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Abstract: Due to the world’s aging population, the development of affordable and easy to use wheelchairs is 
becoming a priority. In this study, the control of an automated wheelchair is proposed. The model equations are 
derived from the Euler-Lagrange equations, then a descriptor model is formulated. Next, a Takagi-Sugeno descriptor 
model with a limited number of rules is derived. The control and observation of the model is studied using the 
delayed non-quadratic Lyapunov function. The closed loop stability is proven using the separation theorem. Lastly, 
simulation results are given and discussed. 
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1 INTRODUCTION 

According to the World Health Organization, 10% of the 
world’s population has disabilities and 10% of them or 65 
million people use a wheelchair (World Health Organization, 
2010). A manual wheelchair has two large wheels the user 
pushes for propulsion and two casters wheels in front for 
stability. Thanks to the recent advance in the electronics it is 
possible to transform a manual wheelchair into an electric 
wheelchair at a reasonable cost. This transformation is 
realized by replacing the original push wheels with motorized 
ones. The hubs in the original wheels are replaced by electric 
motors that are powered by a battery pack, Figure 1. The new 
motors will propel the wheelchair reducing fatigue of the 
user. Such assistance kits already exist and Autonomad 
Mobility, partner of the project, produces and sells such kits 
under the patent 10,252,638 (United States Patent No. 
US10252638B2, 2019). 

In some situations, the caster wheels will obstruct the 
wheelchair from passing over small obstacles or holes, a 
solution to this problem is to balance the wheelchair on its 
larger wheels so that the caster wheels will no longer obstruct 
the wheelchair. The purpose of this paper is to develop a 
control law that will swing the wheelchair from the grounded 
position to a self-balancing position at equilibrium. 

The dynamic model of the wheelchair can be easily derived 
using Euler Lagrange equations. In order to derive a model 
suitable for the control design, the resulting dynamic model is 
discretized. Takagi Sugeno models represent the dynamics of 
a nonlinear systems over a compact set of the systems state 
space (Tanaka & Wang, 2004). Basically, it consists of linear 
sub-models blended using nonlinear membership function. 
Then, the wheelchair model is formulated as non-linear 

descriptor model. Since some of the states in the state vector 
cannot be measured, an observer is needed. The system 
stabilisation and observation are then studied using parameter 
depending Lyapunov functions (Ding, Sun, & Yang, 2006; T. 
M. Guerra & Vermeiren, 2004) (Lee, Park, & Joo, 2011) in a 
delayed framework (Lendek, Guerra, & Lauber, 2015). A 
separation principle given is directly issued from the classical 
approach (Yoneyama, Nishikawa, Katayama, & Ichikawa, 
2001) and allows the observer and controller gains to be 
computed separately while ensuring the overall closed loop 
stability. 

 

Figure 1: Self-balancing wheelchair 

2 WHEELCHAIR MODELLING 

In order to derive the equations of the wheelchair dynamics, 
it is suggested to lump the wheelchair and the body into a 
single moving pendulum as depicted in Figure 2. The 
pendulum angle with respect to the vertical axis is denoted by 
ψ  and the position of the pendulum pivot by x . The wheel 

angular position is 1r xϑ −=  with r  the wheel radius. 
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1
e xrϑ ψ−= −  is the relative position between the wheel and 

the chassis. It is measured by an encoder. 

 The overall objective is to control the pendulum in the upper 
equilibrium position 0ψ = . For the wheelchair under 

consideration the behaviour of the wheels with the embedded 
motors powered by the battery pack are assumed identical. 
The control unit, located at one of the armrests, contains an 
inertial measurement unit (3 accelerometers and 3 
gyroscopes). Thanks to the anti-tippers and the caster wheels, 
ψ  is restricted between 0.4−  and 0.4 rd . 

The dynamics of the system are defined from mechanical 
equations derived using Lagrange Mechanics. Table 1 
describes all the system parameters. 

ψ

0 x
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eϑ

ϑ
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��

 
Figure 2.  Schematic of the wheelchair. The considered 

pendulum is depicted in orange. 

Table 1 : Models parameters 

Parameter Description 

bM  Mass of the wheelchair frame and human body 

bJ  Inertia of the wheelchair frame and human body (rotating 
about the wheel axel) 

w
M  Mass of each wheel 

wJ  Inertia of each wheel (rotating about the wheel axis) 

r  Radius of each wheel 
g  Acceleration of gravity 

l  Distance to the center of mass from wheel axel 

wgµ  Viscous friction between wheel & ground 

mµ  Viscous friction in the motor (gears & bearings) 

tK  Motor torque constant 

The wheelchair is comprised of two subsystems: (i) The 
wheel and axis assembly and (ii) the pendulum which is 
composed of all the parts rotating around the wheel axel. For 
each subsystem { }1, 2i ∈ , the kinetic energy is denoted by 

iT , the potential energy by iV , the dissipated power by iP  

and the generalised force is iγ . The generalised coordinate 

vector is ( ),q x ψ= . 

Under the no-slip assumption, the wheel angle is related to 
the wheelchair position x rϑ= . The body position ( ),b bx z  

is given as sin( )bx x l ψ= + , cos( )bz l ψ= . The two sub-

system energy and power are then computed: 

( )2 21 1

2 21 2
w w

T M x J ϑ= + ɺɺ  (1) 

1 0U =  (2) 

( )21

21 2
wg

P xµ= ɺ  (3) 

1
tK

r Iγ =  (4) 

( )2 2 21 1
2 2 2b b b bT M x z J ψ= + + ɺɺ ɺ  (5) 

2 b bU M gz=  (6) 

( )2 21
2 22 mP µ ϑ ψ=  − 

ɺ ɺ  (7) 

2 tK Iγ = −  (8) 

Let L  be the Lagrangian of the whole system and P  the 
total dissipated power: 

1 2 1 2
L T T U U= + − −  (9) 

1 2
P P P= +  (10) 

The system dynamic is given by: 

1, 2
i

i i i

d L L P
for i

dt q q q
γ

∂ ∂ ∂
− + = =

∂ ∂ ∂

 
 
 ɺ ɺ ɺ

  (11) 

The dynamics of the system is then written as a descriptor 

representation with ( ), , ,
T

X x xψ ψ= ɺɺ  the state vector: 

( ) ( )( ) ( ) ( ) ( )( ) ( ) ( ), ,E t t X t A t t X t BI tψ ψ ψ ψ= +ɺɺ ɺ  (12) 

And he measured output is ( ) ( ) ( ) ( )( ), ,
T

ey t t t tϑ ψ ψ= ɺ : 

( ) ( )y t CX t=  (13) 

With ( )

( )( )
( )( )

2

2

2
2 cos 0 0

cos 0 0

0 0 1 0

0 0 0 1

w
b w b

b b bE M

J
M M M l t

r
M l t l J⋅ =



 + + Ψ 
 

Ψ + 
 
 

 

,  

( )
00 01

10 11 13

2 2 2 2

0 0

0

0x x

A

I

a a

a a a

 
 ⋅ =  
 
 

, 

1
0 0 1

0 1 0 0

0 0 0 1

r
C

 − 
 

=  
 
 

 

With 00 2

2
2 m

wa
r

µµ= − − , ( )( ) ( )01

2
sinm

ba M l t t
r

µ
= + Ψ Ψɺ , 

1
10 2 ma rµ −= , 11 2 ma µ= −

( )
13 sinba

t
M gl c

π
Ψ

=
 
 
 

. 

0 0
T

t
tB

K
K

r
= − 
 
 

.  
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3 DISCRETE TAKAGI SUGENO DESCRIPTOR 

Notations: As usual and when there is no ambiguity, we note 

( )k sX X kT=  where 0.05sT s=  is the sampling period. 

Considering a premisses vector z
kz ∈ℝ  being sampled and 

any matrices Y , iY  of appropriate size, we note: 

( )
1

vn

v i k i
i

Y v z Y
=

= , ( )
1

hn

h i k i
i

Y h z Y
=

= . The nonlinear functions 

iv  { }1, vi n∈ …  and ih  { }1, hi n∈ …  hold the convex sum 

property: ( ) [ ]0,1i kv z ∈ , ( ) [ ]0,1i kh z ∈ , ( )
1

1
vn

i k
i

v z
=

=  and 

( )
1

1
hn

i k
i

h z
=

= . Extra samples can be used via the following 

notation: ( )1
1

vn

v i k i
i

Y v z Y− −
=

= , ( ) ( )1
1 1

h hn n

hh i k j k ij
i i

Y h z h z Y− −
= =

=  

or any combinations of them. 

In order to design the discrete time controller, using the Euler 
approximation scheme and  the dynamics given by equation 
(12) can be approximated as: 

( ) ( )1, ,d k k k d k k k d kE X A X B Iψ ψ ψ ψ+ ≈ +ɺ ɺ  (14) 

with ( ) ( ) ( )( )d sA E T A⋅ = ⋅ + ⋅ , ( ) ( )dE E⋅ = ⋅ , d sB T B= . 

Takagi Sugeno models along with the sector nonlinearity 
approach allows representing exactly a nonlinear system over 
a compact subset of the state space (Ohtake, Tanaka, & 
Wang, 2001; Tanaka & Wang, 2004).  

Remark: It is important to notice that, even if ( ),d k kE ψ ψɺ  is 

invertible whatever are kψ  and kψɺ  we want to keep the 

descriptor form of (14) for its qLPV (Takagi-Sugeno) 
representation (Taniguchi, Tanaka, Ohtake, & Wang, 2001). 
This is due to the fact that using ( )1

dE− ⋅  will end with 

( )1
d dE B− ⋅  inducing more complex LMI constraints as the 

number of vertices of the closed-loop will increase from n  to 
2n , see the discussion in (Estrada-Manzo, Lendek, Guerra, & 

Pudlo, 2015). 

Overall, there are 3 nonlinearities present in the matrices of 

the non-linear discrete model (14): ( )cos kψ , sinc kψ
π

 
 
 

 and 

( )sin k kψ ψɺ . Therefore, let us define a compact set of the 

variables used in the nonlinearities, i.e.: 

( ){ }2, , 0.4 , 10x k k k krd rd sψ ψ ψ ψΩ = ∈ ≤ ≤ɺ ɺℝ  (15) 

Applying straightforwardly the nonlinear sector approach 
leads to a perfect representation of the model (14) in xΩ  

using 32 8rn = =  vertices. Nevertheless, following some 

previous works (T.-M. Guerra, Bernal, & Blandeau, 2018), it 

is possible to reduce the number of vertices to 22 4rn = = . 

This is due the nature of both functions ( )cos kψ  and 

sinc kψ
π

 
 
 

 that nearly coincide on the consider interval 

[ ]0.4,0.4−  of the compact set xΩ . Effectively, considering 

that the Taylor’s expansions of both functions are: 

( ) ( )
2

2cos 1
2
k

k ko
ψψ ψ= − +  and 

( )
2

2sinc 1
6

k k
ko

ψ ψ ψ
π

  = − + 
 

 it is easy to show that: 

( )sinc cos 3.8%k
k

ψ ψ
π

  − < 
 

 (16) 

From (16), applying the sector nonlinear approach to 

( )cos kψ  on [ ]0.4,0.4−  uses the functions 

( ) ( )
( )1

1 cos

1 cos 2
k

kw
ψ

ψ
−

=
−

 and ( ) ( )2 11k kw wψ ψ= − . Now it is 

possible to write sinc kψ
π

 
 
 

 with these 2 functions of the 

sector from ( )cos kψ : 

( ) ( ) ( )( )1 1sinc cos 0.4 1 1k
app k app k

app

w w
ψ ψ ψ
π

  = × + − × 
 

 (17) 

With: ( ) ( )1 1 0fapp k kw w λψ ψλ= + .  

At the end the following model is obtained with 4 vertices: 

( ) ( )
2 4

1
1 1

i k i k i k i k k
i i

k k

v z E x h z A x Bu

y Cx

+
= =

= +

=

   (18) 

Or in a more compact form using the aforementioned 
notation: 

1v k h k k

k k

E x A x Bu

y Cx
+ = +

=
 (19) 

At last notice that considering the general problem of finding 
an observer and a controller for (19) in a single LMI 
constraints problem is not feasible as the general problem is 
not convex. Nevertheless, as the premises are measured it is 
possible to derive a separation principle extending the work 
of (Yoneyama et al. 2001). 

4 FEEDBACK CONTROL DESIGN 

Step 1 corresponds to define a feedback controller that 
stabilizes the system (19) supposing the state is perfectly 
known. Consider the following state feedback law: 

1
k khh v h v

u K G x− −
−=  (20) 
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With: ( ) ( ) ( )
4 4 2

1
1 1 1

i k j k k k ijkv
i j k

hh
K h z h z v z K− −

= = =

=  

The regularity of 1

h v
G −

−  will be discussed further on. The 

closed-loop writes: 

( )1
1

kh vk v hv h h
E x A BK G x− −

−
+ = +  (21) 

Or equivalently as an equality constraint: 

1

1

0
vh v

k

k

hh h v

x
A BK G E

x
− −

−

+

 
 + − =  

 
 (22) 

Proposition 1: the discrete descriptor model (19) is 
asymptotically stabilized by the state feedback controller (20) 
if there exists matrices T

i iP P= , jkG , ijkK  and ijF , 

{ }, 1, 4i j ∈ … , { }1, 2k ∈  such that the following LMI 

constraints: 

( )
( ) 0

0

0jk jk j

i jk ijk k ij

T

T T
kij

ij i

G P

G

P

E

F

G

A B F EFK

 − −
 + < 
 −

−

 

+ ∗
− ∗  (23) 

Are satisfied for all , ,i j k . 

Proof: We use therein delayed parameter dependent 
Lyapunov functions introduced in (Lendek et al., 2015) and 
extended to descriptor form in (Estrada-Manzo et al., 2015) 

( ) 1T
k k kh

PV x x x−
−=  (24) 

Its variation over one sample can be written as: 

( )
1

1
1 1

0
0

0

T

k kh
k

k kh

x xP
V

x
e

xP
−
−

−
+ +

 −   
∆ <    

    
=  (25) 

Using the so-called Finsler’s lemma (Boyd, El Ghaoui, 
Feron, & Balakrishnan, 1994), (25) holds under equality 
constraint (22) if and only if: 

( )
1

1

1

0
0

0
* h

hh v h v
h

h vA BK G E
P

P
−

− −

−
−

−
 + − +

 −
<


  


+M  (26) 

Considering 10
T

hh
F −

− =  M  and using the property of 

congruence with the full rank matrix ,T T

h v hh
diag G F −−    

leads to (25) holds if: 

( )1

1 0
*T

h v h h v
T T T

v hh v hh v hhh hh hh hhv

G P

F E

G

A G BK E F FF P− −

− − −

− −− −

−

−

 −
< + − + −

 (27) 

Now using the following well-known property 
1T T

h v h h v h v h v h
G P G PG G− − − − − −

− ≤ − +−−  on the first entry of (27) 

and a Schur’s complement on the last one gives: 

( )
( )
0

0

*

*

0

T

h v h v h
T T

vh v hh v hh hh

h

v

hh

h

G

A G BK E F

G P

F E

PF

− − −

− −

−

− −

−
−

 − +
  < 
 − 

+ −  (28) 

From which it is possible to state the following proposition 
that corresponds to a special case of (Estrada-Manzo et al., 
2015). 

Remark: there is no relaxation to use as the input matrix B  
is constant. From the first entry of  we deduce from (28) that: 

0T

h v h v h
G G P− − −>+ >  which guarantees the regularity of 

h v
G − . 

5 OBSERVER DESIGN AND GLOBAL STABILITY 

We use therein delayed parameter dependent Lyapunov 
functions following the work of (Estrada-Manzo et al., 2015) 
Consider the following observer: 

( )1

ˆ .

ˆ ˆ ˆ

ˆ
k k k kv k h h hh v

k k

E LA y

C

x x Bu

x

H y

y

− −
−

+ −

=

= + +
 (29) 

The regularity of 1

h
H −

−  will be discussed thereafter. Thus let 

us define the state error ˆk k ke x x= −  and the discrete 

Lyapunov function with hP −  a definite positive matrix: 

( ) 0T
k k h kV e e P e−= >  (30) 

The state error dynamic is therefore described via: 

( )1

h hk h vv h kE He A L C e− −
+ −= −  (31) 

That can be transformed as the following equality constraint: 

1 0
h hh v

k
h v

k

e
A C

e
H L E− − +

−  
 − − =  

 
 (32) 

The variation of (30) on one sample writes: 

( ) 0
0

0

T

k h k
k

k h k

e P e
V

e P
e

e
−

+ +

−     
∆ <     

    
=


 (33) 

Using the so-called Finsler’s lemma (Boyd et al., 1994), (33) 
holds under equality constraint (32) if and only if: 

( )1 0
0

0h
h

h v
h

hh v

P
L C

P
A EH − −

−− 
−


− − + ∗


+  <


M  (34) 

And using [ ]0
T

hH −=M  it follows: 

( )
0h

h h v hh hh

T T
h vv

H A L C H E E

P

H P−

−

− − −

−
+

 
<

 − − 


∗
−

 (35) 

Proposition 2: considering the discrete descriptor model (19) 
and the observer (29), the estimation error dynamic is 
asymptotically stable if there exists matrices T

i iP P= , ijkL  

and jG , { }, 1, 4i j ∈ … , { }1, 2k ∈  such that: 
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( )
0T T

i k k

j

j jijk j iA

P

H L C H PE E H

−
−

 
<



∗
− 

− +
 (36) 

Remark: there is no relaxation to use as the output matrix C  
is constant (see discussion in (Estrada-Manzo et al., 2015)). 
From the last entry of (35) we deduce: 

0T
h

T
h v v hH E E H P−− + >> , as 1

kE−  always exists 1

h
H −

−  is 

regular. 

Consider now the complete closed-loop which corresponds to 
replace the control law (20) by 1 ˆk khh v h v

u K G x− −
−=  to get: 

1
1

1

1

1

0

00
hh v hv v h

h

h v h v

h h

hk k

khv vk

A BK G BK GE x x

A L CE eHe
− − − −

− −

− −

−
+

+

 + −     
=       −       

 

A direct extension from (Yoneyama et al. 2001) separation 
principle can be given. Consider the Lyapunov function: 

1 0
0

0

T

k kch
k

k koh

Px x
V

Pe eλ
−

−

−    
>    

    
=

 
 (37) 

With 0λ >  a free parameter and 1

ch
P −

−  ensures that the state 

closed-loop without observer (21) is GAS and 
oh

P −  ensures 

the convergence of the state error (31), i.e. it exists 0cγ >  

and 0oγ >  such that: 

( ) ( )1 1 1 1* 0chch hh v h vv h cE A BK GP P Iγ− − −
− − −− + − ≤ − <  (38) 

( ) ( )11 0* hv o ooh h hh kvh LP H IE PA C e γ− − −
− − ≤ −− − <  (39) 

Considering the variation of (37) gives: 

( )
( )

( )
1 11

1

1

1

1 0
*

0 0

hh v h v hh v h vch

oh h hh v

v h v

v h

E A BK G E BK G

E A

P

P H L Cλ
− − − −−

− − −

−− −−

−

−

−

 + −
 
 

 

−





 

 

1 0
0

0
ch

oh

P

Pλ

−

−
 

< 
 

 (40) 

Using (38) and (39), (40) is satisfied if: 

( )
( ) 0
*

c

o

I

I

ϕγ
λγ

− ⋅ 
< 

 −
 (41) 

With: ( ) ( ) 111 1T T

hh v h v ch hh v hh v vvA B KPK G E E B Gϕ − − − − −
−−− − −⋅ = + . Now, 

using a Schur’s complement on (41) renders: 

( ) ( ) 0o c
TIλγ γ ϕ ϕ+ ⋅ ⋅ <−  (42) 

Considering that all the gains of ( )ϕ ⋅  are bounded, it is easy 

to show that it exists a fixed 0γ >  such that: 

( ) ( )T Iϕ ϕ γ⋅ ⋅ < , thus (40) holds if: 0o cλγ γ γ+ <− . 

Therefore; it always exists a c

o

γλ γ
γ

>  that ensures the global 

stability of the closed-loop. 

6 SIMULATION RESULTS 

The LMIs  and (36) have been solved using the SeDuMi 
solver (Sturm, 1999). For the observer the following matrices 
have been obtained, however, the values for the gains are not 
given in this paper due to confidential issues imposed by the 
company Autonomad. 

2 1 6

2 3 6

1 1 3 2 7

6 6 7

4.909 7.097 10 4.423 10 2.744 10

7.097 10 1.602 9.839 10 4.423 10

4.423 10 9.839 10 4.781 10 2.744 10

2.744 10 4.423 10 2.744 10 1.686

P

− − −

− − −

− − − −

− − −

 ⋅ − ⋅ ⋅
 ⋅ − ⋅ − ⋅ =
 − ⋅ − ⋅ ⋅ − ⋅
  ⋅ − ⋅ − ⋅ 

2 1 6

2 3 6

2 1 3 2 7

6 6 7

4.908 7.133 10 4.423 10 3.247 10

7.133 10 1.602 9.854 10 1.799 10

4.423 10 9.854 10 4.780 10 4.891 10

3.247 10 1.799 10 4.891 10 1.686

P

− − −

− − −

− − − −

− − −

 ⋅ − ⋅ ⋅
 ⋅ − ⋅ ⋅ =
 − ⋅ − ⋅ ⋅ − ⋅
  ⋅ ⋅ − ⋅ 

 

2 1 7

2 3 6

3 1 3 2 8

7 6 8

4.910 7.165 10 4.424 10 5.314 10

7.165 10 1.603 9.872 10 4.357 10

4.424 10 9.872 10 4.782 10 8.756 10

5.314 10 4.357 10 8.756 10 1.686

P

− − −

− − −

− − − −

− − −

 ⋅ − ⋅ − ⋅
 ⋅ − ⋅ − ⋅ =
 − ⋅ − ⋅ ⋅ ⋅
  − ⋅ − ⋅ ⋅ 

 

2 1 7

2 3 7

4 1 3 2 7

7 7 7

4.909 7.209 10 4.424 10 9.880 10

7.209 10 1.601 9.907 10 6.711 10

4.424 10 9.907 10 4.781 10 1.269 10

9.880 10 6.711 10 1.269 10 1.686

P

− − −

− − −

− − − −

− − −

 ⋅ − ⋅ ⋅
 ⋅ − ⋅ − ⋅ =
 − ⋅ − ⋅ ⋅ − ⋅
  ⋅ − ⋅ − ⋅ 

 

For the controller, the following matrices have been obtained: 

3 2 2 4

2 2 2 3

1 2 2 2

4 3 2 4

6.851 10 1.400 10 3.679 10 5.173 10

1.400 10 3.123 10 9.925 10 1.985 10

3.679 10 9.925 10 3.264 1.146 10

5.173 10 1.985 10 1.146 10 4.357 10

P

− − − −

− − − −

− − −

− − − −

 ⋅ − ⋅ − ⋅ ⋅
 − ⋅ ⋅ ⋅ − ⋅ =
 − ⋅ ⋅ − ⋅
  ⋅ − ⋅ − ⋅ ⋅ 

3 2 2 4

2 2 2 3

2 2 2 2

4 3 2 4

6.851 10 1.400 10 3.678 10 5.173 10

1.400 10 3.123 10 9.924 10 1.985 10

3.678 10 9.924 10 3.264 1.146 10

5.173 10 1.985 10 1.146 10 4.357 10

P

− − − −

− − − −

− − −

− − − −

 ⋅ − ⋅ − ⋅ ⋅
 − ⋅ ⋅ ⋅ − ⋅ =
 − ⋅ ⋅ − ⋅
  ⋅ − ⋅ − ⋅ ⋅ 

3 2 2 4

2 2 2 3

3 2 2 2

4 3 2 4

6.851 10 1.400 10 3.679 10 5.173 10

1.400 10 3.124 10 9.925 10 1.986 10

3.679 10 9.925 10 3.264 1.146 10

5.173 10 1.986 10 1.146 10 4.358 10

P

− − − −

− − − −

− − −

− − − −

 ⋅ − ⋅ − ⋅ ⋅
 − ⋅ ⋅ ⋅ − ⋅ =
 − ⋅ ⋅ − ⋅
  ⋅ − ⋅ − ⋅ ⋅ 
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3 2 2 4

2 2 2 3

4 2 2 2

4 3 2 4

6.852 10 1.400 10 3.679 10 5.174 10

1.400 10 3.124 10 9.926 10 1.985 10

3.679 10 9.926 10 3.264 1.146 10

5.174 10 1.985 10 1.146 10 4.358 10

P

− − − −

− − − −

− − −

− − − −

 ⋅ − ⋅ − ⋅ ⋅
 − ⋅ ⋅ ⋅ − ⋅ =
 − ⋅ ⋅ − ⋅
  ⋅ − ⋅ − ⋅ ⋅ 

The simulations results are displayed in Figure 3. At time 
t=1s, the control law is applied to the non-linear system. The 

observer initial condition is ( ) ( )ˆ 0 0,0,0,0
T

X =  and the 

wheelchair is initially grounded, so the system initial 

conditions is ( ) ( )0 0,0,0.3,0
T

X = . The reactive force of the 

ground being not accounted for in the model, from 0t s=  to 

1t s= , the observed state is subject to a steady state error. 

Nevertheless, once the controller is used, thanks to its fast 
convergence rate, the state is correctly estimated.  

Between 1t s=  and 1.4t s= the controller applies a large 

positive control in order to swing the wheelchair to its 
equilibrium. At 1.4t s= the vertical position is reached. 

Between 1.4t s=  and 1.9t s= , a negative control is applied 

and the wheelchair is leant backward. As a result, the speed is 
slowly decreased and the wheelchair moves backward toward 
its initial position 0x = . 

 

Figure 3: Simulation results 

7 CONCLUSION 

The design of a controller and observer that allows stabilizing 
a TS model has been presented. The stability is proven using 
delayed non-quadratic Lyapunov functions. A separation 
theorem allows computing the observer and the controller 
gains separately. The swinging of an automated wheelchair 
has been presented. The number of non-linearities has been 

reduced using an approximation introduced in (T.-M. Guerra 
et al., 2018). The simulation result illustrated the good 
performances of the observer and the controller. Future work 
will be devoted to the implementation of the proposed control 
scheme. 
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