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Abstract: Multilevel converters are used for DC/AC power supply conversion, which is often
applied in electric vehicle (EV) motor drives. AC conversion is done by a stepped output voltage,
which provides a near-sinusoidal voltage with its fundamental frequency, but contains some
higher harmonics. The elimination of several harmonics is fully implemented and well described
in numerous publications, see Chiasson et al. (2003, 2004, 2005); Li et al. (2010); Tarisciotti
et al. (2014), and Majed et al. (2014). In these papers the first set of undesired harmonics
was eliminated, which in general was done by solving an equivalent system of equations using
different methods such as resultants, Newton-Raphson (Chiasson et al. (2003)) and Optimal
Minimization of Total Harmonic Distortion (OMTHD) technique, see Li et al. (2010). Higher
harmonics stayed unrecognized to these optimization algorithms and delivered an undesired
power spectrum to the total harmonic distortion (THD) of AC conversion.
This paper presents a novel approach to the global THD-optimization of three-phase systems
taking into account all harmonics up to infinity. This global optimization is implemented using
interval arithmetic, see Hansen and Walster (2003), which neither need a convex objective func-
tion nor continuous-differentiable function. Interval arithmetic computes guaranteed intervals
containing the global minima. The optimum is computed with an algebraic objective function,
which is derived from Parseval’s theorem on a 2π periodic function.

Keywords: Harmonics elimination pulse width modulation (HEPWM), multilevel voltage
source inverter (MVSI), Fourier series, Parseval’s theorem, Parseval’s identity, global
optimization, interval arithmetic.

1. INTRODUCTION

Electric vehicles (EV) and its power supply are frequently
discussed topics in the recent years. With constant growth
of EV market (hybrid and battery powered) and focus
on energy efficiency it is worthwhile to do further inves-
tigation on power supplies and its mathematical repre-
sentation. Multilevel converters are often used as power
electronics for EV power trains. Moreover, multilevel con-
verters are broadly used in industrial applications, such
as high-voltage, direct current electric power transmission
(HVDC), flexible alternating current transmission system
(FACTS), and static synchronous compensator (STAT-
COM), to name a few.

These converters switch on and off voltage once per funda-
mental period and per implemented H-bridge, which rep-
resents the voltage-polarity switching device. Comparing
it with adjustable-speed drives (ASDs), the switching is
done at significant lower frequencies (60 Hz or lower) and
shows much lower voltage change rates (dV/dt). Slower
switching frequencies cause less circulating currents, di-
electric stresses, voltage surge, and corona discharge re-
ferring to Bell and Sung (Sept./Oct. 1997); Erdman et al.

(Mar./Apr. 1996); Bonnett (Sept./Oct. 1997). This results
in less motor bearing failure and motor winding insulation
breakdown.

Providing a good sinusoidal voltage is the key objective.
Reducing and eliminating higher harmonics, which are
necessarily produced due to the switching of voltages, were
investigated in Chiasson et al. (2003, 2004, 2005) and
used the method of resultants from elimination theory.
An eleven-level-converter with five cascaded H-bridges was
investigated in Chiasson et al. (2005). Five adjustable
switching angles are the degree of freedom to minimize
the THD. The solution set with the smallest THD was
calculated to THD31 = 2.65%, which takes into account
the distortion up to the 31st harmonic.

This paper introduces a novel method to minimize THD,
which provides a computable objective function summing
up all undesired harmonic power components up to in-
finity, denoted as THD∞. An interval arithmetic branch
and bound algorithm can compute the global minimum
according to Hansen and Walster (2003), even for non con-
vex functions. This was utilized in different applications in
Aschemann et al. (2005); Swiatlak et al. (2015); Gennat
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Fig. 1. Output V (t;ϑ) of an eleven-level-converter with
θ1 = π

18 , θ2 = 2π
18 , θ3 = 3π

18 , θ4 = 4π
18 , θ5 = 5π

18 and the
sinusoidal function f(t)

and Tibken (2008) and will provide in this contribution
the global THD-minimum. As a result of this interval
arithmetic approach THD31 is computed to 1.91%.

2. CASCADED SWITCHING OF MULTILEVEL
INVERTER

The aim of cascaded switching is to generate a stepped
output signal V (t;Θ), which should be “well fitted” to the
desired sinusoidal signal f(t). Hereby Θ = (θ1 θ2 · · · θs)T
represents the parameter set of switching angles. The
parameter s defines the number of converter’s H-bridges.
Each θi denotes the switching angle respectively the time
of on and off-switching of a corresponding H-bridge. Obvi-
ously, the switching angles θi have to lie in the first quarter
of the 2π period and the condition

0 ≤ θ1 ≤ θ2 ≤ · · · ≤ θs ≤ π
2 . (1)

has to hold. Generally speaking, interharmonics cannot
occur by multilevel converter switching. Thus, this phe-
nomenon will not be taken into account. Further research
will investigate the potential of this method to minimize
THD in presence of interharmonics. The output of a
stepped voltage function is shown in Fig. 1 and Fig. 2.

The overall goal of this paper is to determine the switching
angles θi, minimizing the THD with all harmonics up to in-
finity. Six steps described below will lead to a computable
objective function, which enables the global optimization:

• Expand V (t;Θ) as a Fourier series,
• define THD as desired objective function to be mini-

mized,
• rewrite THD function in such way, that it is com-

putable as an infinite sum of squares,
• use Parseval’s theorem to compute THD as a definite

integral depending on Θ,
• transfer the definite integral to a computable func-

tion,
• use the resulting objective function for a branch-and-

bound optimization with Θ as arguments.

Taking into account the switching angles θi of the cascaded
multilevel converter, the output in [0; π2 ] is defined as

V (t;Θ) =


0, if 0 ≤ t < θ1

VDC , if θ1 ≤ t < θ2
2VDC , if θ2 ≤ t < θ3

...
s VDC , if θs ≤ t ≤ π

2 .
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Fig. 2. Separated levels of an eleven-level-converter

To define the signal from 0 to 2π we use symmetry. This
leads to V (t;Θ) = V (π − t;Θ) on [π2 ;π] and V (t;Θ) =
−V (t− π;Θ) on [π; 2π] (compare Fig. 1).

This 2π periodic non-sinusoidal real-valued signal V (t;Θ),
whereby its angular frequency ω is considered as constant,
can be expanded in a Fourier series, see Titchmarsh (1939);
Korn and Korn (1968), with

V (t;Θ) =
a0
2

+

∞∑
k=1

[
ak cos(kωt) + bk sin(kωt)

]
.

In this paper the Fourier series is used with

V (t;Θ) =

∞∑
k=1

bk sin(kωt) =

∞∑
k=1

Vk sin(kωt),

because the stepped waveform is symmetrical regarding
the coordinate system’s origin, which eliminates all ak.
The Fourier coefficients bk represent Vk, the amplitude of
the kth harmonic voltage output.

The expansion of the Fourier series is shown in Chiasson
et al. (2003, 2005) and can be calculated to

V (t;Θ) =

∞∑
k=1,3,5,···

4VDC
kπ

[
cos(kθ1) + cos(kθ2)

+ · · ·+ cos(kθs)
]
sin(kωt).

The magnitudes of even harmonics are equal to zero due
to the periodicity of V (t;Θ).
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3. THD REPRESENTATION USING PARSEVAL’S
THEOREM

The standard IEEE 1459-2010 in IEEE (2010) defines
THD computation regarding the distorted voltage with

THD =

√(
V

V1

)2

−1=

√
V 2
0 +

∑∞
k=1 Vk

2

V1
2 −1. (2)

Direct voltage is denoted by V0, which is zero in our case,
and the first harmonic’s amplitude is represented by V1.

The tripled harmonics in a three-phase power system need
not to be canceled respectively minimized in the optimiza-
tion process, because they are automatically eliminated in
line-to-line voltages. Hence, the above equation is com-
puted to

THD =

√∑∞
k=1 V

2
k −
∑∞
k=1 V3k

2

V1
2 −1.

All even harmonics of the voltages Vk with k = 2, 4, 6, · · ·
are equal to zero due to the given symmetric stepped
output voltage. This facilitates the THD numerator under
the square root for the given system to

THDnum =

∞∑
k=1

Vk
2 −

∞∑
k=1

V3k
2. (3)

The first harmonic V1 results from the Fourier series with

V1 =
4VDC
π

s∑
i=1

cos(θi). (4)

The modulation index is defined with m = V 1
VDC

and can

be computed from (4) with m = 4
π

∑s
i=1 cos(θi).

THD in (2) represents the distortion by summing up all
harmonics. Using Parseval’s theorem from Kelkar et al.
(2002); Blagouchine and Moreau (2011) the computation
can be transferred from an infinite sum to a definite
integral. Starting from the integrated form of Parseval’s
theorem

1

π

∫ 2π

0

V (t;Θ)2dt =
a0

2

2
+

∞∑
k=1

(
ak

2 + bk
2
)

the two infinite sums in (3) can be defined with

1

π

∫ 2π

0

V (t;Θ)2dt =

∞∑
k=1

Vk
2 and (5)

1

π

∫ 2π

0

Ṽ (t;Θ)2dt =

∞∑
k=1

V3k
2, (6)

whereby the auxiliary function Ṽ (t;Θ) represents all
tripled harmonics. Thus, (3) can be rewritten to

THDnum =
1

π

∫ 2π

0

V (t;Θ)2 − 1

π

∫ 2π

0

Ṽ (t;Θ)2. (7)

A main part of the novel approach of this contribution is
the reformulation of V3k harmonics expression in (6). This
is prerequisite for the THD computation with an interval
arithmetic approach.

To gain the harmonics in (7), the stepped output voltage

function Ṽ with tripled frequency has to be introduced.
Starting from V (t;Θ), the tripled frequency function Ṽ is
computed with

π
6

5π
6

3π
2
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3

− 1
3
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3

2
3

1

ωt
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Fig. 3. Output Ṽ (t;Θ) with θ1 = 2π
12 , θ2 = 3π

12 , θ3 = 4π
12

Ṽ (t;Θ)=
1

3

[
V(t;Θ)+V

(
t− 2π

3ω
;Θ

)
+V

(
t− 4π

3ω
;Θ

)]
. (8)

Using trigonometric identities (8) is derived to

Ṽ(t;Θ)=
1

3

∞∑
k=1

Vk

{
sin(kωt)+sin

(
kωt−k2π

3

)
+sin

(
kωt−k4π

3

)}
=

1

3

∞∑
k=1

Vk

{
sin(kωt)

[
1+cos

(
k2π

3

)
+cos

(
k4π

3

)]
−cos(kωt)

[
sin

(
k2π

3

)
+sin

(
k4π

3

)]}
.

For all k ∈ N the term sin
(
k2π
3

)
+ sin

(
k4π
3

)
equals to

zero. With k = 1, 4, 7, · · · and k = 2, 5, 8, · · · the term
1+cos

(
k2π
3

)
+cos

(
k4π
3

)
also equals to zero. Thus, the latter

term computes to 3 with k = 3, 6, 9, · · · and Ṽ results in

Ṽ (t;Θ) =

∞∑
k=1

V3k sin(3kωt). (9)

According to this, the sum of squares of all tripled harmon-
ics equals to the above introduced equation (6). Hence, the
terms in (3), (4), (5), (6), and (9) are used to compute the
THD (2) to

THD =

√√√√√√√√
1

π

2π∫
0

V (t;Θ)2dt− 1

π

2π∫
0

Ṽ (t;Θ)2dt(
4VDC
π

s∑
i=1

cos(θi)

)2 − 1. (10)

4. COMPUTING AN OBJECTIVE FUNCTION

The objective function derives from THD computation of
(10). Omitting the square root does not affect the optimum
parameter set. Consequently, the objective is defined with

J =
THDnum(

4VDC
π

s∑
i=1

cos(θi)

)2

=

2π∫
0

V (t;Θ)2dt−
2π∫
0

Ṽ (t;Θ)2dt

16VDC
2

π

(
s∑
i=1

cos(θi)

)2 . (11)

The computation of (11) needs further processing of

Ṽ (t;Θ)2, which is compound by three phase-shifted V (t;Θ)
functions. For notation reasons W (α) = V (t− α;Θ) is
used to rewrite V with
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(
t−π/2
π−π/3

)
Ṽ (t;Θ)2 =

(
1

3

[
W (0) +W

(
2π
3

)
+W

(
4π
3

) ])2

.

The introduction of τ= 2π
3 and υ= 4π

3 rewrites Ṽ 2 to

Ṽ 2(t;Θ) =
1

9

[
W (0)2 + 2W (0) W

(
2π
3

)
+

W (τ)2 + 2W (τ) W
(
τ + 2π

3

)
+

W (υ)2 + 2W (υ) W
(
υ + 2π

3

) ]
.

Using above shown 120◦ phase shifts, W̄ is introduced with

W̄ (t) = W (0)2 + 2W (0) W ( 2π
3 )

= V (t;Θ)2 + 2V (t;Θ) V (t− 2π
3 ;Θ),

and Ṽ 2 can be edited to

Ṽ (t;Θ)2 =
1

9
[W̄ (t) + W̄ (t+ τ) + W̄ (t+ υ)]. (12)

To compute THDnum in (7), Parseval’s theorem expression
from (6) can be used with (12) and with τi(t) = 2iπ

3 as

1

π

∫ 2π

0

Ṽ (t;Θ)2dt=
1

9π

∫ 2π

0

2∑
i=0

W̄ (τi + t)dt=
1

3π

∫ 2π

0

W̄ (t)dt.

The latter equation holds, because the integration of
three 120◦ phase shifted periodical functions computes the
same result three times. Using this representation of the
integrated Ṽ 2, the THD numerator under the square root
in (3) is expressed by

THDnum =
1

π

∫ 2π

0

V (t;Θ)2dt− 1

3π

∫ 2π

0

W̄ (t) dt. (13)

At this point, the voltage switching must be modeled. This
starts with the rectangular function

Π(t) = rect(t) =

{
1, if |t| < 1

2 ,
1
2 , if |t| = 1

2 ,

0, otherwise

and leads to the rewritten stepped output voltage function
V (t;Θ) with

V (t;Θ) = VDC

s∑
i=1

[
Π

(
t− π

2

π − 2θi

)
−Π

(
t− 3π

2

π − 2θi

)]
.

The output of V (t;Θ) is already shown in Fig. 1. The
2π periodicity of V (t;Θ) and the sum of s rectangular
functions Π(t) have to be taken into account. For this
reason, r(t;m,Θ) and its abbreviation R(m) as the sum
over all rectangular functions of the referring switching
angles θ1 to θs, its midpoint parameter m, and Z =
{−N, 0,N} is defined with

R(m) = r(t;m,Θ) =
∑
k∈Z

s∑
i=1

Π

(
t−m+ 2kπ

π − 2θi

)
(14)

Using (14) the computation of V (t;Θ)2 results in

V (t;Θ)2 =VDC
2
[
R
(
π
2

)2−2R
(
π
2

)
R
(
3π
2

)
+R

(
3π
2

)2]
. (15)

The first summand in (13) is easy to compute by inte-

−2π−3π
2
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3π 7π
2
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1

ωt
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Fig. 5. Rectangular function R
(
π
2

)
−R

(
3π
2

)
with θ = π

6

grating the rectangular functions on the right hand side
of (15), because there are no overlapping rectangles due
to the angle conditions (1). Thus, the first summand of
THD’s numerator (13) is transferred to

1

π

∫ 2π

0

V (t;Θ)2dt =
2VDC

2

π

s∑
i=1

(2i− 1)(π − 2θi). (16)

To compute the second summand of (13) some additional
calculations have to be done, which leads to

2V (t;Θ) V
(
t− 2π

3 ;Θ
)

= 2VDC
2
[
R
(
π
2

)
R
(−π

6

)
−R
(
π
2

)
R
(
5π
6

)
−R

(
3π
2

)
R
(−π

6

)
+R

(
3π
2

)
R
(
5π
6

) ]
,

whereby the output of R (m1) ·R (m2) is shown in Fig. 6.
The function 2V (t;Θ)V

(
t− 2π

3 ;Θ
)

is π periodical, and the
maximum width of rectangles is π due to the initial angle
conditions. Accordingly, the integral of 2V (t;Θ) V

(
t− 2π

3

)
from 0 to π equals with the integral from π to 2π.
For reasons of simplification this results in an auxiliary
function h(Θ) defined with

h(Θ)=

∫ 2π

0

2V (t;Θ)V
(
t− 2π

3 ;Θ
)
dt

= 2VDC
2

∫ π

0

R
(
π
2

)
R
(−π

6

)
−R

(
π
2

)
R
(
5π
6

)
dt

= 2VDC
2
s∑
i=1

s∑
k=1

min
(
max

(
θi+θk,

π
3

)
, 2π3
)
− 2π

3 . (17)

The function max(a,b) returns the higher value of a or b,
respectively min(a,b) returns the lower value. To clarify
the dependency of h(Θ) from switching angles θi, the
graph of the piecewise differentiable function (17) with one
switching angle θ1 is shown in Fig. 7.
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)
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Fig. 6. Plots of R(m1)·R(m2) withΘ=(θ1 θ2)T =
(
π
12

3π
12

)T
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Finally, using the auxiliary function (17) the second sum-
mand (13) of THD numerator under the square root (7) is
denoted with

1

3π

∫ 2π

0

W̄ (t)dt=
2VDC

2

3π

s∑
i=1

{
(2i− 1)(π − 2θi)

+2

s∑
k=1

[
min

(
max

(
θi+θk,

π
3

)
, 2π3
)
− 2π

3

]}
, (18)

and all elements of the objective (11) are computable. The
objective function can now be noted by applying the right
hand sides of (4), (16), and (18) with

J =
π

12
[∑s

i=1 cos(θi)
]2 s∑

i=1

[
(2i− 1)(π − 2θi)−

s∑
k=1

[
min

(
max

(
θi+θk,

π
3

)
, 2π3
)
− 2π

3

]]
. (19)

This objective function (19) takes into account all THD’s
harmonics up to infinity, and this representation is com-
putable with common computer systems. An output of J is
shown in Fig. 8, using two switching angles. The resulting
THD is calculated with

THD∞ =
√
J − 1 (20)

5. INTERVAL ARITHMETIC APPROACH RESULTS

In Chiasson et al. (2003, 2005) the THD is computed with

THD31 =

√
V 2
5 + V 2

7 + V 2
11 + V 2

13 + V 2
17 + · · ·+ V 2

31

V1
2 .

This THD computation stops the distorted harmonic sum-
mation at the 31st harmonic. There is no explanation for
stopping at 31st in the referenced publications. Due to
filtering of higher frequencies in real-world applications,
this THD31 computation could be sufficient.

A standard interval arithmetic branch and bound-algo-
rithm, which provides a guaranteed global minimum, is
shown in Hansen and Walster (2003). A constraint opti-
mization algorithm was applied on the objective function
(19) using this interval arithmetic approach of Hansen.
The global minimum was computed with Matlab, see
The MathWorks (2018), and INTLAB-toolbox from Rump
(1999). It took over 5.4 million iterations to satisfy the
termination criteria of THD∗’s lower and upper bound
distance, which was set to 10−11. The algorithm returns
intervals of regions containing the optimal parameter set
switching angles. The best found parameter set θ∗ is given
in Tab. 1. The modulation index was not scope of this
computation. In further research this could be taken into
account by introducing additional constraints.

This parameter set provides the minimal THD∞ = 3.88%
and THD31 = 1.91%, rounded on three digits. The latter
was computed for comparison reasons with the results
from Chiasson et al. (2005), where the optimal THD was

Fig. 8. THD plot with two parameters θ1 and θ2

given by THD31 = 2.65%. Using the referring switching
angles parameter set θ, the computation of (2) leads to
THD∞ = 12.1%. The resulting switching angles are also
noted in Tab. 1.

THD∗∞
θ∗
/

2π
360◦

THD∗31
modulation

Global optimization of
objective function (19)
using interval arith-
metic approach

3.8764837%


3.2459166◦

9.7797646◦

16.445426◦

26.933938◦

38.522666◦

1.9099464%

m = 4.617

Best solution given in
Chiasson et al. (2003,
2005) with constraints
V5,7,11,13 = 0

12.062863%


9.3005193◦

34.407215◦

42.069638◦

59.906517◦

81.554343◦

2.6480947%

m = 3.203

Table 1. Optimization Results

6. CONCLUSIONS

In this paper an interval arithmetic approach was applied
to a novel objective function formulation, which computes
the THD of multilevel converters. The objective reformu-
lation utilizes Parseval’s theorem to sum up all harmonics
up to infinity. The here introduced reformulation of THD∞
computation was not found by the authors in literature for
three-phase multilevel converters.

Chiasson et al. (2003, 2004, 2005) eliminate the fifth,
seventh, eleventh, and 13th harmonic to minimize THD. In
the referenced papers THD computation stops at the 31st.
The results of Chiasson et. al. and the interval arithmetic
approach are compared in 1. THD31 distortion is improved
from 2.65% down to 1.91%, which is a reduction of
about a third. Moreover, the interval arithmetic approach
improves THD∞ from 12.1% down to 3.88%. Some real-
world applications, which filter high frequencies, would not
suffer from high THD∞. In this case THD31 is a good
objective. Applications without filtering high frequencies
would benefit from this novel THD∞ formulation and
optimization approach.

The recomputed normalized harmonics from Chiasson
et al. (2005) are shown in Fig. 9. Here, as desired, the
fifth, seventh, eleventh, and 13th disappear. The remain-
ing non-tripled and odd harmonics sum up to the THD.
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Fig. 9. Normalized harmonics, recomputed using results
from Chiasson et al. (2005)

Especially the 25th contribute some distortion to THD31.
The normalized harmonics computed with the here intro-
duced novel method of THD-minimization are presented
in Fig. 10. The optimization algorithm does not eliminate
any harmonic. It minimizes the infinite sum of all non-
tripled and odd harmonics. Even with harmonic values in
the lower frequency domain the THD31 and THD∞ was
improved using this interval arithmetic approach.

In future work n-level-converters and its optimal THD
computation could be investigated. Moreover, interhar-
monics could be researched. Today it is not clear, if an
interval arithmetic approach could provide significant im-
provement.
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