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Abstract: This article focuses on the justification of the timing characteristics of devices using a static 
window flow control mechanism for protection against denial of service (DoS) attacks. The main focus is 
on a particular type of DoS attack, like flood and hit-and-run attacks. An attack of that kind can be 
performed using the black-box approach with a minimal piece of knowledge about the internals of the 
attacked system. The methods of tropical algebra (min-plus algebra) are used to compute the timing 
characteristics of the device with static window flow control. 
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1. INTRODUCTION 

The digital revolution that currently is underway in the society 
and industry did not leave aside relatively conservative areas 
like industrial control systems. During the last decades, they 
went through the transformation from mainly analog to digital 
systems and further, according to the Industry 4.0 concept, to 
open cyberphysical systems interacting via the Internet. The 
advantages of the transformation are evident, but the late 
changes have their negative sides. In particular, this dark side 
is the increasing risk of cyberattacks on control systems. The 
impact on the control system may impede the functioning of 
the attacked system and damage, put out of order the control 
object itself. 

The risks are very high for the control systems of critical 
backbone objects like power supply systems, transportation 
infrastructure and autonomous vehicles, oil and gas industrial 
object, nuclear power plants. A kind of possible cyber-impact 
to a control system is the so-called denial-of-service (DoS) 
attack. The data from the recent review (DDoS 2019) shows 
the high rise of the DoS-attacks incidents: up to 17 percent for 
the last year.  

From the attacker’s point of view, the DoS attacks have a set 
of advantages before other cyber attacks: an intruder may get 
only external access to the attacked system; they are highly 
scalable and can be performed remotely. The main goal of the 
DoS attack is to make the system inaccessible to users, block 
its operation. On the other hand, an attacker may use a DoS-
attack to divert attention from other harmful effects.   

 

When the actions of the attackers reach their goal, a system 
owner or a user can instantly detect it by the malfunctioning of 
the system or fault of a resource located there. However, some 
indirect signs allow detecting a DoS attack from the very 
beginning. 

The first sign of a DoS-attack is a sharply increased system 
load that reflects in rising the system accessibility time that 
considerably differs from the average normal operation 
response time or the rapid increase in incoming traffic on one 
or several ports. 

The other signs might be that the system begins to frequently 
crash, freeze, shut down incorrectly, et cetera. 

In the paper, we are going to consider the possibility of 
modeling the impacts on that kind of attack on an industrial 
control system. We will describe algorithms that a protected 
system may use to counter the attacks. The mathematical 
model description uses the “Network Calculus” method, and 
section 2 is a short introduction to the mathematical basement 
of the method. 

2. THE NETWORK CALCULUS 

The Network Calculus (see Le Boudec and Thiran, 2019) is a 
relatively new area of applied mathematics invented by Cruz 
(1991a, 1991b) and based on min-plus algebra (see Baccelli, 
1992). The application area of the Network Calculus is the 
research of queuing systems. The general area of the Network 
Calculus application is calculations of computational network 
and system characteristics (see examples of the usage in 
Masolkin and Promyslov (2010) and Baybulatov and 
Promyslov (2017), He and Li (2017). The key aspect of the 
method is the usage of deterministic restriction of the flow that 
allows the work with a broad set of incoming flow types and 
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makes the theory easy-to-use and applicable to practical 
engineering problems (see Baybulatov and Promyslov, 2019). 

Below we will briefly introduce the Network Calculus. For the 
advanced reading, we would recommend the book by Le 
Boudec and Thiran (2019). 

Definition 1: Flow function (cumulative flow function) is a 
wide-sense increasing function of time: 

!
	𝐴(𝑡) ≤ 𝐴(𝑠), ∀𝑡 < 𝑠
𝐴(𝑡) ∈ ℝ. ∪ {+∞}

𝑡 ∈ ℝ
 

Let us name a flow function causal if 𝐴(𝑡) = 0, ∀𝑡 ≤ 0. Now 
we define convolution and deconvolution operations. 

Definition 2: Consider two causal flow functions A and β. 
Their convolution designated as ⨂ is the function 𝐴∗ = 𝐴⨂𝛽 
is: 

𝐴∗(𝑡) = inf
<=>=?

{𝛽(𝑡 − 𝑠) + 𝐴(𝑠)} 

Further, we will omit argument 𝑡 in the equations, if it is not 
necessary. It is obvious that 𝐴∗(𝑡) = 0, ∀𝑡 < 0, and 𝐴∗ is non-
negative because both 𝐴 and 𝛽 are non-negative and causal. 

Definition 3: Consider two flow functions 𝐴 and 𝛽, where 𝛽 is 
causal; deconvolution operation designated as ⊘ is the 
function 𝐻 = 𝐴⊘𝛽: 

𝐻 = sup
FG<

{𝐴(𝑡 + 𝑢) − 𝛽(𝑢)} 

Note that deconvolution 𝐻 of flow functions 𝐴 and 𝛽, where 𝛽 
is causal is a flow function itself.  

Definition 4: A function 𝛽 is the (minimal) service function of 
a network element (or system) with the input flow 𝐴 if 𝛽 is a 
causal flow function and the element (system) output flow 𝐴∗ 
satisfies 𝐴∗ ≥ 	𝐴⨂𝛽. 

To describe data flows within a system, the Network Calculus 
generally does not use flow function directly but instead uses 
a “derived” function called flow envelope (or flow arrival 
curve). The flow envelope evaluates the flow scale, and it was 
invented by Cruz R.L. (1991a). 

Definition 5: A function 𝑎 is the envelope of flow 𝐴 if 𝐴 ≤
		𝐴⨂𝑎 or, that is the same, 𝑎 ≥ 𝐴⊘𝐴. 

For linear systems with input flow 𝐴, output flow 𝐴∗, 𝐴(𝑡) ≥
	𝐴∗(𝑡), the following equation ties input flow envelope 𝑎, 
system or system component service function 𝛽, and output 
flow envelope 𝑎∗: 

𝑎∗ = 𝑎 ⊘ 𝛽 

See the proof in Le Boudec and Thiran (2019). 

Now we introduce a useful function 𝛿L(𝑡) that is named burst-
delay function: 

𝛿L(𝑡) = M+∞, 𝑡 ≥ 𝑇
0, 𝑡 < 𝑇 , and	𝑇 ≥ 0 

Definition 5 (Sub-additive closure): Let a function 𝑓:ℝ →
ℝ. ∪ {+∞}. Denote as 𝑓(T) the function obtained by (𝑛 − 1) 
times repeating convolutions of 𝑓 with itself and state that 
𝑓(<) = 𝛿< (the burst-delay function). Then the sub-additive 
closure 𝑓 ̅of 𝑓 is 

𝑓̅ = inf
TG<
X𝑓(T)Y 

or 

𝑓̅ = 𝛿< ∧ 𝑓 ∧ (𝑓⨂𝑓) ∧	(𝑓⨂𝑓⨂𝑓) ∧ … 

Definition 6 (The maximal delay in the system): For linear 
systems with input flow 𝐴, the output flow 𝐴∗, 𝐴(𝑡) ≥ 	𝐴∗(𝑡), 
the maximal delay 𝐷]^_  expressed as maximal horizontal 
distance between input and output flow curves is: 

𝐷]^_ = ℎ(𝐴, 𝐴∗) = sup
?G<

{inf{𝑑 ≥ 0: 𝐴(𝑡) ≤ 𝐴∗(𝑡 + 𝑑)}}     (1) 

and it is easy to show that  
𝐷]^_ = ℎb(𝐴, 𝐴∗	) = inf	{𝑑 ≥ 0:	𝐴 ⊘ 𝐴∗(−𝑑) ≤ 0}               (2) 

3. MATHEMATICAL MODEL OF A SYSTEM UNDER 
ATTACK 

3.1 Introduction to DoS-attack formalism 

An attack of denial-of-service type is an attack to a computing 
system with the purpose of to transfer the system to the “out of 
service” state, that is, an attack that tries creating the 
conditions that disable or impede the access to the system 
resources (usually, servers) for legitimate users. Currently, 
they might be divided into four types: 

1. The flood attacks focused on data channel overflow, 
or brute force attack. Their goal is to jam the channel 
of the system under attack and break the system 
availability for legitimate users. 

2. Attacks using vulnerabilities of the network protocol 
stack. 

3. Application-level attacks. 

4. Attacks of the indirect kind, that is, attacks going to 
activate false-positive protection measures in so 
make the resource unavailable. 

This paper deals with the first type of attack only. This type of 
attack can target different functional properties and protocols 
of the system like http, ping, flood, smurf, and fraggle attack, 
et cetera.  The DoS attacks can be categorized according to the 
number of offsprings launching the attack and the techniques 
used to conduct it. Unlike other attacks, they have a general 
character because an attacker does not need a deep 
understanding of an attacked system. In the paper, we do not 
consider the exact type of DoS-attack but for simplicity refer 
to  single source flooding. 
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3.2 Mathematical description of a DoS-attack and the 
reaction of the attacked system, algorithms of attack 
countering 

The general scheme of the DoS-attack model regulator is 
shown in Fig.1. This example closely relates to the results 
obtained by Chang. (1998) and Agrawal et al. (1999). 

 

Fig. 1. DoS-attack prevention and detection scheme. 

Here R is a clipper serving as a DoS-attack prevention device 
that effectively restricts the flow if backlog in the system 
exceeds the limit 𝑊. This device might be viewed as a “light” 
greedy shaper that indirectly controls properties of the input 
flow. It is a device delaying input bits in the buffer that is large 
enough, whenever sending a bit would violate the constraint 
W but outputs them as soon as possible. Le Boudec and Thiran 
(2019) made an in-depth analysis of the model. 

Let a data flow 𝐴(𝑡) constrained by the envelope 𝑎(𝑡) passes 
through a flow clipper device to the system offering service 
curve 𝛽. The window flow clipper limits the amount of data 
passed to the network in such a way that the total backlog is 
less than or equal to a constant 𝑊 > 0, where 𝑊 is a static 
window. 

We set a problem of impact estimation of the used flow clipper 
device with a window 𝑊 on the timing characteristics of the 
system via the delay value. Using (1) directly define the 
maximal delay value 𝐷]^_ as 

𝐷]^_ = ℎ{𝑥]^_, 𝑦]gT}                    (3), 

where 𝑥]^_ is maximal flow after flow clipper and 𝑦]gT is 
minimal output flow. 

3.3 System definition 

Now let us consider a model of the system shown in Fig. 1 with 
the input flow 𝐴(𝑡) ≥ 0	, 𝑡 ≥ 0. The system after the 
prevention device performs the transformation of the flow 𝑥 to 
the flow 𝑦: 

Π: 𝑥 → 𝑦 = Π(𝑥)                               (4) 

or 

Π(𝑥) ≥ 	∁j(𝑥)                                   (5) 

Where ∁j	 is a convolution operator (Le Boudec, J-Y., and 
Thiran, P. (2019). We do not consider an exact mapping, but 
we know that 

𝑦(𝑡) ≥ (𝛽⨂𝑥)(𝑡)                                (6) 

k 𝑥(𝑡) ≤ 𝐴(𝑡)
𝑥(𝑡) ≤ Π(𝑥) +𝑊                               (7) 

𝑦(𝑡) ≥ 𝐴(𝑡 − 𝐷)                                  (8) 

where  𝐷  is some big enough delay. Solving the inequalities 
(7) and applying the theorem 4.3.1 from Le Boudec and Thiran 
(2019) one gets: 

𝑥]^_ = (Π +𝑊)(𝐴) ≥ 	 l∁j +𝑊m(𝐴) = l∁j.nm(𝐴) =
∁j.n(𝑎) = (𝛽 +𝑊)⨂𝐴                                                      (9) 

It follows from the equations (5, 6) and (9) that 

𝑦(𝑡) ≥ (𝛽⨂𝑥)(𝑡) = (𝐴⨂𝛽op)(𝑡)                (10) 

and then 

𝛽op = 𝛽⨂𝛽bn                            (11)  

where	𝛽bn = (𝛽 +𝑊)	 and 𝛽op is a system closed-loop service 
function.  

3.4 Working delay 

The delay when the system’s backlog is near but not empty 
sets the maximal working value of the delay that is an 
important reference point for system developer. Using the 
equation (3) and taking into account that  𝑦]qT(𝑡)rrrrrrrrrr = 𝐴(𝑡 − 𝐷), 
see (8), and 𝑥stu(𝑡) =rrrrrrrrrrrrr 	 (𝛽 +𝑊)⨂𝐴 is defined by (9) we can 
get  bound for delay: 

𝐷nvwx = ℎ(𝑦]qTrrrrrr, 𝑥sturrrrrr) = ℎ(𝐴, 𝛽bn⨂𝐴	) = sup
?G<

inf{𝐷 ≥

0	𝑠𝑢𝑐ℎ	𝐴(𝑡) ≤ l𝛽bn⨂𝐴m(𝑡 + 𝐷)}                                   (12) 

Let us rewrite (12) as 

𝐷nvwx = infX𝐷 ≥ 0	𝑠𝑢𝑐ℎ	𝐴 ⊘ l𝛽bn⨂𝐴m(−𝐷) 	≤ 	0Y =
inf{𝐷 ≥ 0	𝑠𝑢𝑐ℎ	(𝐴⊘ 𝐴)⊘ l𝛽bnm(−𝐷) 	≤ 	0} 	              (13)  

Combining (2) and (13) we get 

𝐷nvwx = ℎbl𝐴⊘ 𝐴, 𝛽bnm 

Now let us remember that minimal flow envelope 𝑎 = 𝐴⊘𝐴, 
so 

𝐷nvwx = ℎbl𝑎, 𝛽bnm                              (14)  

Consider an important case of (12) when (𝛽 +𝑊) is a sub-
additive function (i.e. 𝑓(𝑡 + 𝑠) ≤ 𝑓(𝑡) + 𝑓(𝑠) for any 𝑡, 𝑠 ≥
0) and (𝛽 +𝑊)= 𝛿<⋀(𝛽 +𝑊). In this case, we may rewrite 
(10) as 

𝐴(𝑡 − 𝐷) − ((𝛽 +𝑊)⨂𝐴)⋀(𝛿<⨂𝐴)(𝑡) 	≤ 		0      (15) 

and express (12) as 

𝐷nvwx = ℎ(𝐴, ((𝛽 +𝑊)⨂𝐴)⋀𝐴))                 (16) 

where the solution ℎ(𝐴, 𝐴) is trivial. Then, using (14) we get: 
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𝐷nvwx = ℎb(𝑎, 𝛿<⋀(𝛽 +𝑊)) 

Here 𝑎 is the minimum flow envelope.  

3.5 Maximal delay 

Instead, directly reusing the equations (3) and (11), let us 
determine maximal delay value via explicit computations. 
Thus way taking into account (6) and, using Theorem 3.1.12 
from Le Boudec and Thiran (2019), rewrite (5) as 

𝑥(𝑡) ≥ (𝐴⊘ 𝛽)(𝑡 − 𝐷)                        (17) 

Considering the equations (7) and (8) note that they have a 
solution if and only if the 𝑥]^_, the solution of (9), is greater 
than the right side of (17). Then 

(𝐴⊘ 𝛽)(𝑡 − 𝐷) − ((𝛽 +𝑊)⨂𝐴)(𝑡) 	≤ 		0     (18) 

Further, using (1) we rewrite (3) as 

𝐷]^_ = ℎ(𝑥]gT, 𝑥stu) = ℎ(𝐴⊘ 𝛽, (𝛽 +𝑊)⨂𝐴	)   (19) 

Applying the same computational technique as for the case of 
maximal delay we rewrite (19) as 

𝐷]^_ = ℎb(𝐴⊘ 𝐴, (𝛽 +𝑊)⨂𝛽)	               (20) 

or 

𝐷]^_ = ℎb(𝑎, 𝛽op	)                                  (21) 

Again, If (𝛽 +𝑊)	 is sub-additive function and 𝛽b{ =
(𝛽 +𝑊) = 𝛿<⋀(𝛽 +𝑊), then we can split and rewrite the 
equation (21) as: 

𝐷]^_ = ℎb(𝑎, 𝛽	)                                (22) 

𝐷]^_ = ℎb(𝑎, 𝛽⨂(𝛽 +𝑊))                    (23) 

The equations (22) and (23) express the maximal value of 𝐷 
for constant 𝑊	 in the sub-additive case. The first equation 
gives value to the open-loop system when control is not in 
place. 

4. MODEL EXAMPLE 

Consider the system represented in Fig. 1 with some detailed 
parameters. 

Let it has strict service curve: 

𝛽(𝑡) = k𝑅(𝑡 − 𝑇), 𝑡 > 𝑇, 𝑅 = 𝑐𝑜𝑛𝑠𝑡
0, 𝑡 ≤ 𝑇               (24) 

Suppose also that the input flow has a T-SPEC profile: 

𝑎(𝑡) = min	(𝛾(𝑡)�,�,𝛾(𝑡)�,�) 

where 𝛾(𝑡)w,� = M 0, 𝑡 < 0
𝑟𝑡 + 𝑏, 𝑡 ≥ 0. 

The case of 𝑊 ≥ 𝑅𝑇, then 𝛽(𝑡) +𝑊	is sub-additive, is trivial 
(see Le Boudec and Thiran, 2019), and we do not consider it 
here.  

The service curve components for open and closing loop cases 
are shown in Fig.2. Consider the situation of 𝑊 < 𝑅𝑇 for two 
cases: first, the input T-SPEC profile curve 𝑝 < 𝑅, 𝑞 < 𝑅 
(Fig. 3), and, second, the input curve T-SPEC profile 
parameters 𝑝 > 	𝑅, 𝑞 < 𝑅 (Fig. 4). For both cases, we use 
equations (12) and (19) to compute 𝐷]^_ and 𝐷nvwx 
numerically. 

 

  

Fig. 2. The closed and open-loop service function of the 
system 𝛽, (𝛽 +𝑊), 𝛽op, when 𝑊 < 	𝑅𝑇. 

 

 

Fig. 3. Closed-loop service function, input (𝑎) and output 
curve (𝑦) example when 𝑅𝑇	 < 	𝑊 and 𝑝 < 𝑅, 𝑞 < 𝑅. The 
green line shows the maximal horizontal distance between 
components.   

Here (Fig. 3) 𝐷nvwx = 0 seconds and 𝐷]^_ = 5.5 seconds. 
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Fig. 4. Closing loop service function, input (𝑎) and output 
curve (𝑦) example when 𝑅𝑇	 < 	𝑊 and 𝑝 = 	𝑅, 𝑞 < 𝑅. The 
green line shows the maximal horizontal distance between 
components.  

Here (Fig. 4) 𝐷nvwx = 1.4 seconds and 𝐷]^_ = 6.4 seconds. 

It is easy to note that when 𝑝  increases and   𝑞 → 𝑅, then the 
maximal and working delay values increase, but they go to 
infinity when in a case 𝑞 > 𝑅.  

5. CONCLUSIONS 

The work describes delay properties of a system with static 
window flow control. The motivation of control installation is 
to counter flows specific to denial of service attacks. The 
properties of the system are described in the frame of the 
“Network calculus” approach. We derived the equations 
describing two types of delay in a system: maximal and 
working delay. The maximal and minimal properties of the 
delay and requirement for the buffer system are a common 
concern for researches, but, unfortunately, the papers dealing 
with the “Network calculus” approach generally omit the 
discussion of the working value for delay. However, this value 
is essential for system designers because it describes normal 
conditions for the system when static window flow control is 
acting. Generally, it is easy to see that with input flow growth, 
the values of 𝐷nvwx and 𝐷]^_ also grow and so the difference 
between them gradually vanishes. The system designer shall 
control the difference of these values to prove the system 
stability and robustness on a variation of the input flow. 
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