
E = [−1 −1] , dE = 1.

(29)

The structure of the filter is chosen such that it has
high-pass characteristics (see Fig. 4) and limits the low-
frequency amplification of the observer. From the chosen
structure it follows that the additional filter has two zeros

at the origin of the complex plane. The cut-off frequency
ωg of the filter is the only tuning parameter of the observer.

The systems (26) and (28) can be combined to

Σ̃O :
˙̃x = Ãx̃ + ẽy

d̃ = c̃Tx̃ + f̃y
(30)

with system matrices

Ã =

[
Â 0

bEĉT AE

]
, ẽ =

[
ê

bEf̂

]
,

c̃T =
[
dEĉT cT

E

]
, f̃ = dEf̂

(31)

and the state vector x̃ = [x̂ xE]
T
, x̃ ∈ R2k+2. The system

Σ̃O also includes the two unstable eigenvalues λ0 = 0. The
eigenvalues at λ0 are not observable due to the zeros of
the additional filter as shown in Appendix A.

It is possible to find a Kalman decomposition of Σ̃O

Ā = TÃTT =

[
ÃŌ Ã12

0 ÃO

]
, ē = Tẽ =

[
ẽŌ
ẽO

]
,

c̄T = c̃TTT =
[
0T c̃T

O

]
, f̄ = f̃ .

(32)

as described in Kalman (1963) using a similarity transfor-
mation matrix T. The matrix T can be determined, for
example, via the method proposed in Boley (1984). The
resulting dynamic matrix Ā ∈ R2k+2×2k+2 has two parts,
a fully observable part ÃO ∈ R2k×2k and an unobservable
part ÃŌ ∈ R2×2. The unobservable part ÃŌ consists of

the two unstable eigenvalues λ0. ÃŌ does not influence the

output d̃ and can be excluded from the implementation of
the observer. The final observer is given by

Σ̄O :
˙̄x = ÃOx̄ + ẽOy

d̄ = c̃T
Ox̄ + f̃y

(33)

with x̄ ∈ R2k. The observer Σ̄O does not include the
unstable eigenvalues λ0 and can reconstruct the dynamic
forces acting on the structure.

5. OBSERVER TUNING

This section discusses the influence of the only design
parameter ωg on the observer performance and gives
guidelines on how to choose this parameter. The value of
ωg has two different effects on the observer performance.
First, it introduces an amplitude and phase error for
low frequency components and second, it influences the
noise amplification of the observer. These effects can be
shown using the transfer functions ḠO(s) and GE(s)
corresponding to the observer Σ̄O and additional filter ΣE,
respectively.

5.1 Amplitude and Phase Error for Low Frequencies

For a perfect reconstruction of the unknown input the
relation

Gd̄d(s) =
d̄(s)

d(s)
= 1 (34)

should hold for the transfer function of the dynamic
behavior from the unknown input d to the estimation of
the observer d̄. The overall transfer function Gd̄d(s) for
system Σ and observer Σ̄O is equal to GE(s). The transfer
function GE(s) violates condition (34) for low frequencies
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Fig. 5. Observer transfer function ḠO(s) for different ωg

as can be seen in Fig. 4. An amplitude and phase error is
introduced and can be defined as

∆A = |GE(jωref )| (35)

∆ϕ = arg(GE(jωref )) (36)

at a frequency ωref , defined by the applications frequency
range of interest. In Fig. 6 the phase error ∆ϕ is depicted
as function of ωg. It increases linearly with increasing ωg.

5.2 Noise Gain

The noise gain nn for band-limited white noise of a system
is the ratio of output to input noise within a frequency
range ω ∈ [0, ωmax]. For the observer it describes how the
measurement noise is amplified in the estimation of the
unknown input. The noise gain nn can be calculated by

nn =
σ2
out

σ2
in

=
1

2π

∫ ωmax

0

|ḠO(jω)|2dω (37)

where σ2
out and σ2

in are the variances of the output and
input signal. Fig. 5 depicts the observer transfer function
ḠO for different values of ωg. Lower values for ωg result in
a higher amplification in the low frequency range. This
higher amplification causes a higher noise gain and nn
increases for low values of ωg, as can be seen in Fig. 6.
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101
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n
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nn
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Fig. 6. Phase error ∆ϕ at ωref = 2 · π · 100 rad
s and noise

gain nn over ωg

5.3 Trade-Off Guidelines

Fig. 6 shows the introduced phase error ∆ϕ at ωref and
noise gain nn. For increasing ωg the phase error ∆ϕ
linearly increases while the noise gain nn decreases first
and approaches a constant value. Therefore two opposing
objectives for the tuning parameter ωg arise:

• choose ωg as small as possible to minimize the ampli-
tude and phase error

• choose ωg as big as possible to minimize the noise
gain nn

An appropriate ωg can be chosen based on a given maxi-
mum noise gain nn,max, a maximum phase error ∆ϕmax, or
by normalizing and weighting both parameters according
to requirements.

6. SIMULATION RESULTS

In order to evaluate the applicability and performance
of the proposed observer concept (33), it is tested in
simulation. The observer is designed for the cantilever
beam introduced in Sec. 2.2, using the method proposed
in Sec. 4. The observer design parameter is chosen as
ωg = 10 · 2 · π rad

s following the discussion given in Sec.
5.

To compare the proposed observer concept with a state-
of-the-art concept an AKF as proposed in Naets et al.
(2015) is implemented. For the variance of the dummy
measurement the appropriate value of Rdm = 10 is cho-
sen as already discussed in Sec. 3. The variance of the
acceleration measurement is assumed to be known with
Racc = σ2

acc. No model errors are considered therefore the
state variance is chosen as Qst = 0. The variance of the
augmented state should be considerably higher than the
maximum rate of change and is chosen as Qui = 105.

In a first simulation, the acting force is a triangle signal
with a frequency of f = 200 Hz which starts at t = 0.01 s.
Fig. 7 shows the estimated disturbance and the estimation
error ∆ = d−d̄. Both concepts are able to give a reasonable
estimate of the disturbance with an error within the same
range. The estimation error of the AKF is smaller first and
increases to a steady magnitude afterwards.
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In a second simulation, the acting force is a sine chirp sig-
nal defined by (21) to test the observer performance over a
frequency range that also includes the resonance frequency
ω0,2. The chirp signal starts at t = 0 s with a frequency
of f = 150 Hz and ends at t = 5 s with a frequency of
f = 250 Hz. The results of the simulation can be seen in
Fig. 8. The estimation error of the UIO stays constant
within the frequency range while the estimation error of

Fig. 9. Experimental setup of the cantilever beam
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Fig. 10. Experimental Validation: Acceleration y, mea-
sured disturbance d, estimated disturbances d̄ and
estimation error ∆ = d− d̄

the AKF increases significantly around t = 3 s where the
disturbance frequency matches ω0,2. This resonance causes
significant system motion, close to the values chosen for
Rdm, degrading the AKF performance as shown in Sec. 3.

7. EXPERIMENTAL RESULTS

For the experimental validation of the proposed observer
a cantilever beam as described in Sec. 2.2 was used and
the test setup can be seen in Fig. 9. One end of the beam
is fixed and a vibration exciter is attached to the free end
with a force sensor in between to measure the applied force.
An acceleration sensor is placed on the free end above the
force sensor. The system parameters are determined by
test measurements and used to find a linear system model
of the form of Eq. (14).

The same chirp signal as in the simulation studies in Sec. 6
defined by (21) is used as excitation force of the beam. The
chirp signal starts at t = 0 s with a frequency of f = 150 Hz
and ends at t = 5 s with a frequency of f = 250 Hz.
The acceleration is measured with a sampling frequency
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of fs = 10 kHz and the estimation results and estimation
errors for both observer concepts are given in Fig. 10.

Both observer concepts can reconstruct the amplitude of
the unknown input, but introduce a phase error higher
than expected in observer design and simulation studies.
This additional phase error stems from the model error
introduced by the linear system approximation. Further-
more it renders the estimation error of the UIO to be not
constant in amplitude, contrary to the simulation results.
The AKF estimation error is smaller for low frequencies
but increases if a resonance frequency is excited, as already
shown in the simulation studies in Sec. 6.

8. CONCLUSION AND OUTLOOK

This paper presents an unknwon input observer (UIO)
for the estimation of dynamic external forces acting on
a mechanical system with only acceleration sensors. The
main idea is to extend a classical unknown input observer
with an additional filter for stabilization.

It is shown in simulation and experiment that the resulting
UIO outperforms the augmented Kalman filter (AKF)
if the excitation force frequency matches a resonance
frequency of the system. In addition, there are several
advantages in the design process of the UIO. First, the
UIO has only one tuning parameter ωg which makes it
more appealing to users with little experience in the field
of control engineering. Second, in the design process for the
UIO no knowledge about the amplitude or frequency of the
acting force is necessary. For the AKF this information is
required for the tuning of the variance for the augmented
state and dummy measurements. And third, the UIO uses
a deterministic model while for the design of the AKF the
variances for measurements and states should be known
as accurately as possible.

In contrast to the AKF approach, the UIO was only
tested for SISO systems so far. An extension of the
UIO to MIMO systems should be studied further. The
proposed observer concept can be used in a wide range
of applications like fault detection, structural analysis and
system health monitoring, especially if no knowledge about
the magnitude of the excitation force is available. The UIO
provides better estimation results for an external force
than the AKF and needs less system knowledge for tuning.
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Appendix A. OBSERVABILITY ANALYSIS FOR
EIGENVALUE λ0

The Hautus test is used for observability analysis of the
eigenvalue λ0. It states that for an observable system there
exists no eigenvector orthogonal to the output matrix c̃T.
The corresponding eigenvector v0 to eigenvalue λ0 can be
calculated by

(Ã− λ0I)v0 = 0. (A.1)

All known parameters can be inserted in (A.1) and the
vector v0 is split into four parts resulting in 0 I 0 0

P1Ω0 P1Γ 0 0
−ωgP2Ω0 −ωgP2Γ −ωg 0
−ωgP2Ω0 −ωgP2Γ −ωg −ωg


v1

v2

v3

v4

 = 0 (A.2)

with P1 = (ϕd(ϕT
y ϕd)−1ϕT

y − I) and P2 = ϕT
y (ϕT

y ϕd)−1.
From (A.2) it is possible to calculate the eigenvector v0 as

v0 =
[
qT 0T −P2Ω0q 0

]T
(A.3)

where q is an eigenvector of P1Ω0 for the eigenvalue zero.

The algebraic multiplicity of λ0 is two but its geometric
multiplicity is one resulting in one linearly independent
eigenvector v0. Therefore it is necessary to find the gener-
alized eigenvector r0 that can be calculated by

(Ã− λ0I)r0 = v0. (A.4)

Similar to the calculation of v0 all parameters are inserted
into (A.4) and the generalized eigenvector is given by

r0 =
[
−(Ω−1

0 Γq)T qT ω−1g P2Ω0q −ω−1g P2Ω0q
]T
.

(A.5)

The product of output matrix

c̃T = [−P2Ω0 −P2Γ −1 −1] (A.6)

and vectors v0 and r0

c̃Tv0 = 0 c̃Tr0 = 0 (A.7)

is always zero, proving that λ0 is an unobservable eigen-
value of the system Σ̃O.
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