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Abstract: In this paper output constrained sliding mode control of nonlinear relative degree
two systems is considered. The constraints are formulated with respect to the first derivative of
the control variable. The system may be effected by matched disturbances. Only the uncertainty
bounds are required to be known. A multi-controller approach with variable gains is proposed.
The controller guarantees that the constraints can at most be violated for a finite-time, which can
be shortened by tuning the controller parameters. Despite the action of the multiple controllers
the tracking error of the approach is guaranteed to be bounded.
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1. INTRODUCTION

Sliding mode control (SMC) is a well established method
for robust control of nonlinear systems. Consider a man-
ifold in the state space. In the reaching phase of SMC
the controller drives the states towards the manifold. A
sliding mode is said to be established if the states reach
the manifold and start to slide on its surface. Using an
appropriate definition of the sliding surface, the states can
be driven to the origin. Even in the presence of matched
disturbances the states remain on the manifold. The main
drawback of conventional SMC is occurrence of switching
around the manifold denoted as chattering. The chattering
may induce unstable dynamics or cause damage. Conse-
quently most of the works in the literature are related to
chattering attenuation: There exist approximation tech-
niques like the boundary layer approach (Slotine (1984)) or
the exponential reaching law (Gao and Hung (1993), Fal-
laha et al. (2010)), higher order SMC approaches (Levant
(2003), Dinuzzo and Ferrara (2009)), and adaptive gain
approaches (Huang et al. (2008), Edwards and Shtessel
(2016)). However, only few works about constrained SMC
can be found. In Innocenti and Falorni (1998) an admis-
sible region in state space described by a polygonal box
is considered. In the region the constraints are satisfied.
Sufficient and necessary conditions are established so that
the states will remain in the admissible region. An invari-
ant set approach for output constrained SMC is proposed
in Richter et al. (2007). First, the unconstrained closed
loop dynamics using a conventional SMC are considered.
A robust positive invariant (RPI) set, Richter et al. (2007),
for this closed loop dynamics is formulated. The RPI set
has the form of a cylinder with ellipsoidal cross section.
The ellipsoidal cross section can be defined by a positive
definite matrix which is found solving a linear matrix
inequality (LMI). The LMI is feasible if the closed loop
dynamics are asymptotically stable and the switching gain
of the controller does not exceed an upper bound. The
constrained states are described by a convex set. The
system fulfills the output constraints i. e. the states remain

in the intersection of the cylinder and the convex set of
the constraints, if a number of conditions are fulfilled.
The proposed approach is restricted to linear systems, but
can consider additive disturbances. An application to slosh
control can be found in Richter (2010). A multi-regulator
SMC for output constrained systems is proposed in Richter
(2011). The controller structure is based on a max-min
selection scheme. These schemes are applied in aircraft
engine control i. e. to control thrust of turbofan engines
under various turbine related limits like temperature or
pressure (Litt et al. (2009)). Instead of using linear con-
trollers the max-min scheme proposed in Richter (2011)
uses sliding mode controllers. However, the approach is
restricted to linear systems. The constraints as well as the
control variable are both of realtive degree one. Addition-
ally, the switching gains have to be tuned by experiement.
No explicit formulars for the gains are given. In Song et al.
(2016) finite time SMC under explicit output constraints is
considered. The proposed SMC consists of a proportional,
and a switiching term. The swichting term ensures that the
sliding mode is reached in finite time, whereas the gain of
the proportional term can be designed so that the output
constraints are fulfilled. However, the corresponding gain
has to be obtained from the solution of several LMIs, which
are not guaranteed to be feasible. Additionally, the system
to be controlled must fulfill the so-called conic sector
constraint (ElBsat and Yaz, 2013), which restricts the
dynamic behavior of the system and implies that at least
nominal system parameters must be known. In Incremona
et al. (2016) constraints are expressed as sliding variables
using suitable diffeomorphisms. The sliding variables build
an integrator chain. Driving the sliding variables to zero
will enforce the constraints. Consequently, a higher order
SMC is applied to drive the sliding variables to zero. In
Rubagotti et al. (2010) SMC and model predictive control
(MPC) are combined to incooperate constraints. Integral
SMC is applied to compensated matched uncertainties and
to facilitate the design of the MPC controller. However,
integral SMC requires the input matrix of the system to
be precisely known. Numerous works about SMC based
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missile guidance with impact angle constraint like the
one of Harl and Balakrishnan (2011) can be found in
the literature. Nevertheless, this problem is comparatively
easy to solve as satisfying the constraint also guarantees
the control goal to be achieved.

In this paper output constraint SMC of nonlinear rel-
ative degree two systems is considered. The constraints
are formulated with respect to the first derivative of the
control variable. A multi-controller approach with variable
gains is proposed. The constraint may be violated, similar
to a soft-constraint implementation of MPC. However,
after finite-time the constraints are guaranteed to be sat-
isfied again. Despite the action of the multiple controllers
the tracking error of the approach is guaranteed to be
bounded. The paper is organized as follows. In Section
2 the preliminaries and assumptions are discussed. The
multi-controller approach is introduced and analyzed in
Section 3. A numerical example is considered in Section 4.

2. PROBLEM FORMULATION

Consider a nonlinear system

ẋ = f(x) + g(x)u = f0(x) + φ(x, t) + g(x)u, (1)

yr = h(x), (2)

with states x ∈ Rn, control variable yr ∈ R, and control
input u ∈ R. Disturbances like parameter uncertainties
and variations as well as unknown exogenous inputs are
described by φ. Based on Lie derivatives the relative degree
rr of the control variable can be defined as

rr , min r?r : LgL
r?r−1
f h(x) 6= 0. (3)

In this paper the relative degree rr is assumed to be two,
and reference tracking

lim
t→∞

yr(t) = w, (4)

subject to constraints being defined by the upper bound

yc1 = sc1 ẏr ≤ lc1 , sc1 = 1, (5)

and lower bound

yc2 = sc2 ẏr ≤ lc2 , sc2 = −1, (6)

is considered. The reference variable denoted by w ∈ R
is assumed to be a constant set-point, and the constraints
related to the output variables yci are defined by constants
0 < lci ∈ R, where ci ∈ {c1, c2}. The equations (5), (6)
imply that only one constraints can be violated at a given
time. From (3) it follows that input-output descriptions
of the control variable and the output constraints can be
achieved as

ÿr = L2
fh(x) + LgLfh(x)u, (7)

ẏci = sciL
2
fh(x) + sciLgLfh(x)u. (8)

The sliding variable related to the control variable is
defined as

σr = −ėr − a0er, a0 > 0, (9)

where

er = w − yr, (10)

denotes the tracking error. The sliding variables related to
the output constraints are considered to be

σci = −eci , (11)

where

eci = lci − yci . (12)

Based on (9,10,7) the sliding dynamics of σr can be
obtained as

σ̇r = Ψr + Γru, (13)

with

Ψr = L2
fh(x) + Ωr, (14)

Ωr = a0ẏr, (15)

Γr = LgLfh(x), (16)

where Ψr, and Γr are assumed to have finite bounds

|Ψr| ≤ Ψr,M , 0 < Γrm ≤ Γr. (17)

Parameter variations and external disturbances may ap-
pear but can be compensated by the controller as long
as the uncertainty bounds hold true. It is assumed that
yr = h(x), and ẏr = Lfh(x) are continuous functions so
that σr = σr(x) of (9) is continuous.

3. OUTPUT CONSTRAINED SLIDING MODE
CONTROL

In this section the multiple-controller approach is intro-
duced. It is shown that the constraints can only be violated
for a finite-time which can be shortened by adjusting the
controller parameters. The tracking error is proven to be
bounded.

Consider the controller

• If ∀ci : yci ≤ lci holds true then

u = −krsgn(σr), (18)

with

kr =
ηr + Ψr,M

√
2

Γr,m
√

2
, (19)

where ηr > 0.
• If ∃c̃i : yc̃i > lc̃i holds true then

u = −krsgn(σr)− sc̃ikc̃isgn(σc̃i), (20)

where

kc̃i =

{
k̄c̃i , if k̄c̃i ≥ 0,

0, if k̄c̃i < 0,
(21)

with

k̄c̃i =
ηc̃i + (Ψr,M + |Ωr|)

√
2

Γr,m
√

2

− sc̃ikrsgn(σr)sgn(σc̃i), (22)

and ηc̃i > 0, and kr as defined in (19).

If all the constraints are satisfied the proposed controller
reduces to a conventional SMC (18) which drives σr to
zero. Consequently reference tracking is achieved. If one
constraint is violated control law (20) becomes active.
Based on the variable gain kci it is guaranteed that the
constraint can only be violated for a finite-time.

The controller properties are studied as follows.

Proposition 1. For system (1,2) with controller (18-22)
sliding variable σr(t2) is bounded by

|σr(t2)| ≤ −ηr
√

2

2
(t2 − t1) + |σr(t1)|, ηr > 0, (23)

if ∀ci : yci(t
?) ≤ lci , and σr(t

?) 6= 0, with t? ∈ [t1, t2] holds
true.
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Proof. This is well-known, similar results can be found in
e. g. Shtessel et al. (2014). Consider the Lyapunov function
candidate V = 0.5(σr)

2. From (13, 18) it follows

V̇ = σr(Ψr − krΓrsgn(σr))

≤ |σr|Ψr,M − krΓr,m|σr|, (24)

As the gain of the proposed controller fulfills

kr ≥
ηr + Ψr,M

√
2

Γr,m
√

2
, (25)

it follows

V̇ ≤ − ηr√
2
|σr| = −ηrV 1/2. (26)

Integrating inequality (26) from t1 to t2 by separating dV ,

and dt, and inserting V 1/2 =
√

0.5|σr| gives (23). The
proposition is proven.

Proposition 2. If ∃c̃i : yc̃i(t) > lc̃i holds true then for
system (1,2) with controller (18-22) statement yc̃i(t +
tf ) ≤ lc̃i holds true after some finite time tf > 0.

Proof. The statement is proven by contradiction. Assume
that no tf exists and consider the Lyapunov function
candidate V = 0.5(σc̃i)

2. Using (8, 11, 12) the sliding
dynamics for the constraint are

σ̇c̃i = Ψc̃i + Γc̃i ũ, (27)

with

Ψc̃i = sc̃iL
2
fh(x), (28)

Γc̃i = LgLfh(x), (29)

ũ = sc̃iu. (30)

From (27, 30, 20) it follows

V̇ = σc̃i(Ψc̃i − sc̃ikrΓc̃isgn(σr)− k̄c̃iΓc̃isgn(σc̃i)),

= (Ψc̃isgn(σc̃i)− sc̃ikrΓc̃isgn(σr)sgn(σc̃i)− k̄c̃iΓc̃i)

× |σc̃i |≤ −
ηc̃i√

2
|σc̃i | = −ηc̃iV 1/2, (31)

with constant ηc̃i > 0. Then from (31) the inequality

k̄c̃i≥
ηc̃i

Γc̃i
√

2
+

Ψc̃isgn(σc̃i)

Γc̃i
− sc̃ikrsgn(σr)sgn(σc̃i), (32)

can be obtained. From the triangle inequality

|sc̃iL2
fh(x)| − |Ωr| ≤ |L2

fh(x) + Ωr| ≤ Ψr,M ,

it follows that Ψc̃i is bounded by

|Ψc̃i | ≤ Ψr,M + |Ωr|, (33)

and Γc̃i = Γr is bounded by

0 < Γr,m ≤ Γc̃i . (34)

Based on (33, 34) it follows that inequality (32) holds true
if

k̄c̃i ≥
ηc̃i + (Ψr,M + |Ωr|)

√
2

Γr,m
√

2

− sc̃ikrsgn(σr)sgn(σc̃i), (35)

holds true. Consequently, σc̃i goes to zero in finite time.
So yc̃i(t + tf ) ≤ lc̃i holds true and the assumption is
violated. From (31) it follows that the constraint can only
be violated for a finite-time. This finite-time depends on
ηc̃i , which is a controller parameter that can be tuned. The
statement (21) is added to minimize the controller action.
The proposition is proven.

Theorem 3. If controller (18-22) is applied to system (1,2)
the tracking error er is guaranteed to be bounded.

Proof. As (9) is Hurwitz boundedness of the tracking
error er(t) will be shown by boundedness of the sliding
variable σr(t). From (5, 6, 11, 12) it follows that σci(t) > 0
holds true if and only if constraint ci is violated. Consider
the sliding variable to be σr(t1) at some time t1. From
Proposition 2 it is known that a finite time t?1 ≥ t1 is
guaranteed to exist so that the states are in an admissible
region (the constraints are satisfied at time t?1).

• Suppose that σr(t
?
1) > 0:

It will first be shown that as long as σr(t
†
1) > 0

with t†1 ∈ [t?1, t2] for some t2 ≥ t?1 holds true an

upper bound of σr(t
†
1) is given by σr(t

?
1). At time

t†1 the constraints are satisfied so control input (18) is

applied. Considering input (18) with sgn(σr(t
†
1)) = 1

as σr(t
†
1) > 0, and (27, 28, 29, 30, 14, 16) it follows

that the dynamics of the sliding variable related to
the constraint c1 are

σ̇c1(t†1) = Ψr − Ωr − Γrkr
≤ Ψr − Ωr − Γr,mkr. (36)

Consider σc1(t̄1) = 0 to hold true for some t̄1 ∈ [t?1, t2].
It follows from (5, 11, 12) that ẏr(t̄1) = lc1 > 0. So
Ωr(t̄1) = a0ẏr > 0. For time t̄1 equation (36) can be
written as

σ̇c1(t̄1) ≤ Ψr − Γr,mkr ≤ −
ηr√

2
< 0, (37)

where the controller gain from (19) has been consid-
ered. Consider σc1(t?1) ≤ 0 to hold true as the states
are in an admissible region at time t?1. It becomes
clear that constraint c1 can never be violated for some
t†1 ∈ [t?1, t2], because for constraint c1 to be violated,

σc1(t†1) > 0 has to hold. However, this can never be

achieved as σc1(t†1) cannot go above zero due to (37).
Consequently, one has only to show that the sliding

variable σr(t
†
1) remains bounded if the states are in

the admissible region or if constraint c2 is violated.
The former is proven by Proposition 1 and the latter
is considered in the following. From (6, 11, 12) it
follows

σc2(t†1) = −lc2 − ẏr(t
†
1). (38)

As the states are in the admissible region there could
exist a time t̄2 ∈ [t?1, t2] with σc2(t̄2) = −lc2 −
ẏr(t̄2) = 0. So

ẏr(t̄2) = −lc2 , (39)

holds true. Consider the constraint c2 to be violated
for t̄3 ∈ (t̄2, t3), where t3 ∈ (t̄2, t2]. Consequently,

ẏr(t̄3) < −lc2 < 0, (40)

can be obtained from (38). Using (9, 10) the sliding
variable of the reference is

σr(t) = ẏr(t)− a0w + yr(t). (41)

It follows from (39, 40) that the sliding variable for
time t̄3 can be expressed as

σr(t̄3) = ẏr(t̄3)− a0w + yr(t̄3),

= ẏr(t̄3)− a0w + yr(t̄2) +

∫ t̄3

t̄2

ẏr(τ)dτ,

≤ ẏr(t̄2)− a0w + yr(t̄2),

= σr(t̄2) ≤ σr(t?1). (42)
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Consider constraint c2 to be violated in interval
(t̄2, t3) and to be satisfied for time t3, i. e. ẏr(t3) =
−lc2 . It follows from (39, 40) that

σr(t3) = ẏr(t3)− a0w + yr(t3),

= ẏr(t̄2)− a0w + yr(t̄2) +

∫ t3

t̄2

ẏr(τ)dτ,

≤ ẏr(t̄2)− a0w + yr(t̄2),

= σr(t̄2) ≤ σr(t?1), (43)

holds true. From (42), (43) it becomes clear that
sliding variable σr(t) stays bounded from above also
if constraint c2 is violated. So it has been shown that
σr(t

?
1) is an upper bound for σr(t) in time interval

[t?1, t2]. However, t2 might be finite if the sliding
variable becomes non-positive. Consider t�1 to be the
time at zero-crossing, so that

σr(t�1) = 0, (44)

holds true. From Proposition 2 it follows that a finite
time t?2 ≥ t�1 is guaranteed to exist so that the states
are in an admissible region. Consider σr(t

?
2) to be

positive, then an upper bound can be achieved in the
same way like it was shown that σr(t

?
1) is an upper

bound. Consider σr(t
?
2) to be negative, then it can

be shown that constraint c2 can never be violated
if σr(t

†
2) < 0 and that σr(t

†
2) remains bounded from

below if constraint c1 is violated. So σr(t
†
2) is bounded

in interval [t?2, t5]. Considering t5 to be finite there
might exist further zero-crossings

σr(t
�
i ) = 0, (45)

at times t�i with i = 1, ..., n, which correspond to times
t?i+1 ≥ t�i at which the states are in the admissible
region. Consequently, it can be shown that σr(t

?
i+1)

are upper (lower) bounds like it was shown for σr(t
?
1)

(σr(t
?
2)). However, it must be checked that these

bounds |σr(t?i+1)| will not go to infinity itself if time
increases. This can never happen as based on the zero-
crossings

σr(t
?
i+1) = σr(t

�
i ) +

∫ t?i+1

t�
i

σ̇r(τ)dτ =

∫ t?i+1

t�
i

σ̇r(τ)dτ,

holds true, and t?i+1 − t�i is guaranteed to be finite.
• Suppose that σr(t

?
1) < 0:

The proof is omitted as it is very similar to the
σr(t

?
1) > 0 case, and uses the same argumentation.

• Suppose that σr(t
?
1) = 0:

Due to Proposition 2 it is always possible to find times
t?i+1 = t?i + ∆t, with some ∆t > ε, and i = 1, . . . ,m
for which the states are in the admissible region.
Consider σr(t

?
i ) = 0 to hold true for t?i then σr(t̄)

with t̄ ∈ [t?1, t
?
i ] is bounded as σr(t) is a continuous

function. If a time t?i with σr(t
?
i ) 6= 0 exists one may

show boundedness like it is shown for the σr(t
?
1) > 0,

σr(t
?
1) < 0 cases.

The proof of the theorem is completed.

In practice the controller (18-22) is infeasable due to its
switching behavior. As stated in Shtessel et al. (2014) a
common method to attenuate the chattering effect is to
approximate the signum function by a smooth function

sgn(σ) ≈ σ

|σ|+ ε
, (46)

A
C

D
E

H
F

G
I

J

Fig. 1. Two mass spring damper system

with 0 < ε� 1. Consequently, a practical implementation
of controller (18-22) is given as

• If ∀ci : yci ≤ lci holds true then

u = − krσr
|σr|+ εr

, (47)

with kr =
ηr+Ψr,M

√
2

Γr,m

√
2

, where ηr > 0, εr > 0.

• If ∃c̃i : yc̃i > lc̃i holds true then

u = − krσr
|σr|+ εr

− sc̃ikc̃iσc̃i
|σc̃i |+ εc̃i

, (48)

where

kc̃i =

{
k̄c̃i , if k̄c̃i ≥ 0,

0, if k̄c̃i < 0,
(49)

with

k̄c̃i =
ηc̃i + (Ψr,M + |Ωr|)

√
2

Γr,m
√

2

− sc̃ikrσrσc̃i
(|σr|+ εr)(|σc̃i |+ εc̃i)

, (50)

and ηc̃i > 0, εc̃i > 0.

Remark 4. Note that the controller

u = −krsgn(σr)− sc̃ikc̃isgn(σc̃i), (51)

defined in (20) could also be replaced by a controller of
the form

u = −sc̃ik?c̃isgn(σc̃i), (52)

as k?c̃i could be chosen appropriate to fulfill the reachability
condition (31). However, considering the smooth approxi-
mations of (51)

u = −kr
σr

|σr|+ εr
− sc̃ikc̃i

σc̃i
|σc̃i |+ εci

, (53)

and (52)

u = −sc̃ik?c̃i
σc̃i

|σc̃i |+ εci
, (54)

it can be seen that for σc̃i → 0 the transition of (47) to
(48) is smooth if (48) equals (53) whereas it is not smooth
if (48) equals (54).

4. EXAMPLE

In this section the proposed controller is applied to a
nonlinear mechanical mass spring damper system (Fig. 1).
Based on Newtons second law the dynamics of the system
can be derived as
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Table 1. System parameters

Parameter Symbol Value

Weight (first mass) m1 10 kg

Weight (second mass) m2 5 kg

Linear stiffness (first spring) k1 20 kg/s2

Nonl. stiffness (first spring) k2 10 kg/(s2m2)

Linear stiffness (second spring) k3 15 kg/s2

Nonl. stiffness (second spring) k4 10 kg/(s2m2)

Nonl. damping (first damper) d1 10 kg/m

Nonl. damping (second damper) d2 2 kg/m


ẋ1

ẋ2

ẋ3

ẋ4


︸ ︷︷ ︸

ẋ

=


x2

F1(x) + F2(x)

m1
x4

−F2(x)

m2


︸ ︷︷ ︸

f(x)

+


0
0
0
1

m2


︸ ︷︷ ︸

g

u, (55)

F1(x) = −k1x1 − k2x
3
1 − d1x

2
2,

F2(x) = k3(x3 − x1) + k4(x3 − x1)3 + d2(x4 − x2)2,

where x1 is the position of the first mass, x2 is the velocity
of the first mass, x3 is the position of the second mass, and
x4 is the velocity of the second mass. The control input is
the force u = Fu. The control variable is

yr = h(x) = x3. (56)

The parameters of the system are given in Table 1. From
(55, 56) the input-output description

ÿr = L2
fh(x) + LgLfh(x)Fu (57)

of the control variable can be achieved, where

L2
fh(x) = −F2(x)

m2
, LgLfh(x) =

1

m2
, (58)

and the relative degree is two (rr = 2). Following (9) the
sliding variable is defined as

σr = −ėr − a0er. (59)

From (59, 57) the dynamics of the sliding variable are
obtained as

σ̇r = Ψr + ΓrFu, (60)

with

Ψr = −F2(x)

m2
+ a0x4, (61)

Ωr = a0x4, Γr =
1

m2
. (62)

The bounds of Ψr, and Γr are assumed to be

Ψr,M = 0.8, Γr,m = 0.002. (63)

Following (5, 6) the constraints and their corresponding
bounds are defined as

yc1 = ẏr = x4, sc1 = 1, (64)

yc2 = −ẏr = −x4, sc2 = −1, (65)

yc1 ≤ 0.4 m/s = lc1 , (66)

yc2 ≤ 0.2 m/s = lc2 , (67)

and based on (11) the sliding variables are defined as

σc1 = −0.4 + x4, (68)

σc2 = −0.2− x4. (69)
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Fig. 2. Visualization of reference tracking
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Fig. 3. Consideration of output constraints

The nonlinear system (55) is simulated based on Euler
method using sampling time Ts = 0.001 s and initial state

x(t0) =
[
0 0 0 0

]T
. (70)

A simulation duration of 2 s is considered and the reference
values for tracking are

w =

{
0.1 m if t ≤ 1 s,

0 m if 1 s < t ≤ 2 s.
(71)

The proposed output constrained sliding mode controller
(constrained SMC) defined by (47-50) is compared with a
standard unconstrained SMC

u = − krσr
|σr|+ εr

, (72)

where kr =
ηr+Ψr,M

√
2

Γr,m

√
2

, ηr > 0, εr > 0. The controller

parameters used in the simulation are: ηr = ηc1 = ηc2 =
0.2, εr = 0.05, εc1 = 0.06, εc2 = 0.03. For the sliding
dynamics a0 is chosen as a0 = 15.

The simulation results are visualized in Figures (2-5). The
proposed constrained SMC approach yields only slight vio-
lation of the output constraints (similar to a soft constraint
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Fig. 5. Visualization of variable gains

implementation of MPC), whereas the conventional SMC
shows unconstrained behavior (Fig. 3). Despite the multi-
controller action constrained SMC approach achieves ref-
erence tracking (Fig. 2). The control input of the uncon-
strained SMC shows more smooth behavior in comparison
to the proposed constrained SMC approach (Fig. 4). This
is due to the point that the second term in (48) induces
a switching each time a constraint is newly violated. The
variable gains of constrained SMC approach are visualized
in Fig. 5.

5. CONCLUSION

A multi-controller approach with variable gains has been
developed. The controller guarantees the output con-
straints to be violated at most for a finite-time which
can be shortened by tuning of the controller parameters.
Despite the multiple controller action the tracking error
is bounded and reference tracking is achieved in simula-
tion. As a next step the control approach is intended to
be improved so that violation of the constraints can be
avoided at all and minimization of the tracking error can
be achieved.
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