
Top-Down Nested Supervisory Control of
State-Tree Structures Based on State

Aggregations ⋆

Xi Wang∗,∗∗ Thomas Moor∗∗ Zhiwu Li∗,∗∗∗

∗ School of Electro-Mechanical Engineering, Xidian University, China
(e-mail: wangxi@xidian.edu.cn, zhwli@xidian.edu.cn).

∗∗ Lehrstuhl für Regelungstechnik, Friedrich-Alexander-Universität
Erlangen-Nürnberg, Germany (e-mail: lrt@fau.de).

∗∗∗ Institute of Systems Engineering, Macau University of Science and
Technology, Taipa, Macau.

Abstract: With a structured state space, state-tree structures (STS) are a powerful framework
to model hierarchical finite state machines (HFSM). The boundary consistency property of STS
endows them a compact and neatly representation. In this study, by naturally decomposing an
STS into a set of STS nests in a top-down nested approach and finding a supervisor for each, the
boundary consistency property is extended to the supervisory control of STS. As a consequence,
the state spaces for both the system model and optimal supervisor are significantly reduced.
Two examples are provided, in which the state space of a large scale HFSM example is reduced
from 1024 to 2× 1018.

Keywords: Discrete-event system, nonblocking supervisory control, state-tree structure,
symbolic computation, nested state feedback control.

1. INTRODUCTION

Hierarchical finite state machines (HFSM) (Marchand &
Gaudin (2002); Gaudin & Marchand (2004, 2005)) were
first developed in Harel (1985, 1987) as finite state
machines (FSM) (Wonham & Cai (2013); Ramadge &
Wonham (1985)) with multi-levels. As stated in Alur et
al. (1999), a superstate in an HFSM can also be other
machines. Traditionally, the calculation of the supervisor
for an HFSM is obtained by two steps: flatting an HFSM
to be an equivalent FSM, and which is followed by using
the standard supervisory control of discrete-event systems
(DES) (Wonham & Cai (2013); Ramadge & Wonham
(1985)). For the purpose of managing the notorious state
explosion problem caused by flatting HFSM, state-tree
structures (STS) are proposed in Ma & Wonham (2005,
2006) to build HFSM in a compact and natural model.
A main feature of STS is that it satisfies boundary con-
sistency: without changing the input/output transitions
of a given level, several lower level structures can be
“plugged” into its superstates. Binary decision diagram
(BDD) (Bryant (1986)) is utilized in the supervisory
control of STS as a powerful computational representation
of predicates, based on which the state explosion problem
faced by the supervisory control of DES is managed.

⋆ This work was supported in part by the Natural Science Foun-
dation of China under Grant No. 61703322, the Alexander von
Humboldt Foundation, the Science and Technology Development
Fund, MSAR, under Grant No. 0012/2019/A1, and the Fundamen-
tal Research Funds for the Central Universities under Grant Nos.
XJS200403 and JBF180401. (Corresponding author: Xi Wang.)

Several theoretical extensions and applications of STS
have been made. The modular supervisory control of
an STS is studied in Chao et al. (2013). Supervisor
localization based on STS is proposed in Cai & Wonham
(2015) to calculate the controller of a controllable event
by considering the agent’s neighborhood information only.
The research in Jiao et al. (2017) studies the symmetry
of STS with parallel components. The supervisory control
of STS with partial observation is investigated in Gu et al.
(2018) and Gu et al. (2019). In Wang et al. (2019), the
nonblocking supervisory control of STS with conditional-
preemption matrices is assigned.
In this study, the boundary consistency of STS is extended
to the supervisory control of STS. Given an STS with a
set of superstates assigned, it is naturally decomposed into
a set of STS nests rooted by superstates, which describe
the system behavior locally. As a consequence, instead of
calculating the optimal behavior of an STS monolithically,
a top-down nested approach is presented to calculate the
optimal behavior of each STS nest. The main contributions
of this study are: 1) based on the superstates, the STS
nests describing the system behavior on each hierarchical
level are formally defined; 2) the subordination relation
of the STS nests is investigated; and 3) the state spaces
for both the system model and optimal supervisor are
significantly reduced. Two examples are provided in this
study. For a large scale example AIP (Ma & Wonham
(2005, 2006)), its state space is reduced from 1024 to
2× 1018.
The rest of this paper is organized as follows. Section 2
presents the STS terminology used throughout the paper.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

Copyright lies with the authors 11326

The nested structure of STS is studied in Section 3. The
nested supervisory control of STS is presented in Section 4.
Two case studies are presented in Section 5 to demonstrate
the nested supervisory control of STS. Further relevant
issues are discussed in Section 6. Finally, conclusions and
future work are presented in Section 7.

2. STS PRELIMINARIES

Relevant preliminaries on the supervisory control of STS
are summarized from Ma & Wonham (2005, 2006). An
STS is a six-tuple G = (ST,H,Σ,∆,ST0,STm), where
ST is a state-tree organizing the the state space of an STS
hierarchically; H is the set of holons (finite automata);
Σ is the finite event set appeared in H; ∆ is the global
function ST (ST)×Σ → ST (ST), where ST (ST) is the set
of all sub-state-trees; ST0 is the initial state-tree; and STm

is the set of marker state-trees. All the basic state-trees
are denoted by B(ST), in which each element b ∈ B(ST)
corresponds to a “flat” system state.
A state-tree consists of three types of states: AND, OR,
and SIM , in which AND and OR denote the superstates
and SIM represents the simple states. In a state-tree
ST = (X,x0, T , E), X is the finite structured state set;
xo ∈ X is the root state; T : X → {AND, OR, SIM}
is the type function; and E : X → 2X is the expansion
function. The reflexive and transitive closure of E is written
as E∗. Then E+(x) := E∗(x) − {x} represents the set of
all descendants of x. In an ST , let x, y ∈ X. x ≤ y
(resp., x < y) iff y ∈ E∗(x) (resp., y ∈ E+(x)). Let
x < y. Define that y is AND-adjacent to x, i.e., x <× y iff
x < y & T (x) = AND ∧ (∀z)x < z < y ⇒ T (z) = AND.
Based on AND and OR superstates, the state space of an
STS can be decomposed into several successive layers in a
top-down format, which consist of Cartesian products and
disjoint unions, respectively. In a well-formed state-tree,
all the leaf states are simple states.
A holon is a five-tuple H := (X,Σ, δ,X0, Xm), where X
is the nonempty state set that can be partitioned into a
(possibly empty) external state set XE and an internal
state set XI , i.e., X = XE∪̇XI with XE ∩ XI = ∅; Σ is
the event set that can be partitioned into a boundary event
set ΣB and an internal event set ΣI , i.e., Σ = ΣB∪̇ΣI . Σ
can also be partitioned into the sets of controllable and
uncontrollable events, i.e., Σ = Σc∪̇Σu; The transition
structure δ : X × Σ → X is a partial function. We write
δ(x, σ)! if δ(x, σ) is defined. X0 ⊆ XI is the initial state
set; and Xm ⊆ XI is the terminal state set. The interval
behavior of a holon is assigned to an OR superstate,
which describes the local behavior of an STS G Ma &
Wonham (2006). In a holon, X0 (resp., Xm) contains the
target (resp., source) states of the boundary transitions iff
XE ̸= ∅, i.e., a higher level holon exists.
Intuitively, a predicate P is defined based on B(ST), such
that P : B(ST) → {0, 1}. The truth-value 1 (resp., 0)
represents logical true (resp., false). Formally, P (b) = 1
is represented by b |= P . Propositional logic operators are
defined by: 1) (¬P)(b) = 1 iff P (b) = 0; 2) (P1∧P2)(b) = 1
iff P1(b) = 1 and P2(b) = 1; and 3) (P1 ∨ P2)(b) = 1
iff P1(b) = 1 or P2(b) = 1. A predicate P is identified
by a set of basic-state-trees if BP := {b ∈ B(ST)|P (b) =
1} ⊆ B(ST). Let P0 and Pm denote the predicate identified

by the initial state-tree ST0 and the marker state-tree set
STm, respectively. Then we have BP0

:= {b ∈ B(ST)|b |=
P0} and BPm

:= {b ∈ B(ST)|b |= Pm}. The set of all
predicates on B(ST) is defined by Pred(ST). The top and
bottom elements of a predicate are true (⊤) and false (⊥),
respectively. For an STS G and a given predicate P , via
all the basic-state-trees (T) satisfying P , the reachability
(sub)predicate R(G, P) holds on a sequence of T can be
reached from some b0 |= P∧P0. Dually, CR(G, P), namely
the coreachability predicate, holds all the T that can reach
some bm |= P ∧ Pm by a sequence of T satisfying P .

3. NESTED STRUCTURE OF STS

An STS is a framework to model hierarchical DES in a
compact form. Given an STS with a set of superstates
assigned, we can naturally decompose it into a set of STS
nests rooted by superstates, which describe the system
behavior locally.

3.1 STS Nests

The state aggregation of each superstate is define below.
Definition 1. [State Aggregation] Let ST = (X,x0, T , E)
be a state-tree. The state aggregation XA : X → 2X in a
state-tree is defined by

XA(x) :=

{z|z ∈ E(x)}, if T (x) = OR

{z|z ∈ XA(y),

T (y) = or, x <× y}, if T (x) = AND

.

In the case that XA(y) ⊂ XA(x) with x < y, the
calculation of state-aggregation XA(y) is discarded. The
remains partition the structured state set of an STS. ⋄
Definition 2. [STS Nest] An STS nest Gx rooted by a
superstate x describes the local behavior in x, which is
represented by a six-tuple Gx = (ST x,HA(x),ΣA(x),∆

x,
ST0

x,STm
x), where

• ST x is a state-tree with a root x and terminated at
the state aggregation XA(x). In an STS G, given
a state-tree ST x rooted by x, ST x is obtained by
removing all the descendents of y with respect to
XA(x) < XA(y);

• HA(x) is the holon aggregation of superstate x. For-
mally, HA(x) := {Hy|Xy

I ⊆ XA(x)};
• ΣA(x) is the event aggregation of superstate x. For-

mally, ΣA(x) := {σ|σ ∈ Σy
I ,H

y ∈ HA(x)};
• ∆x is the nested transition structure of Gx, which will

be defined later;
• ST0

x is the initial-state-tree of Gx with respect to
V(ST0

x) = {z|z ∈ Xy
0 ,H

y ∈ HA(x)}; and
• STm

x is the marker-state-tree set of Gx with respect
to V(STm

x) = {z|z ∈ Xy
m,Hy ∈ HA(x)}. ⋄

By starting from the root state of an STS G, it is naturally
decomposed into a set of STS nests by Algorithm 1.
Definition 3. [Subordination] STS nest Gy is subordinate
to Gx if y ∈ XA(x). Formally, Gx < Gy. ⋄

Example.
We take the transfer line (Wonham & Cai (2013); Ma &
Wonham (2005, 2006)) shown in Fig. 1 as an example.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

11327

Algorithm 1 STS nest calculation
Input: An STS G with root state x0.
Output: A set D of STS nests G.
1. Calculate XA(x0) and Gx0 ;
2. Put state y ∈ XA(x0) w.r.t. T (y) ̸= SIM in a set C;
3. while C ̸= ∅ do
4. Choose an element y from C;
5. C := C \ {y};
6. Calculate XA(y) and Gy;
7. Put state z ∈ XA(y) w.r.t. T (z) ̸= SIM in C;
8. Put Gy into D;
9. end
10. return D;

Suppose that the capacities of the buffers B1 and B2
are both one. The system behavior of machine M1 (resp.,
M2) is described by two holons, in which the operations
in superstate M11 (resp., M21) are depicted in the low
level holons. The corresponding state-tree and holons are
shown in Figs. 2 and 3, respectively. The events denoted
by odd (resp., even) numbers are controllable (resp.,
uncontrollable).

3 4 5 61 2
M1 B1 M2 B2 TU

8

Fig. 1. Transfer line.
TL

cb

1M

0
1M

1
1M

da

2M

0
2M

1
2M

TU

0
TU

1
TU

1B

0
1B

1
1B

2B

0
2B

1
2B

gf he

Fig. 2. State-tree of a transfer line after plug in.

TL

2M TU

0

1

5 6,8

2B

0

1

4 5

1B

0

1

2,8 3

1M

0

a

1 2

b c

d

11

12 14

13

11M

0

e

3 4

f g

h

21

22 24

23

12M

Fig. 3. Holons of a transfer line after plug in.

For the STS shown in Figs. 2 and 3, we have GTL < GM11

and GTL < GM21 . The holons are divided into three holon
families shown in Figs. 4 and 5. The system behaviors in
GM11 and GM21 are not considered while synthesizing the
supervisor for the top level GTL. �

3.2 Nested Transition Structure in STS

Generally, given an STS G, suppose that Gy is subordi-
nate to Gx, i.e., Gx < Gy. We have holon aggregations

TL

2M

0

1

3 4

TU

0

1

5 6,8

2B

0

1

4 5

1B

0

1

2,8 3

1M

0

1

1 2

Fig. 4. Holon family of GTL.

0

a

1 2

b c

d

11

12 14

13

1
1M

(a) GM11

0

e

3 4

f g

h

21

22 24

23

12M

(b) GM21

Fig. 5. Holon families of GM11 and GM21 .

HA(x) and HA(y) as two holon families. In HA(x), super-
state y is replaced by a simple state with the same name.
In order to integrate the system behavior of Gy into Gx,
we require that

• while the system arrives state y in Gx, the system
enters ST0

y automatically;
• after entering Gy, the process in Gx is paused tem-

porarily; and
• while the system is ready to leave Gy, the events

defined at state y in Gx are eligible to occur.
Let σ in Σ be an event in an STS G. In Ma & Wonham
(2005, 2006), the largest eligible state-tree and largest next
state-tree of σ, denoted by EligG(σ) and NextG(σ), are
proposed to build its forward and backward transitions,
respectively. Let σ ∈ ΣA(x). Similarly, the largest nested
eligible state-tree and largest nested next state-tree in Gx,
denoted by EligGx(σ) and NextGx(σ), respectively, are
obtained. As a consequence, the nested forward/backward
transition structures denoted by ∆x/Γx are built.
Similarly, at a state-tree T ∈ ST (ST x), the forward (resp.,
backward) transition relation ∆x (resp., Γx) correspond-
ing to event σ is defined based on replace_sourceGx,σ

(resp., replace_targetGx,σ) operations on T ∧ EligGx(σ)

(resp., T ∧ NextGx(σ)). According to Ma & Won-
ham (2005, 2006), function replace_sourceGx,σ (resp.,
replace_targetGx,σ) replaces the source (resp., target)
states of event σ appeared in T by the corresponding target
states simultaneously.
Example.
For the STS shown in Figs. 4 and 5, while the system
arrives state M11 in GTL, the system enters ST0

M11

automatically and the behavior in GTL is paused. After
the system arrives STm

M11 in GM11 , event 2 in GTL is

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

11328

eligible to occur. In Fig. 4, at the active state set 1 {M20,

B11}, we have ∆TL({M20, B11}, 3) = {M21, B10}. �

3.3 Predicate Representation

The transition relation structures and the state space of
all the STS nests are encoded in predicates by function Θ :
ST (ST x) → Pred(ST x) defined in Ma & Wonham (2005,
2006). 2 Let Gx = (ST x,HA(x),ΣA(x),∆

x,ST0
x,STm

x)
be an STS nest. A predicate P x defined on B(ST x) is a
function P := B(ST x) → (0, 1). As a consequence, Gx can
be rewritten as Gx = (ST x,HA(x),ΣA(x),∆

x, P0
x, Pm

x),
in which P0

x and Pm
x are the initial predicate and marker

predicate, respectively.

4. NESTED SUPERVISORY CONTROL OF STS

In Ma & Wonham (2005, 2006), given a predicate P
with respect to an STS G, by the state feedback con-
trol (SFBC), the supremal element of weakly controllable
and coreachable behavior of G (i.e., optimal behavior)
C = supC2P(P) of G w.r.t. P is calculated. Instead of cal-
culating the optimal supervisor of an STS monolithically,
a top-down nested approach is presented in this section to
calculate the optimal behavior of each STS nest.

4.1 Nested Supervisory Control

Suppose that Gx and Gy are two STS nests in an STS G
w.r.t. Gx < Gy. By predefining specifications for each STS
nest, we obtain predicates P x and P y, respectively. A top-
down supervisor synthesis procedure is given in Algorithm
2 to calculate the optimal behavior of all the STS nests.
The calculation of the optimal behavior w.r.t. P y depends
on the result for P x. Finally, the global optimal behavior
of G is obtained.
In Algorithm 2, Lines 1–3 calculate the supervisor for the
STS nest Gx on the top level. The control function of
each controllable event on the top level is calculated in
Line 3. Lines 4–21 define a recursive function Supcon(·)
that calculate the supervisors of other STS nests. Suppose
that Gx < Gy. Let holon Ha ∈ HA(x) and Hb ∈ HA(y)

1 Let ST = (X,x0, T , E) be a state-tree and subST = (Y, x0, T ′, E ′)
be a sub-state-tree of ST . Let z ∈ Y and T ′(z) = OR. We say
x ∈ E ′(z) is active if E ′∗(x) = E∗(x) & E ′∗(z) ⊂ E∗(z), i.e.,
x is active if all of its descendants on ST are on subST but at
least one descendant of z is not on the subST . Each proper sub-
state-tree T ∈ ST (ST) corresponds to an unique active state set
V(T) =

∪
∀z∈Z

V(z), where Z is the set of OR superstates that have
active children.
2 In the BDD representation, the OR (resp., SIM) states are consid-
ered as variables (resp., values). According to Ma & Wonham (2005,
2006), a state-tree ST is encoded into a predicate P by function Θ :
ST (ST) → Pred(ST). Let ST1 = (X1, x1,0, T1, E1) be a sub-state-
tree of ST . Function Θ : ST (ST) → Pred(ST) is recursively defined

by Θ(ST1) =

∧
y∈E1(x0)

Θ′(ST y
1), if T (x0) = AND∨

y∈E1(x0)

, ((vx0 = y) ∧Θ′(ST y
1)) if T (x0) = OR

1, if T (x0) = SIM

where ST y
1 is the child-state-tree of ST1 rooted by y, and assume that

Θ′ : ST (ST) → Pred(ST) is already defined on the child-state-tree
ST y

1 . Trivially, define Θ(ST1) ≡ 0 if ST1 is an empty state-tree.

Algorithm 2 Nested Supervisory Control of STS
Input: A set of Nested STS G with predefined predi-
cates.
Output: Control functions for controllable events.
1. Compute Cx = supC2P(P x) with x = x0;
2. Ngood := Θ(NextG(σ));
3. fσ := Γ(Ngood, σ) for all σ ∈ ΣA(x) ∩ Σc;
4. start Supcon(P y);
5. for each Gy w.r.t. Gx < Gy

6. (∀σ ∈ ΣA(x) ∩Σc)¬fσ ∧ Pm
y ∧EligG(σ) |= B;

7. if B ̸= ⊥
8. P y = P y ∧ ¬B, P0

y = P0
y ∧ Cx,

Pm
y = Pm

y ∧ Cx;
9. Cy = supC2P(P y);
10. Ngood := Θ(NextG(σ)) ∧ Cx for all
σ ∈ ΣA(y) ∩ Σc;
11. fσ := Γ(Ngood, σ) ∨ ¬Cx;
12. endif
13. if Cy = ⊥ or Pm

y ∧ P y ∧ ¬R(Cy) ̸= ⊥,
14. pause;//The structure of Gy needs remodel.
15. else
16. for each Gz w.r.t. Gy < Gz

17. Supcon(P z);
18. endfor
19. endif
20. endfor
21. end
22. return fσ for all σ in Σc;

with σ ∈ Σx
I ∩ Σy

B ∩ Σc. In case that σ is disabled
in Gx, then the basic-state-trees in Gy containing the
corresponding terminal states in Hb are defined as an
illegal state in Gy, which is guaranteed by Lines 6–8. For
each controllable event σ in ΣA(y), Lines 9–11 calculate
the control functions that contain all the (redundant)
illegal behaviors of Gx to provide the supremal permissive
behavior for event σ. Line 13 checks the supremal behavior
Cy for Gy. In case that Cy is empty or some basic-state-
trees in Gy containing the terminal states in Gy are not
reachable, which shows that the system model in Gy is
problemtic and the users should remodel it. Line 17 invokes
function Supcon(·) recursively.
Suppose that Gx < Gy. As shown in Fig. 6, in each
STS nest Gy, the system behavior is recorded in an
agent Gy

traker. With respect to the specification for Gy,
according to the optimal behavior Cx of Gx and the
current status (a basic state-tree b) provided by Gy

traker,
a set of decision makers fσi , with σi ∈ Σc ∩ ΣA(y) and
i = 1, 2, . . . , n, makes the decisions applying b as the
argument. If fσi(b) = 1, then σi is allowed to occur.
Otherwise, it is disabled.

4.2 Boundary Consistency of Supervisory Control

As stated in Section 1, a well-formed STS satisfies bound-
ary consistency. In this study, this feature is extended to
the supervisory control of STS.
Property 1. We say that an STS satisfies the bound-
ary consistency of supervisory control if it satisfies: the
low level closed-loop (under control) STS nests can be
“plugged” into the states of a high level STS nest without
changing its control functions (control logics).

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

11329

G

Enabled

events

s

...

b

G
y

traker

1

x
f

2

x
f

n

x
f

x
C

y
C

Fig. 6. Nested STS control diagram.

As the two-level predicate depicted in Fig. 7, suppose that
event σ is controllable and it is disabled at basic-state-tree
2 on the top level. Within predicate 2 on the lower level,
in order to avoid blocking the system at basic-state-tree
c, it is considered as a new illegal basic-state-tree. Line
8 in Algorithm 2 guarantees that Property 1 is satisfied.
Finally, after calculating the supervisor for the lower-level
predicate 2, event τ is disabled.

0

1

a

c

d

b

3

4

5

2

Fig. 7. Two level predicates.

5. CASE STUDIES

Two case studies are presented in this section to demon-
strate the nested supervisory control of STS.

5.1 Transfer Line

For the transfer line studied in Section 3.1, the nonblocking
supervisory control functions are:

• In GTL:
· event 1 is enabled at: {B10, B20, M20, TU0},
· event 3 is enabled at: {B11}, and
· event 5 is enabled at: {B21};

• In GM11 : events 11 and 13 are always enabled; and
• In GM21 : events 21 and 23 are always enabled.

The transfer line satisfies Property 1. The system behavior
of its STS model under nested supervisory control is shown
in Fig. 8. By projecting out the low-level behavior shown
in Fig. 8 in the dashed line boxes, we obtain a diagram
identical with the optimal behavior of the top level.

3 4 51 2

8

6

11

13

12

14

21

23

22

24

Fig. 8. Optimal behavior of Transfer Line.

5.2 AIP Example

The diagram of the AIP studied in Ma & Wonham (2005,
2006) is depicted in Fig. 9. AIP has five conveyor loops:
one central loop communicates with four external loop
by four transfer units. Linked to the external loops are
three assembly stations and an I/O station. The primary
DES model of AIP studied in Brandin (1994) is the
synchronous product of 100 automata with a state space
up to 1024. Based on the developed nested SFBC, we
obtain 36 different STS nests on three hierarchical levels.
As a consequence, the total state space of all the 36 STS
nests are around 2 × 1018. The computation is finished
in several seconds on a personal computer with 2.40 GHz
Intel CPU and 8G RAM. The BDD nodes of the local
control functions for several important controllable events
are listed in Table 1 to compare between the the AIP
studied in Ma & Wonham (2005, 2006) (under MW) and
this study, in which the BDD size 0 represents that the
corresponding event is allowed to occur when it is eligible.

TU4

TU3

TU2

TU1AS1

AS2

AS3
Central

Loop

I/O Station

External

Loop 1

External

Loop 2

External

Loop 3

External

Loop 4

Fig. 9. AIP diagram.

Table 1. BDD size of Controller func-
tions for AIP

Event MW This study
ASi_repaired (i = 1, 2) 0 0

ASi_stop_close (i = 1, 2) 1 9
ASi_stop_open (i = 1, 2) 16 9
ASi_gate_open (i = 1, 2) 0 0

ASi_read (i = 1, 2) 0 0
AS1_pickup3 15 0
AS1_pickup4 15 0

AS3_gate_open 0 0
AS3_read 2 2

L1_gate_open 95 44
CL_TUi_gate_open (i = 1, 2) 70 37

CL_TU1_stop_close 28 20
CL_TU2_stop_close 36 19
TUi_Drw2Li(i = 1, 2) 54 0

6. DISCUSSIONS

For the one-level transfer line depicted in Fig. 4, by
following the approach proposed in Ma & Wonham (2005,
2006) (under MW) and this study, the control functions
for events 1, 3, and 5 are identical, as given in Section
5.1 under GTL. However, after plugging the (nonblocking)

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

11330

holons shown in Fig. 5, their results are different. The BDD
nodes of the control functions are listed in Table 2, which
shows that Property 1 is not satisfied in the supervisory
control of STS proposed in Ma & Wonham (2005, 2006).

Table 2. BDD nodes of controllers
Event MW This study

1 0 4
3 1 1
5 5 1
11 4 0
13 4 0
21 2 0
23 2 0

More precisely, by following Ma & Wonham (2005, 2006),
control functions f11 and f13 make decisions based on the
system behavior in some high level holons. They require
that events 11 and 13 should occur if

• buffers B1 and B2 and test unit TU are empty, or
• buffer B1 is empty, buffer B2 is occupied, machine
M2 is at the initial state, and test unit TU is empty.

As a consequence, the control functions calculated based
on the approach proposed in Ma & Wonham (2005, 2006)
may contain redundant control logics. This is caused by
the redundant calculation of the synchronous product of
GM11 and GM21 . By following Ma & Wonham (2005)
and Ma & Wonham (2006), the closed-loop behavior of
the STS contains 56 basic state-trees and 126 transitions.
However, as shown in Fig. 8, according to the nested
approach presented in this study, we obtain the closed-
loop behavior of the STS contains 12 basic state-trees and
15 transitions.

7. CONCLUSION

Based on the AND and OR superstates of an STS, we
formally decompose it into a set of STS nests that de-
scribes its system behavior on each hierarchical level. The
subordination relation among different STS nests is also
defined. Suppose that an STS nest Gy is subordinated
to another STS nest Gx. In Gx, the complex internal
behavior of Gy is represented by a simple state y. Instead
of calculating the optimal supervisor of an STS monolith-
ically, a top-down nested approach is presented in this
study to calculate the optimal behavior of each STS nest.
By avoiding the redundant calculation of the synchronous
product in independent STS nests, the state spaces of both
the system model and the supervisor are reduced signifi-
cantly. Finally, two case studies are presented in Section
5 to demonstrate the nested supervisory control of STS.
For the STS model of the AIP studied in Ma & Wonham
(2005, 2006); Brandin (1994), it was originally with a state
space up to 1024. In this study, it is decomposed into 36
different STS nests on three hierarchical levels. As a result,
the total state space of all the 36 STS nests is reduced
to around 2 × 1018. The supervisors for each STS nest
satisfies the boundary consistency of supervisory control,
i.e., the low level closed-loop (under control) STS nests
can be “plugged” into the states of a high level STS nest
without changing its control functions (control logics). In
our future work, we will work on the nested supervisory
control of state-tree structures with partial observations.

REFERENCES
H. Marchand and B. Gaudin. Supervisory control prob-

lems of hierarchical finite state machines. Proc. 41st
IEEE Conf. on Dec. and Cont., 1199–1204, 2002.

B. Gaudin and H. Marchand. Supervisory control of prod-
uct and hierarchical discrete event systems. European
Journal of Control, 10(2):131–145, 2004.

B. Gaudin and H. Marchand. Safety control of hierarchical
synchronous discrete event systems: A state-based ap-
proach. Proc. IEEE Intern. Symp., Medit. Conf. Cont.
Autom. Intel. Cont., 889–895, 2005.

D. Harel and A. Pnueli. On the development of reactive
systems. In Logics and Models of Concurrent Systems.
NATO ASI Series, 13:477–498, New York, 1985.

D. Harel. Statecharts: A visual formalism for complex
systems. Science of Computer Programming, 8:231–274,
1987.

P. J. Ramadge and W. M. Wonham. Supervisory control
of a class of discrete event processes. SIAM J. Contr.
Optim., 25(1):206–230, 1987.

W. M. Wonham and K. Cai. Supervisory control of
discrete-event systems, Monograph Series Communica-
tions and Control Engineering, Springer, 2018.

R. Alur, S. Kannan, M. Yannakakis. Communicating
hierarchical state machines. International Colloquium
on Automata, Languages, and Programming, 169–178,
1999.

C. Ma and W. M. Wonham. Nonblocking Supervisory
Control of State Tree Structures, vol. 317, LNCIS,
Berlin: Springer-Verlag, 2005.

C. Ma and W. M. Wonham. Nonblocking supervisory
control of state tree structures. IEEE Trans. Autom.
Cont., 51(5):782–793, 2006.

R. E. Bryant. Graph-based algorithms for boolean func-
tion manipulation. IEEE Trans. Comput., 35(8):677–
691, 1986.

W. J. Chao, Y. M. Gan, Z. A. Wang, and W. M. Wonham.
Modular supervisory control and coordination of state
tree structures. Intern. J. Cont., 86(1):9–21, 2013.

K. Cai and W. M. Wonham. Supervisor Localization: A
Top-Down Approach to Distributed Control of Discrete-
Event Systems, vol. 459, LNCIS, Berlin: Springer-
Verlag, 2015.

T. Jiao, Y. M. Gan, G. C. Xiao, and W. M. Wonham. Ex-
ploiting symmetry of state tree structures for discrete-
event systems with parallel components. Intern. J.
Cont., 90(8):1639–1651, 2017.

C. Gu, X. Wang, Z. W. Li, and N. Q. Wu. Supervisory
control of state-tree structures with partial observation.
Inform. Sci., Elsevier, 465(8):523–544, 2018.

C. Gu, X. Wang, and Z. W. Li. Synthesis of supervisory
control with partial observation on normal state-tree
structures. IEEE Trans. Autom. Sci. Eng., 16(2):984–
997, 2019.

D. G. Wang, X. Wang, and Z. W. Li. Nonblock-
ing supervisory control of state-tree structures with
conditional-preemption matrices. IEEE Trans. Ind. In-
form., 16(6):3744–3756, 2020.

B. Brandin and F. Charbonnier. The supervisory con-
trol of the automated manufacturing system of the
AIP. Proc. Rensselaer’s 4th Int. Conf. on Computer
Integrated Manufacturing and Automation Technology,
Troy, NY, 1994, 319–324.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

11331

