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Abstract: This paper proposes a Cartesian variable-impedance and force controller that enables 

manipulators to track position and force references demonstrated by a user through kinesthetic teaching. 

The proposed approach deploys the variability of user demonstrations to adapt the compliance profile of 

the manipulator to uncertainties and utilizes interaction force measurements during task reproduction to 

enhance force tracking performance. A passivity analysis is provided to demonstrate the stability of the 

system and a simulation exemplifies how passivity is achieved in the presence of variable impedance and 

force feedback. Furthermore, using a 7-DOF manipulator equipped with a force sensor, two experiments 

were conducted to highlight the ability of the proposed approach in successfully reproducing tasks with 

disturbances, where the state-of-the-art methods fall short. 
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1. INTRODUCTION AND STATE OF THE ART 

Today, most robots deployed in industrial applications such as 

assembly are position-controlled and programmed to follow 

user-defined trajectories. Theses robots offer precise and high-

bandwidth position and velocity control that can increase 

productivity and accuracy. Such automation solution require 

cumbersome robot programming and utmost care in assembly-

line design to minimize variation in the involved parts and the 

environment, as minute deviations from assumed geometries 

and constraints may lead to a failure of the program and thus 

bringing production to a halt. Reducing the required effort in 

setting up an automated robotic task and at the same time 

achieving a high degree of robustness to uncertainties has been 

a topic of interest to the industries and academia for decades. 

Programming by Demonstration (PbD) (Billard et al. 2008) 

methods aim at simplifying the traditional means of 

programming a robot, by capturing user demonstrations of a 

task using a variety of sensing schemes and encode these 

demonstrations through a mathematical representation that can 

be used by the robot to reproduce the task. Kinesthetic 

teaching, where the user moves a gravity-compensated robot 

by hand to demonstrate the desired motion is one of the more 

common input methods in PbD (Argall et al. 2009). Several 

solutions for encoding demonstrated trajectories have been 

proposed including Dynamic Movement Primitives (DMP) 

(Schaal 2006), Probabilistic Movement Primitives (Paraschos 

et al. 2013),  and Gaussian Mixture Model (GMM) (Calinon et 

al. 2010) (Khansari-Zadeh and Billard 2011), where the latter 

provides an intuitive representation of the variance among 

multiple demonstrations of users. Such stochastic information 

can be exploited to increase the robustness of the system, as 

will be discussed shortly. Although generating and tracking 

pose trajectories from user demonstrations can speed-up the 

traditional point-to-point robot programming, intricate robotic 

tasks that encompass contact with the environment will still 

require elaborate programming and possibly switching to force 

control for segments of the task.  One might resort to 

impedance control (Hogan 1985) which is one of the more 

popular approaches that can implicitly regulate interactions 

with the environment and enhance robustness. In impedance 

control, the objective of purely controlling pose is replaced 

with that of controlling the impedance of the robot-

environment interaction through imposing a mass-spring- 

damper disturbance response. Inspired by the ability of 

biological motor control in adapting the impedance of the 

overall biomechanical system to different task requirements 

and disturbances, several works have proposed impedance 

controllers with varying stiffness (Buchli et al. 2011), 

(Kronander and Billard 2012). Variable impedance can 

enhance the robustness of the system with respect to 

geometrical uncertainties. In addition, increasing the 

compliance when accurate positioning is not needed can 

prevent the robot from applying excessive force to the 

environment. This can diminish the severity of accidental 

collisions with users, prevent unnecessary safety breaks 

engagement when in unexpected contact with the 

environment, and reduce the probability of damaging the 

workpieces or the robot.  

When the demonstrated task includes parts where close 

tracking of interaction force is of importance, an impedance 

controller proves to be of limited use. Knowing the 

environment’s geometry and mechanical properties, one can 

set the stiffness and the position references (on a flat surface, 

for example, references would be set below the actual surface) 

to generate a specific interaction force (Zeng and Hemami 

1997). Such extensive knowledge of the environment reduces 

practical applicability of this implicit force controller. To 
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counter this issue Calinon et al. (Kormushev, Calinon, and 

Caldwell 2011) introduced a variable stiffness controller 

which is augmented with a feed forward force reference. 

During user demonstrations, only the position information is 

recorded, and the force information is acquired when the robot 

reproduces the demonstration for the first time while the user 

remotely uses a haptic device to enter desired forces. While 

such an acquisition protocol might suffice for simple tasks 

such as the ironing task reported in (Kormushev et al. 2011), 

an end-effector mounted Force/Torque (F/T) sensor allows to 

remain within the more intuitive kinesthetic teaching 

framework and simultaneously acquire pose and force 

measurements of intricate tasks in one shot (user handles the 

manipulator at any point before the mounted F/T sensor). In 

(Montebelli, Steinmetz, and Kyrki 2015) such an acquisition 

platform was used to record user demonstrations and DMP was 

deployed to generate desired pose and force trajectories (only 

in a single Cartesian dimension). Based on whether the 

magnitude of the force reference is equal to zero or not, the 

proposed controller switched between an impedance controller 

with pose references and a pure 1-dimensional force 

feedforward. The work was extended in (Racca et al. 2016) to 

include 3D Cartesian force and to replace the simple controller 

switching method with a hidden semi-Markov model to 

classify 2 states of contact or no-contact and smoothly 

transition between impedance control and force feed-forward 

by modifying the stiffness matrix of the impedance controller. 

These approaches are based on the implicit assumption that 

interaction forces are only of interest when non-zero values are 

recorded during the demonstration. However, the absence of 

external forces during the demonstration is itself an 

information that can be exploited if non-zero external forces 

are encountered during the task replication by the robot. In 

fact, to the best of our knowledge, none of the works in the 

PbD literature that regard force and position learning, utilize 

interaction force measurement during the entirety of task 

replication. In the absence of force feedback, the accuracy of 

the force tracking can be largely limited as the controller must 

rely on open loop feedforward force reference. As we will 

demonstrate in this paper, a more accurate force tracking not 

only matters for explicit force control tasks, but it can enable 

the robot to successfully reproduce tasks where force 

references are zero, and at which current PbD methods can fall 

short. The presence of force feedback loop in addition to 

position feedback in the impedance controller can affect the 

stability of the system and stability analysis cannot be 

neglected (Schindlbeck and Haddadin 2015). In fact system 

stability can also be jeopardized when arbitrary variations of 

the impedance parameters are allowed (Kronander and Billard 

2016) (Ferraguti, Secchi, and Fantuzzi 2013). However, the 

risk of encountering instability has rarely been explicitly 

addressed in the PbD works that deploy variable impedance 

controllers. 

In this work, we introduce a PbD framework that utilizes 

GMM/GMR to encode Cartesian positions and interaction 

forces of user demonstrations and to generate desired 

references for position, force, and Cartesian stiffness. These 

desired references are then regulated by a controller which is 

augmented by a passivity observer to guarantee stability. The 

main contribution of this work is a variable Cartesian 

impedance and force controller that aims at increasing the 

tracking accuracy of interaction force in PbD. Furthermore, 

stability analyses and a passivity observer is provided for the 

impedance and force controller in presence of force feedback 

and variable stiffness. The paper is structured as follows. 

Section 2 contains a preliminary introduction to the models 

used in this work and detailed discussion of the proposed 

method. In Section 3, simulation and experimental results are 

provided and discussed. Section 4 provides conclusions and 

directions for future works.  

2. METHODS 

2.1 Robot dynamic model 

We consider the dynamic model of an 𝑛-DOF (Degree of 

Freedom) manipulator (Siciliano et al. 2009) with rigid joints 

described as: 

 
𝑀(𝑞)�̈� + 𝐶(𝑞, �̇�)�̇� + 𝑔(𝑞) =  𝜏𝑐 +  𝜏𝑒𝑥𝑡 (1) 

Where 𝑞 ∈ 𝑅𝑛 is the vector of joint variables, 𝑀(𝑞) ∈ 𝑅𝑛𝑥𝑛  is 

the positive definite inertia matrix, 𝐶(𝑞, �̇�)�̇� ∈ 𝑅𝑛  is the 

Coriolis and centrifugal torques vector, 𝑔(𝑞) ∈ 𝑅𝑛 is the 

gravitational torque, 𝜏𝑐 ∈ 𝑅𝑛  the torque commanded by the 

controller, and 𝜏𝑒𝑥𝑡 ∈ 𝑅𝑛 is the torque from interaction with 

the environment. The scope of this paper is limited to position 

and interaction force. However, the proposed formulation can 

be extended to include full pose and interaction wrench. The 

corresponding dynamic model in task space (Khatib 1995) 

considering only translation is given as:  

 
Λ(𝑥)�̈� + 𝜇(𝑥, �̇�)�̇� + 𝐹𝑔(𝑥) =  𝐹𝑐 +  𝐹𝑒𝑥𝑡 (2) 

where 𝑥 ∈  𝑅3 is the cartesian position vector of the end 

effector obtained through forward kinematics from the joint 

vector 𝑞, Λ =  (𝐽𝑀−1𝐽𝑇)−1 ∈ 𝑅3𝑥3  is the end effector inertia 

matrix with 𝐽(𝑞) ∈ 𝑅3×𝑛 being the Jacobian matrix of the 

manipulator at joint configuration 𝑞, 𝜇(𝑥, �̇�)�̇� = Λ(𝐽𝑀−1𝐶 −

 𝐽)̇�̇� ,  𝐹𝑔 =  𝐽−𝑇𝑔,  𝐹𝑐 =  𝐽−𝑇𝜏𝑐 and  𝐹𝑒𝑥𝑡 =  𝐽−𝑇𝜏𝑒𝑥𝑡 all ∈  𝑅3. 

2.2 Trajectory encoding and reference generation 

In programming by demonstration, the trajectories acquired 

from user demonstrations are first encoded through a 

mathematical representation that can extract the fundamental 

features of the desired task. In this work, we utilize GMMs to 

encode demonstrations and Gaussian Mixture Regression 

(GMR) to generate reference trajectories from the derived 

GMMs. Further details of these methods can be found in the 

literature (Calinon, Guenter, and Billard 2007). In addition to 

position trajectories, we encode the interaction force profile of 

the tool with the environment recorded during the 

demonstration, using an end-effector mounted force sensor. 

Furthermore, we utilize the covariance of the provided position 

trajectories, to define a time varying stiffness and damping 

profile for the impedance controller, as will be described in 

Subsection 2.3.  

Acquired demonstrations are commonly aligned in time using 

methods such as dynamic time warping or cross-correlation 

analysis (Calinon 2016). The optimal number of Gaussians to 

fit the demonstrated data is found through Bayesian 

Information Criterion (BIC) (Calinon et al. 2007) to have a 
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tradeoff between model error and model complexity. Given a 

position and a force datasets of N points that share the time 

vector 𝑡𝑗: 𝜉𝑗 = {𝑡𝑗¸ 𝑥𝑗}
𝑗=1

𝑁
 ,𝜑𝑗 = {𝑡𝑗¸ 𝑓𝑗}

𝑗=1

𝑁
, two mixtures of 

𝑀𝑥  gaussians described by { 𝜋𝑥,𝑖 , 𝜇𝑥,𝑖 , Σ𝑥,𝑖}𝑖=1

𝑀𝑥
 for position and 

𝑀𝑓 gaussians described by { 𝜋𝑓,𝑖 , 𝜇𝑓,𝑖 , Σ𝑓,𝑖}𝑖=1

𝑀𝑓
 for force are 

generated, where 𝜋𝑖 represents the priors, 𝜇𝑖 is mean and Σ𝑖   

the covariance matrix of the 𝑖𝑡ℎ gaussian. Training of the 

mixtures is done with the Expectation Maximization (EM) 

algorithm, initialized with the K-mean clustering techniques to 

avoid getting trapped in local minima (Bishop 2006). 

Applying GMR on these two mixtures of gaussians, and using 

the temporal components as query points, we obtain the 

profiles of the desired position 𝑥𝑑(𝑡), desired force 𝐹𝑑(𝑡) and 

the corresponding covariance matrices Σ𝑥(𝑡) and Σ𝑓(𝑡) that 

are then used to control the robot. 

2.3 Controller definition 

In the classic impedance controller (Hogan 1985): 

𝐹𝑐 =  −𝐾𝑥�̃� − 𝐷𝑥 �̇̃� + Λ(𝑥)�̈�𝑑 + 𝜇(𝑥, �̇�)�̇�𝑑 + 𝐹𝑔(𝑥) (3) 

where �̃�(𝑡) = 𝑥(𝑡) − 𝑥𝑑(𝑡) is deviation from desired position, 

and 𝐾𝑥 and 𝐷𝑥   are stiffness and damping values (often 

diagonal), the interaction force with the environment is an 

indirect result of the position error and the stiffness gains. To 

provide the option of including desired force references, in 

(Kormushev et al. 2011), (Montebelli et al. 2015), and (Racca 

et al. 2016) a desired force term 𝐹𝑑 was added to the controller: 

𝐹𝑐 = −𝐾𝑥�̃� − 𝐷𝑥 �̇̃� + 𝐹𝑑 + Λ(𝑥)�̈�𝑑 + 𝜇(𝑥, �̇�)�̇�𝑑 + 𝐹𝑔(𝑥)  (4) 

However, since such a controller relies on a feedforward force 

reference, disturbances in the environment can hinder the 

ability of the controller in delivering a robust force tracking 

performance. Towards achieving a variable impedance and 

force controller for PbD applications with improved 

robustness to uncertainties, we propose the following variable 

gain controller:  

𝐹𝑐  =  −𝐾𝑥�̃� − 𝐷𝑥 �̇̃� +  𝐹𝑑 + 𝐾𝑓(𝐹𝑒𝑥𝑡 − 𝐹𝑑) + Λ(𝑥)�̈�𝑑

+ 𝜇(𝑥, �̇�)�̇�𝑑 + 𝐹𝑔(𝑥) 
(5) 

where the proportional feedback term 𝐾𝑓(𝐹𝑒𝑥𝑡 − 𝐹𝑑) can 

enhance the reference force tracking performance. Unlike the 

controller proposed in (Schindlbeck and Haddadin 2015), here 

the controller gains are variable and adapted to emphasis force 

or position regulation, as will be shortly discussed. The 

proposed controller leads to the following relation between the 

pose error and the external force: 

Λ(𝑥)�̈̃� + (𝐷𝑥 + 𝜇(𝑥, �̇�))�̇̃� + 𝐾𝑥�̃�

= 𝐹𝑒𝑥𝑡 + 𝐹𝑑 + 𝐾𝑓(𝐹𝑒𝑥𝑡 − 𝐹𝑑) 
(6) 

maintaining and balancing the desired spring-damper dynamic 

relation between external force and the position/velocity error 

and reference forces, while a full-body compliance is 

guaranteed. To obtain an ideal impedance behaviour, also the 

inertial terms in equation (1) can be compensated through 

inertia reshaping. However, for lightweight manipulators in 

collaborative applications, this term is practically negligible 

due to relatively low inertias and accelerations. In (6), the 

stiffness 𝐾𝑥  can act as a weighting term between position and 

force error, allowing to prioritize the tracking of either. In the 

following we describe our approach to generate a smooth 

stiffness profile that is deduced from the demonstrated position 

and force trajectories. 

As previously discussed in literature, variance of the 

demonstrated trajectories can be interpreted as the importance 

of accurate tracking for the user. In other words, if a section of 

the motion is consistent among different demonstrations then 

it can be deduced that the section is likely to benefit from 

higher position tracking performance, while in the presence of 

high variability in the demonstrations, position tracking can be 

relaxed and other constraints of the task can be emphasized. 

This can be achieved by defining the stiffness proportionally 

to the inverse of the observed covariance (Σ𝑥,𝑖)
−1: 

 
𝐾(𝑡) = ∑ ℎ𝑖(𝑡) 𝐾𝑖

𝐾
𝑖=1  (7) 

where  𝐾𝑖   and  ℎ𝑖(𝑡)  are respectively the stiffness associated 

to each gaussian 𝑖 of the GMM and a weighting term defined 

as: 

 

 

 

𝐾𝑖 =  𝑉𝑖𝐵𝑖𝑉𝑖
−1 ℎ𝑖(𝑡) =

𝒩(𝒙𝒕|μ
𝑖
, 𝜮𝑖) 

∑ 𝒩(𝒙𝒕|μ
𝑖
, 𝜮𝑖)

𝐾
𝑖=1

 (8) 

where 𝑉𝑖 and 𝜆𝑖  are the eigenvectors and eigenvalues obtained 

through the eigen components decomposition of the inverse of 

the covariance matrix associated to each Gaussian (Σ𝑥,𝑖)
−1. 

Equation (9) normalizes each eigenvalue the minimum and 

maximum eigenvalues observed among the Gaussians in all 

the three Cartesian directions, and maps them to the range of 

minimum and maximum stiffness [𝐾𝑚𝑖𝑛    𝐾𝑚𝑎𝑥] selected by 

the user. If  𝐾𝑚𝑖𝑛  is set to zero, the controller may stop tracking 

position references in the presence of high demonstration 

variance. Note that stiffness is defined independently for all 

Cartesian dimensions.  

We furthermore modify the stiffness profile to reflect the 

priority of force tracking, simply based on the magnitude of 

the force 𝐹𝑡  after it is normalized: 

𝐾𝑥(𝑡) = 𝐾(𝑡) ∗ (𝛾𝑚𝑎𝑥 + (𝛾𝑚𝑖𝑛 − 𝛾𝑚𝑎𝑥) (
𝐹𝑚𝑎𝑥 − |𝐹𝑡𝑖

|

𝐹𝑚𝑎𝑥 − 𝐹𝑚𝑖𝑛
)) (10) 

The values of 𝐹𝑚𝑖𝑛 and 𝐹𝑚𝑎𝑥 are chosen based on the 

manipulator and the expected maximum interaction forces. 

The scaling factors 𝛾𝑚𝑎𝑥 and 𝛾𝑚𝑖𝑛 are respectively the 

maximum and minimum reduction of the stiffness in 

correspondence of the maximum and minimum force. This 

linear reduction of the stiffness removes the necessity of 

classifying contact and switching controllers as suggested in 

(Racca et al. 2016). Finally, having the stiffness profile 𝑘𝑥(𝑡),  
𝐷𝑥(𝑡) is calculated to obtain a critically damped system (Ott 

2008).  

2.4 Stability Analysis  

In order to analyse the stability of the presented system while 

interacting with the environment, we exploit the concept of 

passivity (Shahriari et al. 2017). A system with the state space 

model �̇� =  𝑓(𝑥, 𝑢) and output equation 𝑦 = ℎ(𝑥, 𝑢),  where 𝑥 

 𝐵𝑖 = 𝐾𝑚𝑖𝑛 + (𝐾𝑚𝑎𝑥  − 𝐾𝑚𝑖𝑛)
𝜆𝑖 − 𝜆𝑚𝑖𝑛

𝜆𝑚𝑎𝑥  − 𝜆𝑚𝑖𝑛

 (9) 
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is the state vector subjected to initial condition 𝑥(𝑡0) = 𝑥0 and 

𝑢 the input vector, is said to be passive if there exist a positive 

semidefinite function 𝑆(𝑥), called storage function, such that: 

𝑆(𝑥(𝑡𝑖)) − 𝑆(𝑥0)  ≤ ∫ 𝑢𝑇(𝑡) 𝑦(𝑡) 𝑑𝑡
𝑡𝑖

0

  (11) 

for all input signals 𝑢 ∈  [0, 𝑡𝑖] and initial states 𝑥0 with 𝑡𝑖  >
0. Thus proving the passivity is equivalent to finding a storage 

function 𝑆(𝑥) such that: 

�̇�  ≤  𝑢𝑇𝑦    ∀ 𝑢, 𝑦  (12) 

An important property of passivity is that it is additive, so the 

interconnection of passive systems leads to an overall passive 

system. The environment is assumed passive with respect to 

the pair [ �̇�, −𝐹𝑒𝑥𝑡]. Hence, we must show the passivity of the 

modified force-impedance controller. Standard Impedance 

control with constant stiffness and damping is passive. 

(Kronander and Billard 2016). However, the passivity cannot 

be guaranteed in the case of varying impedance and our added 

force feedback term. As has been shown in the literature for 

similar controllers (Shahriari et al. 2017), the controller can be 

augmented with a passivity observer to guarantee stability. 

Consider the storage function: 

𝑉(𝑥, �̇�) =   
1

2
𝑥 ̃̇ 𝑇Λ(𝑥)𝑥 ̃̇ +  

1

2
�̃�𝑇𝐾𝑥�̃� (13) 

and its time derivative: 

�̇� =  𝑥 ̃̇ 𝑇Λ(𝑥)�̈̃� + 
1

2
𝑥 ̃̇ 𝑇Λ(𝑥)̇ 𝑥 ̃̇ +  �̃�𝑇𝐾𝑥 �̇̃� +  

1

2
�̃�𝑇�̇�𝑥�̃�  (14) 

Substituting �̈̃� from (6), considering the skew symmetry 

property of Λ̇(𝑥) − 2𝜇(𝑥, �̇�) and the symmetry of 𝐾𝑥 we 

obtain: 

�̇� =  𝑥 ̃̇ 𝑇𝐹𝑒𝑥𝑡 − 𝑥 ̃̇ 𝑇𝐷𝑥 �̇̃� +  𝑥 ̃̇ 𝑇𝐹𝑑 + 

 𝑥 ̃̇ 𝑇𝐾𝑓(𝐹𝑒𝑥𝑡 − 𝐹𝑑) +  
1

2
�̃�𝑇�̇�𝑥�̃� 

(15) 

In case of standard impedance control with constant stiffness, 

last three terms disappear, and the system is always passive 

with respect to [�̇̃�, 𝐹𝑒𝑥𝑡] since: 

�̇� =  𝑥 ̃̇ 𝑇𝐹𝑒𝑥𝑡 − 𝑥 ̃̇ 𝑇𝐷𝑥 �̇̃�  ≤  𝑥 ̃̇ 𝑇𝐹𝑒𝑥𝑡  (16) 

However, by adding the force reference terms and variable 

stiffness, (12) cannot be always guaranteed. Using the concept 

of an energy tank (Ferraguti et al. 2013) (Shahriari et al. 2017) 

(Schindlbeck and Haddadin 2015), we can virtually store the 

energy dissipated by the term 𝑥 ̃̇ 𝑇𝐷𝑥 �̇̃� and use it to account for 

the energy injection of the non-passive terms, therefore the 

system will remain passive as long as the dissipated energy is 

able to compensate for the extra injected one. Towards this, we 

define a tank, whose energy level is 𝑇 =  1 2⁄ 𝑥𝑡
2 with 

𝑥𝑡 representing the tank state. The augmented model becomes: 

Λ(𝑥)�̈̃� + (𝐷𝑥 + 𝜇(𝑥, �̇�))�̇̃� + 𝐾0�̃� + 𝛼𝐾′�̃� = 

𝐹𝑒𝑥𝑡 + 𝛾𝐹𝑑 + 𝛼(1 − 𝛾)𝐹𝑑 +  𝛼𝐾𝑓(𝐹𝑒𝑥𝑡 − 𝐹𝑑) 

𝑥�̇� =
𝛽

𝑥𝑡

(𝑥 ̃̇ 𝑇𝐷𝑥 �̇̃� −  𝛾𝑥 ̃̇ 𝑇𝐹𝑑) − 

𝛼

𝑥𝑡

(𝑥 ̃̇ 𝑇𝐾𝑓(𝐹𝑒𝑥𝑡 − 𝐹𝑑) + (1 − 𝛾)𝑥 ̃̇ 𝑇𝐹𝑑 − �̃�𝑇𝐾′�̇̃�) 

(17) 

where 𝐾𝑥(𝑡) =  𝐾0 + 𝐾′(𝑡) with 𝐾0 representing the constant 

part of the variable stiffness. The factor 𝛽 prevents excessive 

tank storage, by saturating the storage at 𝑇𝑚𝑎𝑥: 

𝛽 =  {
1        𝑖𝑓 𝑇 ≤  𝑇𝑚𝑎𝑥

0        𝑒𝑙𝑠𝑒                
 (18) 

The factor 𝛼 prevents further injection of energy into the 

system by the non-passive terms when the dissipated energy 

accumulated up to that moment has been consumed (that is a 

minimum admissible level in the tank is reached). This is done 

by detaching the force controller and the variable stiffness 

terms: 

𝛼 =  {
1        𝑖𝑓 𝑇 ≥  𝑇𝑚𝑖𝑛

0        𝑒𝑙𝑠𝑒                
 (19) 

with 𝑇𝑚𝑖𝑛 > 0 to avoid singularities. The factor 𝛾  allows the 

controller to keep deploying the feedforward force reference 

term even in the case of a drained tank, if the term is 

dissipative: 

𝛾 =  {1        𝑖𝑓 𝑥 ̃̇ 𝑇𝐹𝑑 <  0
0        𝑒𝑙𝑠𝑒                

 (20) 

The augmented system is now passive with respect to [�̇̃�, 𝐹𝑒𝑥𝑡]. 
Considering the storage function: 

𝑆 =
1

2
𝑥 ̃̇ 𝑇Λ(𝑥)𝑥 ̃̇ +  

1

2
�̃�𝑇𝐾0�̃� + 𝑇 (21) 

we can obtain: 

�̇� =  𝑥 ̃̇ 𝑇𝐹𝑒𝑥𝑡 − 𝑥 ̃̇ 𝑇𝐷𝑥 �̇̃� +  𝛾𝑥 ̃̇ 𝑇𝐹𝑑 +  𝛽( 

𝑥 ̃̇ 𝑇𝐷𝑥 �̇̃� − 𝛾𝑥 ̃̇ 𝑇𝐹𝑑) 
(22) 

Since 𝛽 ∈  [0 1] we have �̇�  ≤   𝑥 ̃̇ 𝑇𝐹𝑒𝑥𝑡 and passivity is 

guaranteed. The complete control law becomes: 

𝐹𝑐 = −𝐾0�̃� −  𝛼𝐾′�̃� − 𝐷𝑥𝑥 ̃̇ +  𝛾𝐹𝑑 + 𝛼(1 − 𝛾)𝐹𝑑 

+𝛼𝐾𝑓(𝐹𝑒𝑥𝑡 − 𝐹𝑑) + Λ(𝑥)𝑥�̈� + 𝜇(𝑥, �̇�)𝑥�̇� + 𝐹𝑔(𝑥) 
(23) 

Through this augmented system we can perform the stiffness 

variation and the force control passively: when the tank is fully 

drained, that is we are close to lose the passivity, the force 

control is deactivated (with the exception of the feedforward 

term that depend also on 𝛾) and a constant stiffness 𝐾0 is 

implemented up to the moment that some energy is available 

in the tank.  

3. RESULTS 

We present the results of a 1-DOF simulation to show the 

stability of the proposed controller, followed by experimental 

validation on two Cartesian tasks using a 7DOF manipulator 

equipped with a force sensor at its end-effector. 

3.1 Simulation results 

To validate the effectiveness of the passivity observer, we 

conducted a simulation deploying the proposed controller on a 

single joint of an industrial manipulator modelled as a 2-mass, 

spring and damper system, using the parameters of the first 

joint of the 2-DOF model described in (Moberg, Öhr, and 

Gunnarsson 2008). Joint angle and stiffness references were 

set as the following sinusoids:  
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 𝑥𝑑(𝑡) = 2sin(0.2𝑡)   [𝑟𝑎𝑑] (24) 

 𝐾𝑥(𝑡) =  2000 + 700𝑠𝑖𝑛(4𝑡)  [𝑁. 𝑚/𝑟𝑎𝑑] (25) 

Damping was set as 0.2 𝑁. 𝑚. 𝑠/𝑟𝑎𝑑, 𝐾0 = 600 𝑁. 𝑚/𝑟𝑎𝑑 

and a constant external force of 80 𝑁 was assumed to be 

applied on the link. The results shown in  

Figure 1 demonstrate the effects of the passivity observer 

engagement, limiting the stiffness variation when the system 

risks losing passivity. As shown on the left plots, the 

unsupervised variable stiffness results in an unstable 

interaction. The oscillations in joint angle tracking in the case 

with passivity observer shown on the right are expected and 

are due to the high magnitude sinusoidal variation of the 

stiffness and the elasticity of the simulated joint. 

 
Figure 1 Simulation results of the modelled single joint under 

the proposed controller with and without passivity observer. 

3.2 Experimental results 

An experimental setup was prepared to put the proposed 

controller to test. A 7-DOF research prototype manipulator 

equipped with a force/torque sensor (Nano 17, ATI Industrial 

Automation) was controlled via Ethernet at 1 kHz. In terms of 

controller parameters, we set 𝐹𝑚𝑖𝑛 and 𝐹𝑚𝑎𝑥 as 0N and 100N, 

𝛾𝑚𝑎𝑥 and 𝛾𝑚𝑖𝑛  were 0.4 and 1.0, 𝐾𝑚𝑖𝑛 = 400
𝑁

𝑚
𝑎𝑛𝑑   𝐾𝑚𝑎𝑥 =

3000𝑁/𝑚, and 𝐾𝑓 = 0.5. Two tasks were considered. In the 

first task, the user guided the manipulator from various starting 

positions over a button (Figure 2), pressed down on the button 

to engage it, and then guided the manipulator to various final 

positions. In the second task, the user guided the robot from 

different starting positions and approached the upper surface 

of a plastic box. Then the user pressed the tool on the surface 

while moving along an imaginary line (the orange line shown 

in Figure 2) on the surface. Finally, the manipulator was 

guided to the entrance of a hole (1.5mm clearance in radius) 

and the peg was inserted in the hole. Note that the user hand-

guided the robot without touching the force sensor or the tool, 

so that the sensor only measured the interaction forces with the 

environment. The pressing section was included in the peg-in-

hole experiment, to evaluate the force tracking performance of 

each controller. Six demonstrations of each task were 

recorded, the position trajectories of which are shown in 

Figure 3. The orientation of the end-effector was kept constant. 

The recorded position trajectories and force profiles of each 

task were aligned in time with cross-correlation analysis and 

were then encoded through GMM. To reproduce the encoded 

tasks, a 9D trajectory was generated encompassing 3D vectors 

of position, force and cartesian stiffness. The GMR-generated 

position trajectories are shown as solid red lines in Figure 3. 

To depict the effects of the proposed method of reducing 

Cartesian stiffness according to demonstrated interaction 

forces (Eq. (10), Figure 4 shows the unmodified stiffness 

trajectories generated based on position variance (dashed 

black lines) and those augmented with the interaction-force-

reduction method (solid red lines) for the peg-in-hole task. 

Setup during 

demonstrations 

Disturbed setup during 

reproduction 
 

. 

 

 

   
Figure 2 The experimental setup in both disturbed and 

undisturbed cases. 

 

Figure 3 The demonstrated position trajectories (in black) for 

the button task (above) and the peg-in-hole (below). Red line 

represents the GMR-generated trajectory from the recorded 

demonstrations. 

Considering the unmodified stiffness trajectories, as expected 

the stiffness along z dimension is increased in the pressing 

section since the peg is pressed and moved along the surface 

and resulting in little variation along the z direction among the 

demonstrated position trajectories. Similarly, in the peg 

insertion the stiffness is increased along x and y, as all 

demonstrations converge to the xy position of the hole. 

However, thanks to the interaction-force-reduction, the 

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

9973



 

 

     

 

stiffness values along z are reduced in the pressing section as 

the demonstrations include force magnitudes along z, allowing 

the controller to partially shift the emphasis from impedance 

control to force control. A similar reduction of stiffness 

happens in the button task for the section of the trajectory that 

the button is pressed (plots are skipped for brevity). 

The generated 9D trajectories were then fed to three different 

controllers to evaluate the performance of each with and 

without disturbance in the task environment. The disturbance 

consisted of lowering the button for 30mm in the button task 

and lowering the surface on which the tool was pressed for 

35mm as well as moving the button laterally for 5mm in the 

peg-in-hole task. These disturbances are pictured in Figure 2. 

The following three controllers were deployed: 

• Imp: Basic impedance controller (Eq.   (4)) with fixed 

stiffness and damping. 

• Imp + FF: Variable impedance control with force feed 

forward (Eq. (5)) and passivity observer. 

• Proposed: The proposed controller (Eq. (25)) 

 

Figure 4 Generated Cartesian stiffnesses for the peg-in-hole 

task based on the variance of the demonstrated position 

trajectories shown as dashed line. Solid line represents the 

stiffness values reduced after considering the interaction 

forces recorded during the demonstration. 

For the sake of brevity, we report only the measured forces 

along the z direction, out of the 6 dimensions of desired 

position and force. Nonetheless, for the considered tasks of this 

paper the interaction force along the z can concisely represent 

the performance of each controller without loss of generality 

of the derived conclusions. Left column of the plots in Figure 

5 demonstrate the desired and measured forces during the 

reproduction of the button pressing task without disturbance. 

The sharp peaks seen in the Imp + FF and Proposed cases are 

due to successful engagement of the button, which includes a 

spring mechanism that is engaged when the button is pressed 

down with an adequate magnitude of force. The force exerted 

by the basic Imp controller relies merely on the position error 

and controller stiffness, which in this task is found to be 

insufficient to engage the button. This shortcoming is 

addressed by the addition of force feedforward in the Imp+FF 

controller. However, when the button is lowered it is only the 

proposed controller that succeeds in engaging the button, 

thanks to the additional force feedback term, as shown in the 

right column of the plots in Figure 5. In the case of the Imp 

controller the tool does not contact the button when lowered, 

as it relies only on position references. 

 

Figure 5 Recorded forces while different controllers 

reproduced the button task with and without disturbance. The 

sharp peaks refer to the button being successfully engaged. 

 

Figure 6 The recorded interaction forces along z during the 

reproduction of the peg-in-hole task by different controllers, 

with and without disturbance. The high magnitudes in the 

peg insertion phase seen in the impedance and impedance + 

force feedforward controllers plots for the disturbed setup is 

due to failure in insertion and pushing down on the side of 

the hole surface.  

Figure 6 shows the encountered z forces in the peg-in-hole 

task. This task included a rigid surface pressing section to 

objectively evaluate force tracking performance and a peg-in-

hole insertion to test robustness to geometrical uncertainties. 

As expected, the basic impedance controller did not produce 

the pressing forces on the surface, as the error in desired 

position tracking was mostly negligible. The other two 

controllers closely tracked the desired forces in the 
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undisturbed case. All three controllers succeeded in inserting 

the peg in the undisturbed case. However, when the hole was 

moved in the disturbed case, both the Imp and Imp + FF 

controllers collided with the flat side of the hole entrance (like 

shown in image D in Figure 2) and gradually increased the 

vertical force until saturation, thus failing in inserting the peg. 

The proposed controller succeeds in inserting the peg after an 

initial collision with the hole entrance surface. This is because 

the controller attempted to track the desired force reference 

that is zero in all 3 dimensions, however, the collision 

generated non-zero measured force. In this case, the effort of 

the controller to reduce the lateral measured forces (with 

respect to the axis of the cylindrical hole) lead to an eventual 

insertion of the peg. Note that in case of a flat peg tip, only 

vertical forces might be faced which can prevent also the 

proposed controller from reproducing the insertion 

successfully. If no mechanical guidance in the task can be 

exploited towards successful execution, one might resort to 

search motions such as the spiral search. In terms of force 

tracking performance in the pressing section when the surface 

was lowered, the proposed controller resulted in a superior 

mean absolute tracking error of 6.8 N compared to that of 10.1 

N for the Imp + FF controller. Table 1 summarizes the 

outcome of the reproduction of each task by the controllers.  

Table 1.  Success in reproduction of experimental tasks 

using different controllers 
 Imp. Imp. + FF Proposed  

Button press Fail Success Success 

Peg-in-hole  Part-fail Success Success 

Button press disturbed Fail Fail Success 

Peg-in-hole disturbed Fail Fail Success 
 

4. CONCLUSIONS  

In this work we proposed an approach to simplify 

programming tasks that include interaction with the 

environment and to enhance the robustness of replicating such 

a programmed task. The proposed approach uses a single 

controller for contact and non-contact cases, preventing issues 

of controller switching. Through passivity analysis and a 

simulation, we demonstrated the stability of the proposed 

controller and experimental results validated its position and 

force tracking performance as compared to the state-of-the-art 

solutions. Extensions to include orientation and interaction 

wrenches are potential directions for future work.  
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