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Abstract: We study a collective decision making model where each player needs to commit to
one of two options. The fractions of committed individuals are the states of this evolutionary
model. As element of novelty we incorporate environmental feedback to our model, which
translates to system parameters that are now depending on the state of the system. In the
first scenario of environmental feedback, we show how we reach a stable unique equilibrium that
only depends on the factor of spontaneous commitment. In a second and third scenario, we show
that under a suitable form of environmental feedback, we obtain limit cycles in the behavior.
All our findings are covered by simulations.
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1. INTRODUCTION

In recent years, there has been an increase in literature on
environmental feedback (Weitz et al., 2016). Here, systems
are studied where certain parameters are depending on the
actual state of the system: the environment. The state
serves thus as a feedback term to the system, and by
considering the closed-loop system, a rise to interesting
phenomena is gained.

Another big stream of literature focuses on evolutionary
dynamics of game-theoretic models (Pais et al., 2013). One
of these models is the bio-inspired honeybee model, where
a colony of bees need to chose a new home, and the bees
have to choose between two options. This example of col-
lective decision making has been studied quite extensively
(Stella and Bauso, 2018b), (Stella and Bauso, 2018a).

Another stream of literature within game-theory focuses
on limit cycles (Hommes and Ochea, 2012), (Toni, 2017),
(Gilpin, 1975). The idea here, is to consider a game-
theoretic model where the attractive asymptotic steady-
state behavior is not given by a unique equilibrium point,
but rather, where there is convergence to a limit cycle.
Interestingly, in this case, the optimal strategy is not a
unique fixed strategy, but players are continuously cycling
through their action profiles. As examples we can think of
the rock-paper-scissors game (Toupo and Strogatz, 2015),
or games with evolutionary dynamics (Pais et al., 2012),
(Hofbauer and Sigmund, 2003), (Foster and Young, 1990).

The main contributions of this paper are as follows. As
starting point we consider a collective decision-making
model, but as element of novelty we let the system
parameters be state-varying. The system parameters are
now no longer fixed constants, but are adapting and act
as environmental feedback. For different choices of pa-
rameters, we show that we can obtain multiple different
dynamical systems. In the first model we develop, the role
of one particular parameter, called the spontaneous com-
mitment factor, is highlighted. We show that an increase
in this factor yields an increase of committed individuals.
By another choice of environmental feedback, we show how
we can transform our collective decision-making model to
a dynamical system that shows limit-cyclic behavior. The
contribution of this paper is relevant in that it can serve
as stepping stone to study the way in which environmental
feedback can be incorporated in game-theoretic models
and can lead to asymptotic behavior such as limit cycles.

Our paper is organized as follows. In Section 2 we study
the bio-inspired evolutionary model for collective decision
making. In Sections 3, 4, and 5 we integrate the previous
model with environmental feedback, thus by making the
system parameters state-depending. Extensive numerical
experiments are conducted in Section 6, validating our
theoretical results. In Section 7 conclusions are drawn and
future research directions are given.

2. COLLECTIVE DECISION MAKING MODEL

In (Stella and Bauso, 2018b), (Stella and Bauso, 2018a),
a collective decision making model has been studied in
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Fig. 1. The evolutionary dynamics for the a-symmetric
case.

great detail. It describes a bio-inspired evolutionary model
as it stems from the study of how a swarm of honeybees
decide on a new home. The idea behind the model is to
consider a large population of players, and every player
needs to choose between two options. As applications one
can think of honeybees that can choose to live in two nests,
or consumers that can buy a similar product from two
manufacturers, or voters that need to choose between left
and right politics.

The average fractions of the crowd committed to each
option form the states of this dynamical model. Here, x
denotes the fraction of the population that is committed
to option 1, y denotes the fraction of players committed
to option 2, and z denotes the fraction of the uncom-
mitted players. Note that by construction we have that
x+ y + z = 1.

These fractions x, y and z can change over time due to
numerous phenomena. First of all, uncommitted players
can spontaneously decide to commit to option 1 or 2,
and this is quantified by a factor α1 and α2, respectively.
Uncommitted players are also attracted to an option by
means of imitation, quantified by r1 and r2, and the
strength of this imitation factor is proportional to the
number of individuals to an option. Thus, more players
committed to option 1 (2) leads to a stronger imitation
factor r1x (r2y).

Committed individuals to option 1 or 2, i.e., players that
are located in the x and y fractions, can also become
uncommitted. This can happen through either sponta-
neously uncommitment, quantified by a rate α1 and α2, or
by means of cross-inhibitory signals σ1 and σ2. The idea
here, is that players from option 1 (2), can send cross-
inhibitory signals to the opposing team 2 (1), to lure them
to become uncommitted. The strength of these signals are
proportional to the magnitude of the fraction of committed
individuals. As practical example, in politics we can think
of these cross-inhibitory signals as smear-campaigns.

All in all, these phenomena are captured in Figure 1. The
mathematical model describing this evolutionary model is
thus given by

ẋ = (γ1 + r1x)z − x(α1 + σ1y),

ẏ = (γ2 + r2y)z − y(α2 + σ2x),

ż = −(γ1 + r1x)z + x(α1 + σ1y)− (γ2 + r2y)z+

y(α2 + σ2x).

Since x+ y + z = 1, the variable z is actually redundant.
Thus, an equivalent representation is given by

ẋ = (γ1 + r1x)(1− x− y)− x(α1 + σ1y),

ẏ = (γ2 + r2y)(1− x− y)− y(α2 + σ2x).
(1)

It should be remarked that this is the asymmetric case,
by which we mean that the system parameters αi, γi, ri, σi
are different for the two options. If the strengths of these
parameters are the same, thus γ1 = γ2, r1 = r2, α1 =

α2, σ1 = σ2, we refer to this scenario as the symmetric
case, and the model simplifies to

ẋ = (γ + rx)(1− x− y)− x(α+ σy),

ẏ = (γ + ry)(1− x− y)− y(α+ σx).
(2)

3. ENVIRONMENTAL FEEDBACK

In the next sections, we will incorporate environmental
feedback in the system. This means that the system
parameters depend on the current state of the system. By
doing so, we can transform the nature of the behavior and
we will show how this will lead to interesting behavior. In
this section, for the imitation factors r1 and r2, we let them
be proportional to the fractions of committed individuals.
There is a clear intuition behind this, because the more
individuals are committed to a certain option, the higher
the imitation factor should become. In particular, we let

r1 = x, r2 = y.

For the cross-inhibitory signals σ1 and σ2, the following
choice is made

σ1 = y − x, σ2 = x− y.
We note that σ1 = −σ2. Furthermore, depending on
the magnitude of x and y, the cross-inhibitory signal σi
can change sign. The intuition behind this is as follows.
Consider σ1 = y − x. If there are more players committed
to option 2 than to option 1, so y > x, we have that σ1 > 0.
The cross-inhibitory signals can thus be interpreted as
a positive effect to make committed players to option 1
uncommitted. On the other hand, if y < x, we have that
σ1 < 0, and the interpretation is that the fraction of
players committed to option 2 is too small to send a cross-
inhibitory signal. Due to the negativity of the parameter
σ1, this weak cross-inhibitory signal now in fact works as
benefactor for the growth of the fraction of committed in-
dividuals to option 1. Having these environmental feedback
laws in mind, the dynamics of (1) becomes

ẋ = (γ1 + x2)(1− x− y)− x(α1 + y2 − xy),

ẏ = (γ2 + y2)(1− x− y)− y(α2 + x2 − xy),

which can be rewritten as
ẋ = γ1 − γ1x− γ1y + x2 − α1x− x(x2 + y2),

ẏ = γ2 − γ2x− γ2y + y2 − α2y − y(x2 + y2).
(3)

We consider the case where we have

α1 = x, α2 = y.

In this case, the dynamics reduce to

ẋ = γ1 − γ1x− γ1y − x(x2 + y2),

ẏ = γ2 − γ2x− γ2y − y(x2 + y2).
(4)

We remark that, due to the effect of the constant param-
eters γ1 and γ2, assuming that at least one parameter is
nonzero, the origin (x, y) = (0, 0) is not an equilibrium.
In the remainder of this paper, we will study the nonzero
equilibrium of the above system and we do that for two
different variants of the model in (4). In the first case,
we consider a symmetric model in which γ1 = γ2. In
the second case we consider the asymmetric model, where
γ1 6= γ2.

3.1 Symmetric case

Consider the dynamics of (4), but now in the case where
the parameter for spontaneous commitment is the same for

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

2875



each option, so γ1 = γ2 = γ. The model is now described
by

ẋ = γ − γx− γy − x(x2 + y2),

ẏ = γ − γx− γy − y(x2 + y2).
(5)

In order to find an equilibrium (x, y) = (x∗, y∗), we must
solve ẋ = ẏ = 0. Subtracting these two equations one
obtains

(−x+ y)(x2 + y2) = 0.

We note that x2 + y2 can only be zero for x = y = 0,
since otherwise we would have complex values for the
fractions of committed players. Hence, we must have that
−x + y = 0 so in fact we have a symmetric equilibrium
x = y. Substituting this back in the equation for ẋ = 0,
we see that this equilibrium value satisfies

γ − 2γx− 2x3 = 0.

Theorem 1. For the symmetric case γ1 = γ2 whose dy-
namics are described by (5), we reach a unique symmetric
equilibrium (x, y) = (x∗, y∗) whose value is given by

x∗ = y∗ = w − γ
3w , (6)

with w given by

w =

(
γ

4
+

√
γ2

16
+
γ3

27

) 1
3

. (7)

Proof. We have already established that we reach a sym-
metric equilibrium (x, y) = (x∗, y∗), where the equilibrium
value satisfies the following equality

x3 + γx− γ
2 = 0.

This is a cubic equation in x, which can be solved by using
a Vieta’s substitution. Let us introduce

x = w − γ
3w .

Then, the cubic equation x3 + γx− γ
2 = 0 reads

w3 − γ3

27w3 − γ
2 = 0.

Multiplying both sides by w3, we end up with a quadratic
solution in w3, which is easily solved. This quadratic
equation has two solutions, but the one with a minus sign
in front of the square root cannot be a solution, as this
value is negative and we have that x∗ ∈ [0, 1]. Thus, we
find the value in equation (7), and this completes the proof.

In the simulation depicted in Figure 2, the equilibrium
value x∗ is plotted as a function of γ. We see that as γ
increases, the value x∗ converges to a half, which means
that half of the players are committed to option 1 and
the other half is committed to option 2. The fraction of
uncommitted players goes to zero.

3.2 Asymmetric case

We now consider the asymmetric case, where the factors
of commitment are not necessarily the same. The model
is described by the differential equations in (4). We can
establish the following result.

Theorem 2. For the asymmetric model, whose dynam-
ics are described by (4), we reach a unique equilibrium
(x, y) = (x∗, y∗) and this equilibrium is

x∗ = w −

γ1+γ2

1+
(γ2
γ1

)2
3w

, (8)

Fig. 2. The equilibrium value x∗ as function of the system
parameter γ.

where w is given by

w =

 γ1

2

(
1 +
(

γ2
γ1

)2) +

√√√√ γ2
1

4

(
1 +
(

γ2
γ1

)2)2
+

(γ1 + γ2)
3

27

(
1 +
(

γ2
γ1

)2)3


1
3

,

(9)

and

y∗ =
γ2
γ1
x∗. (10)

Proof. In order to find the equilibria of (4), we set ẋ = 0
and ẏ = 0 and solve for x and y. Subtracting γ1 times
the second equation from γ2 times the first equation, we
obtain

γ2ẋ− γ1ẏ = (−γ2x+ γ1y)(x2 + y2) = 0.

From this it follows immediately that y = γ2
γ1
x, or that

x = y = 0 since imaginary solutions are not part of the
feasible set. Substituting y = γ2

γ1
x into the first equation

for ẋ = 0, we obtain a cubic equation in x

γ1 − (γ1 + γ2)x− x3
(

1 +
(
γ2
γ1

)2)
= 0.

This is again a cubic polynomial in x and we can find the
roots analytically using a Vieta’s substitution. Following
the same steps as in the proof of Theorem 1, we find that
the equilibrium (x, y) = (x∗, y∗) is given by

x∗ = w −

γ1+γ2

1+
(γ2
γ1

)2
3w

,

where w is given by (9). This completes the proof.

We remark that, whenever γ1 > γ2, since y∗ = γ2
γ1
x∗, we

have that x∗ > y∗. On the other hand, if γ2 > γ1, we will
find that y∗ > x∗. As second observation, we note that if
γ2 = γ1, indeed x∗ = y∗, and we reach the same symmetric
equilibrium as expected.

To show how the value of the equilibrium (x∗, y∗) changes
for different values of γ1 and γ2, we made a plot in Figure
3. The diagonal γ1 = γ2 is represented in a solid red line,
and we note that these curves are indeed the same for
both x∗ and y∗. Furthermore, this curve follows the shape
as displayed in Figure 2.

3.3 Stability

In the previous subsections we showed that we have a
nonzero equilibrium for the systems (5) and (4). The
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Fig. 3. Equilibrium value x∗ (top) and equilibrium value
y∗ (bottom) for different values of γ1, γ2.

next theorem shows that this unique equilibrium is locally
stable.

Theorem 3. Consider either the symmetric model (5) or
the asymmetric model (4). In either case, the unique
equilibrium that we reach, given by Theorem 1 or 2, is
locally stable.

Proof. We prove the theorem for the asymmetric case,
since the symmetric case follows then immediately by
imposing γ1 = γ2. For the equilibrium value (x∗, y∗), the
linearized system of (4) has the following Jacobian matrix

J =


∂ẋ

∂x

∂ẋ

∂y
∂ẏ

∂x

∂ẏ

∂y


∣∣∣∣∣∣∣
(x,y)=(x∗,y∗)

=

[
−γ1 − 3x2 − y2 −γ1 − 2xy
−γ2 − 2xy −γ2 − x2 − 3y2

]∣∣∣∣
(x,y)=(x∗,y∗)

.

From Theorem 2, we furthermore know that y∗ = γ2
γ1
x∗.

We use this to prove that the matrix is diagonally domi-
nant. For diagonally dominance, we require

γ1 + 3(x∗)2 + (y∗)2 ≥ γ1 + 2x∗y∗

3 +
(
γ2
γ1

)2
≥ 2γ2γ1 ,

the above inequality is always satisfied. This follows im-
mediately from the fact that the quadratic polynomial
a2 − 2a + 3 has negative discriminant. Similarly, one can

show that γ2 + (x∗)2 + 3(y∗)2 ≥ γ2 + 2x∗y∗ holds as well.
Hence, the Jacobian J is diagonally dominant. Now, by
the Gershgorin’s Circle Theorem, the eigenvalues of J are
contained in disks with centre−γ1−3x∗−y∗ and−γ2−x∗−
3y∗, with radius γ1 + 2x∗y∗ and γ2 + 2x∗y∗, respectively.
Since the matrix is diagonally dominant, these disks do
not cross the imaginary axis, so the eigenvalues of J have
negative real part. This completes the proof.

4. LIMIT CYCLES

In this section, we will show how we can derive limit cycles
in the behavior of our collective decision making model (1)
by incorporating environmental feedback laws. The idea
here again, is that the system parameters γi, ri, αi, σi can
be thought of as control inputs, and the choice serves as
input strategy to the system. In the end, we will show how
we can arrive at the following dynamical system, by using
a particular choice of our system parameters:

ẋ = (y − d) + (x− e)
(
a− b(x− e)2 − c(y − d)2

)
,

ẏ = −(x− e) + (y − d)
(
a− b(x− e)2 − c(y − d)2

)
.

(11)

This model contains limit cycles around the point (x, y) =
(e, d), and the values for a, b, c influence the width and
height of the limit cycle. These parameters a, b, c can be
thought of as a measure of stiffness or damping, while d, e
simply denote the translation.

We first recall the existence of limit cycles in the system
described by (11), since this is just a translated system of

ẋ = y + x(a− bx2 − cy2),

ẏ = −x+ y(a− bx2 − cy2).
(12)

Lemma 4. The system (12) contains a limit cycle.

Proof. The proof follows by direct application of the
Poincaré-Bendixson Theorem, see e.g. (Khalil, 2003) or
(Hirsch et al., 2012).

We now prove that by a suitable choice of parameters
γi, ri, αi, σi, we can transform our collective decision mak-
ing model (1) into (11).

Theorem 5. The collective decision model (1) can be
transformed into (11) by choosing

γ1 = cey2 + y + be3 + cd2e,

r1 = 3bex+ 2cdy + a,

α1 = −ax− 3bex2 + bx2 − be3 − cd2e+ 3be2 + cd2+
d
x + ae

x ,

σ1 = −1− a− cey − 2cdy + cy − 2cdx− 3bex− be3

x −
cd2e
x + 2cde

x −
y
x −

cey2

x ,

γ2 = bdx2 + e+ bde2 + cd3,

r2 = 3cdy + 2bex+ a,

α2 = −e− bde2 − cd3 + be2 + 3cd2 − ay − 3cdy2+

cy2 + ad
y ,

σ2 = −a− 2bey − 3cdy − 2bex− bdx+ bx− bdx2

y −
e
y−

bde2

y −
cd3

y + 1
y + 2bde

y .

Proof. This follows from direct substitution. For the first
dynamics equation we obtain:
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ẋ = (γ1 + r1x)(1− x− y)− x(α1 + σ1y)

= cey2 + y + be3 + cd2e+ 3bex2 + 2cdxy + ax− bx3−
3be2x− cd2x− d− ae− cxy2 − 2cdey.

We now observe that, if we substitute x = e, the above
expression reduces to y − d. Hence, if we neglect the
terms y − d in the above expression, the remainder can
be factorized with a factor (x − e). By long division one
can obtain:

cey2 + y + be3 + cd2e+ 3bex2 + 2cdxy + ax− bx3−
3be2x− cd2x− d− ae− cxy2 − 2cdey

= (x− e)
(
−cy2 − be2 − cd2 + 2cdy + a− bx2 + 2bex

)
.

Thus, the dynamics of ẋ reduce further to

ẋ = (y − d) + (x− e)
(
a− b(x− e)2 − c(y − d)2

)
.

A similar argument holds for the equation of ẏ, and this
completes the proof.

Remark 1. There is an important remark we need to
make. Although there is some freedom in choosing the
values a, b, c, d, e, it is important to stress that there are
constraints. First of all, the values d, e account for the
translation and obviously we cannot choose d, e outside
the set of feasible states {(x, y) ∈ [0, 1]2 | 0 ≤ x+ y ≤ 1}.
Following up on this, as a, b, c are used to create the shape
and size of the limit cycle, we cannot choose them such
that the limit cycle becomes too large, crossing the set
of feasible states. The reason why it can happen that for
some values we exit the feasible set, is due to the way we
chose the system parameters γi, ri, αi, σi. For particular
choices of a, b, c, d, e, it can happen that α1, σ1, α2, σ2
become negative for some x, y. In that case, the physical
interpretation of our model (1) is lost.

5. LIMIT CYCLES: VAN DER POL OSCILLATORS

Next up, we show that by another choice of environmental
feedback, we can obtain the following type of dynamical
systems.

ẋ = y,

ẏ = (a− bx2)y − cx,
(13)

where a, b, c are positive constants that we still need to
specify, that can be thought of as stiffness or damping
coefficients. A special case of this system is known as the
Van der Pol oscillator. An equivalent representation of (13)
is

ẍ+ (bx2 − a)ẋ+ cx = 0,
which is a so-called Liénard equation, and we can think of
it as a model for a mass-spring system, where bx2 − a is a
damping force and cx is a spring constant. Interestingly,
this system permits limit cycles which we will prove in the
next lemma.

Lemma 6. The system (13) contains a limit cycle around
the origin.

Proof. This is again a classical result and it follows im-
mediately by application of the Levinson-Smith Theorem.

We will show in the next theorem how it is possible to
transform our collective decision making model (1) into
the following dynamical system

ẋ = y − d,
ẏ =

(
a− b(x− e)2

)
(y − d)− c(x− e).

(14)

Note that this is simply a translated version of (13). Thus,
by the previous lemma, the above system contains an
attractive limit cycle around the point (x, y) = (e, d).

Theorem 7. Under the following choice of environmental
feedback, we can transform (1) into (14), where the values
a, b, c, d, e are yet to be assigned

γ1 = y, r1 = 0, α1 = d
x , σ1 = −1− y

x ,

γ2 = bdx2 + bde2 + ce, r2 = 2bex+ a,

α2 = −bde2 − ce+ be2 − ay + ad
y ,

σ2 = −a− 2bey + bx− 2bex− bdx− bdx2

y −
bde2

y −
ce
y + 2bde

y + c
y .

Proof. The proof follows from direct substitution. We
first analyze the dynamics in ẋ

ẋ = (γ1 + r1x)(1− x− y)− x(α1 + σ1y)

= (y) (1− x− y)− x
(
d
x − y −

y2

x

)
= y − d,

as desired. Next up, consider the dynamics in ẏ

ẏ = (γ2 + r2y)(1− x− y)− y(α2 + σ2x)

= bdx2 + bde2 + ce+ 2bexy + ay − be2y − ad− bx2y−
2bdex− cx.

We note that if we substitute y = d in the last expression,
this reduces to −cx + ce. Thus, the above expression can
be factored with (y− d) and remainder −cx+ ce. By long
division, we obtain that

bdx2 + bde2 + 2bexy + ay − be2y − ad− bx2y − 2bdex

= (y − d)(−bx2 − be2 + 2bex+ a),

Thus, the dynamics of ẏ reduce to

ẏ = ce− cx+ (y − d)(−bx2 − be2 + 2bex+ a)

=
(
a− b(x− e)2

)
(y − d)− c(x− e).

This completes the proof.

Of course a similar remark as to Theorem 5 is in order.
Although we did not specify the values a, b, c, d, e yet,
they are not complete free, as we would like to have the
limit cycle to be contained in the set of feasible states
{(x, y) ∈ [0, 1]2 | 0 ≤ x + y ≤ 1}. The values d, e simply
account for a translation, while the values a, b, c have
influence on the shape and magnitude of the limit cycle.

6. NUMERICAL EXPERIMENTS

In this section, we will run various numerical simulations
to validate our results. For the system (4) developed in
Section 3, we have run the dynamics with γ1 = 1 and
γ2 = 0.1. The results are shown in Figure 4. Since γ1 =
10γ2, we will find that x∗ = 10y∗. The time-evolution of
the fraction of committed players to option 1 and option 2
is depicted in red and blue, respectively. We reach a stable
equilibrium (x∗, y∗) which value is given by the result in
Theorem 2, and indeed we see that x∗ = γ2

γ1
y∗.

Another simulation is done to show the existence of limit
cycles in the phase plane (x, y), validating our results in
Section 4. For the system given by (11), we take d = e = 1

3
and a = 0.4, b = 3, c = 15. This means that we took the
following environmental feedback laws
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Fig. 4. Time-evolution of the fraction of players committed
to option 1, x, in red, and of players committed to
option 2, y, in blue.

γ1 = 5y2 + y + 2
3 , γ2 = x2 + 1,

r1 = 3x+ 10y + 2
5 , r2 = 15y + 2x+ 2

5 ,
α1 = − 2

5x+ 2 + 7
15x , α2 = 13

3 −
2
5y + 2

15y ,

σ1 = − 7
5 − 13x+ 8

3x− σ2 = − 2
5 − 17y−

y
x − 5y

2

x ,
x2

y + 2
3y .

For three different initial conditions, we plotted the trajec-
tory in the xy-plane, and the result is shown in Figure 5
(left). We see that every trajectory converges to the same
limit cycle, and this limit cycle is an elliptic shape around
the point (e, d) = (1

3 ,
1
3 ).

Fig. 5. Left: Time-evolution in the phase-plane for system
(11). Right: Time-evolution in the phase-plane for
system (14).

Finally, an experiment on the limit cycles obtained in
Section 5 is conducted. For system (14) we took the values
a = 0.1, b = 10, c = 0.1, and we translated to d = 1

3 , e = 1
3 .

The environmental feedbacks were in this case
γ1 = y, γ2 = 10

3 x
2 + 109

270 ,
r1 = 0, r2 = 20

3 x+ 1
10 ,

α1 = 1
3x , α2 = − 79

270 −
1
10y + 1

30y ,

σ1 = −1− y
x , σ2 = − 1

10 −
20
3 y −

10
3yx

2 + 518
270y .

Again, for three different initial conditions, we plotted the
trajectories in the xy-plane and the results are shown in
Figure 5 (right). We see that every trajectory approached
the limit cycle.

7. CONCLUSION

In this paper we combined a collective decision making
model with environmental feedback. We started with a
description of a system that models the average commit-
ment to two distinct options. We showed that by making
the system parameters state-dependent, this gives rise to

interesting phenomena. In the first scenario, where the
environmental feedback laws were practical in nature, we
reduced the dynamics to a system that was only depending
on one parameter, the spontaneously commitment factor.
For this case, we showed that there is a unique equilibrium,
which can be computed a priori. Furthermore we showed
that this unique equilibrium is locally stable.

In order to obtain limit cycles in our dynamics, the
environmental feedback laws are more complicated, but it
is nevertheless possible. Interestingly, for such scenarios,
state trajectories do not converge to a single equilibrium,
but rather, they end up in cyclic dynamics. Practically,
this means that the average commitment fractions are also
changing continuously.

For future research we would like to investigate under
which conditions the environmental feedback laws cannot
change sign, such that they always remain positive. Oth-
erwise, and this is the case currently, it can happen that
for a bad choice of feedback the system trajectories leave
the set of feasible states.
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