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Abstract: This paper is concerned with event-triggered robust attitude control of networked
spacecraft with actuator saturation and persistent bounded disturbance via Takagi-Sugeno (T-
S) fuzzy approach. Based on aperiodic sampling, a discrete-time event-triggered scheme avoiding
Zeno phenomenon naturally is adopted to reduce communication burden within network. Based
on the T-S fuzzy model of spacecraft, an event-triggered fuzzy controller subject to saturation
constraint is established to perform robust attitude stabilization of spacecraft. Furthermore,
in comparison with the most often used H∞ performance, L∞-gain performance is employed
to handle the persistent bounded disturbances. By virtue of convex optimization method, the
problem of controller synthesis is formulated in terms of a set of linear matrix inequalities
(LMIs). Finally, simulation results are provided to prove the effectiveness of the fuzzy control
scheme.
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1. INTRODUCTION

The networked spacecraft with fractionated or plug-and-
play architecture, which breaks down a spacecraft into
physically independent and standardized modules that
interact with each other through wireless communication,
has gained a growing amount of interest during the past
few decades (Mathieu and Weigel (2006); Lyke (2012)).
In comparison with the traditional spacecraft with spe-
cific structure, the networked architecture offers more
flexibility, maintainability, and reconfigurability for space-
craft design and manufacture (Wu (2015); Wang et al.
(2019)). Considering that signal transmission is conducted
by virtue of wireless communication in networked space-
craft, it is of real importance to design a control strategy
capable of obtaining satisfactory performance with less
communication resource.

Event-triggered control technique has been widely viewed
as an effective solution to networked control problem. In
the event-triggered mechanism, a prescribed condition is
set to determine the transmission of the data sampled by
sensor, hence the “unnecessary” signal transmissions are
considerably reduced (Heemels et al. (2012)). Recently, an
increasing number of research studies have been conducted
for spacecraft attitude control with event-triggered mech-
anism. To mention a few, Wu et al. (2018), Wang et al.
(2019), and Xu et al. (2019) investigated the problems
of event-triggered attitude stabilization, event-triggered
attitude tracking, and event-triggered attitude synchro-
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nization for networked spacecrafts, respectively. However,
in these achievements the problem of actuator saturation
is not considered, which reduces the applicability of the
control laws. Moreover, the event-triggered schemes in-
volved in above studies are all continuous-time ones, which
requires continuous measurements and extra operations
for avoiding Zeno phenomenon. In fact, a discrete-time
event-triggered mechanism with sampled measurements
is more suitable for digital platforms in practice. When
further taking into account the factors of sampling jitters,
data dropouts, and noisy environment, the discrete mea-
surements obtained by a digital sensor are more likely to
be aperiodic. Therefore, the investigation of an aperiodic
event-triggered attitude control strategy subject to actua-
tor saturation is a challenging problem to be resolved.

On the other hand, T-S fuzzy model has been extensively
recognized as a powerful framework to handle complex
nonlinear systems (Tanaka and Wang (2001)). In recent
years, some research efforts have been made on the T-
S fuzzy modeling and control of spacecraft. For example,
based on T-S fuzzy models, Sun et al. (2017), Xu et al.
(2017), and Sendi and Ayoubi (2018) proposed various
fuzzy control strategies for flexible spacecraft attitude
control. It should be mentioned that, in the studies above,
the effects of external disturbances were suppressed by us-
ing H∞ performance. However, the disturbances affecting
spacecraft are persistent and bounded in practice. The
H∞ performance is appropriate for tackling the energy-
bounded disturbances rather than the persistent bounded
disturbances. Obviously, it is a challenging work to atten-
uating the persistent bounded disturbances during space-
craft attitude control based on T-S fuzzy approach.
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Motivated by the discussions above, this paper is dedi-
cated to developing an aperiodic event-triggered control
law to perform attitude stabilization of networked space-
craft with actuator saturation and persistent bounded
disturbance via T-S fuzzy approach. Rather than us-
ing traditional continuous-time or periodic event-triggered
conditions, a more robust and applicable one, aperiodic
event-triggered condition, is employed to investigated at-
titude control of networked spacecraft, where the Zeno
phenomenon is avoided naturally due to discrete mea-
surements. By characterizing nonlinear attitude kinemat-
ics and dynamics of spacecraft with T-S fuzzy model,
a fuzzy attitude control law is constructed according to
aperiodic event-triggered mechanism. The problem of ac-
tuator saturation is tackled with utilizing anti-windup
design approach. Furthermore, the L∞-gain performance
is ensured for the closed-loop system to attenuate the
persistent bounded disturbances. Finally, with the aid of
convex optimization technique, the problem of controller
synthesis is formulated in terms of a set of LMIs.

Notations: In this paper, the superscripts “-1” and “T”
for matrix W denote the inverse and transpose of matrix
W , respectively. W + W T is simplified as [W ]s. The
sets of n × m real matrices, n-dimensional vectors, and
non-negative integers are denoted by Rn×m, Rn, and N,
respectively. W > 0 (W < 0) implies that matrix W
is positive (negative) definite. diag{· · · } is a diagonal
matrix. ιmin (W ) is the minimum eigenvalue of W . I
(0) is a suitably dimensioned identity (zero) matrix. For
vector f(t), its Euclidean norm and ∞-norm are denoted

by ‖f(t)‖ =
√
fT (t)f(t) and ‖f(t)‖∞ = supt≥0 ‖f(t)‖

, respectively. L∞ = {f(t)|‖f(t)‖∞ <∞} denotes the
linear vector space consisting of∞-norm-bounded vectors.
The skew-symmetric matrix of f(t) is denoted by f×(t).
The symmetric term in a matrix is denoted by “?”. a, b
represents the set of {a, a + 1, · · · , b} where a and b are
two integers ensuring a ≤ b.

2. MODELING AND PROBLEM FORMULATION

The kinematic and dynamic equations of a rigid spacecraft
are expressed as (Sidi (1997))

q̇0(t) =− 1

2
qT (t)ω(t) (1)

q̇(t) =
1

2

(
q0 (t) I + q×(t)

)
ω(t) (2)

Jω̇(t) =− ω×(t)Jω(t) + sat (u(t)) + τ (t) (3)

where quaternions q0(t) and q(t) = [q1(t) q2(t) q3(t)]T

satisfy qT (t)q(t) + q20(t) = 1; ω(t) = [ω1(t) ω2(t) ω3(t)]T

is the vector of angular velocity; J > 0 is the inertia
matrix; τ (t) is the persistent disturbance bounded by a
positive constant τ , implying ‖τ (t)‖ ≤ τ ; sat (u(t)) =
[sat (u1(t)) sat (u2(t)) sat (u3(t))]T is the vector of sat-
urated control torques,

sat (us(t)) = sign (us(t)) min {|us(t)|, us} , (4)

where us > 0 (s ∈ 1, 3) are saturation levels.

Remark 1. Here, we assume that the Euler angle takes the
value within [−π, π] such that quaternion q0(t) is obtained

by q0(t) =
√

1− ‖q(t)‖2.

In addition, it is true that

sat (u(t)) = u(t)−$ (u(t)) (5)

where $ (u(t)) = [$ (u1(t)) $ (u2(t)) $ (u3(t))]
T

and

$ (us(t)) =


us(t)− us, if us(t) > us
0, if us(t) ∈ [−us, us]
us(t) + us, if us(t) < −us

(6)

where s ∈ 1, 3.

According to T-S fuzzy approach (Tanaka and Wang
(2001); Xu et al. (2017)), the T-S fuzzy description of the
considered spacecraft (1)-(3) is expressed as

Model Rule i: IF ρ1(t) is Hi
1 and ρ2(t) is Hi

2 · · · ρg(t)
is Hi

g, THEN{
ẋ(t) = Aix(t) +Bisat(u(t)) +Biτ (t)

y(t) = Cix(t)
(7)

where i ∈ 1, λ, λ is the number of fuzzy rules under
consideration, and

Ai =

[
−J−1x×ωi(t)J 0

1

2

√
1− ‖xqi(t)‖2I −

1

2
x×ωi(t)

]
, Bi =

[
J−1

0

]
,

Ci = I, x(t) = [x1(t) x2(t) x3(t) x4(t) x5(t) x6(t)]T ,
[ω1(t) ω2(t) ω3(t) q1(t) q2(t) q3(t)]T , xω(t) = [ω1(t) ω2(t)
ω3(t)]T , xq(t) = [q1(t) q2(t) q3(t)]T , ρs(t) (s ∈ 1, g) are
premise variables, and Hi

s (s ∈ 1, g) are fuzzy sets.

Based on fuzzy blending, the global T-S fuzzy model is
stated as
ẋ(t) =

λ∑
i=1

ζi (ρ(t)) {Aix(t) +Bisat (u(t)) +Biτ (t)}

y(t) =

λ∑
i=1

ζi (ρ(t))Cix(t)

(8)

where ζi (ρ(t)) = χi(ρ(t))∑λ

j=1
χj(ρ(t))

, χi(ρ(t)) =
∏g
j=1H

i
j(ρj(t)),

ζi (ρ(t)) ∈ [0, 1],
∑λ
i=1 ζi (ρ(t)) = 1, and ρ(t) =

[ρ1(t), ρ2(t), · · · , ρg(t)]T .

With the event-triggered scheme located in sensor to
controller channel, the discrete measurements acquired by
sensor will be checked by the event-triggered condition
and sent to controller when the condition is satisfied. In
this work, we define the triggering instants as tk (k ∈ N)
meeting

⋃
k∈N[tk, tk+1) = [0,+∞) and define the aperiodic

sampling instants existing in [tk, tk+1) as tlk (l ∈ N)
satisfying

0 < h ≤ tl+1
k − tlk , hl+1 ≤ h, (9)

where t0k , tk, h and h are two constants. Therefore, we
have [tk, tk+1) =

⋃
Φl with Φl = [tlk, t

l
k + hl+1). Inspired

by Peng and Zhang (2015), the aperiodic event-triggered
condition is designed as

tk+1 = tk +

l−1∑
i=1

hi + inf
l

{
hl|e(tlk)TΥe(tlk)

≥ ν(tk)xT (tk)Υx(tk)
}
, (10)

where tlk = tk +
∑l
i=1 hi, e(tlk) = x(tlk) − x(tk), ν(tk) is

updated by ν(tk+1) = max {ν(tk)(1− (2µ1/π)atan[µ2×
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(‖x(tk+1)− x(tk)‖ − µ3)]), ν} where µs ≥ 0 (s ∈ 1, 3) are
design parameters, ν ∈ [0, 1) denotes the lower bound of
ν(tk) and ν(0) = ν, Υ is a weighting matrix.

Considering (10), the event-triggered fuzzy controller u(t)
is constructed as

Controller Rule i: IF ρ1(tk) is Hi
1 and ρ2(tk) is Hi

2 · · ·
ρg(tk) is Hi

g, THEN

u(t) = Fi
(
x(tlk)− e(tlk)

)
, t ∈ Φl (11)

where Fi (i ∈ 1, λ) are the gain matrices.

The global event-triggered fuzzy controller is stated as

u(t) =

λ∑
i=1

ζi (ρ(tk))Fi
(
x(tlk)− e(tlk)

)
, t ∈ Φl (12)

Substituting (12) into (8) and noting (5), the closed-loop
system is stated as

ẋ(t) =

λ∑
i=1

λ∑
j=1

ζi (ρ(t)) ζj (ρ(tk)) {Aix(t) +BiFj

×
(
x(tlk)− e(tlk)

)
−Bi$ (u(t)) +Biτ (t)

}
y(t) =

λ∑
i=1

ζi (ρ(t))Cix(t), t ∈ Φl

(13)

For simplicity,
∑λ
i=1 ζi (ρ(t)) and

∑λ
i=1 ζi (ρ(tk)) are de-

noted by
∑λ
i=1 ζi and

∑λ
i=1 ζik in the sequel, respectively.

In this study, the aim is to find the event-triggered fuzzy
controller (12) which ensures

• The closed-loop system (13) is exponentially stable
when τ (t) = 0;
• The L∞-gain performance given below is guaranteed

to suppress τ (t) under zero initial conditions,

sup
τ (t)∈L∞

‖y(t)‖∞
‖τ (t)‖∞

< γ (14)

where γ > 0 is a scalar.

3. EVENT-TRIGGERED CONTROL STRATEGY

For the convenience of expression, in system (13) we denote
x(t) ∈ Rn, u(t) ∈ Rm, $ (u(t)) ∈ Rm, τ (t) ∈ Rm, and
y(t) ∈ Rw.

Moreover, we define the set E (U , 1) which reads

E (U , 1) =
{
x(t) ∈ Rn|xT (t)Ux(t) ≤ 1

}
(15)

where U is a positive definite matrix, and define the set G
which reads

G =

{
x(t) ∈ Rn|

∣∣∣∣∣
λ∑
i=1

ζik (Fis −Nis)x(tlk)

∣∣∣∣∣ ≤ us
}

(16)

where Ni (i = 1, λ) are general matrices, Fis and Nis

denote the sth row of Fi and Ni, respectively (s ∈ 1,m).

According to Da Silva and Tarbouriech (2005), the follow-
ing inequality holds for any x(t) ∈ G,

$T (u(t))M

(
$ (u(t))−

λ∑
i=1

ζikNix(tlk)

)
≤ 0, (17)

where M > 0 is a diagonal matrix.

Based on the discussion above, the event-triggered fuzzy
control scheme is gvien in the theorem below.

Theorem 1. Take into account the spacecraft system (13).
Given positive constants ξ, γ, φ, τ , ν, and us (s ∈ 1,m), if
there exist appropriately dimensioned matrices U > 0,
Y > 0, Υ > 0, Qi (i ∈ 1, 3), Li (i ∈ 1, 2), Fi, Ni

(i ∈ 1, λ), and diagonal matrix M > 0 such that the
following inequalities hold,

λ∑
i=1

λ∑
j=1

ζiζjkΛijr(hl+1) < 0, (18)[
u2s/

(
1 + ξτ2/φ

)
U F Tis −NT

is
? I

]
≥ 0, (19) φU 0 CT

i
? (γ − ξ)I 0
? ? γI

 > 0 (20)

where i, j ∈ 1, λ, s ∈ 1,m, r ∈ 1, 2, and

Λijr(hl+1) = Ξij + Ωr(hl+1),Ω1(hl+1) = hl+1R
T
1 Y R1,

Ω2(hl+1) = hl+1R
T
2 Le

φhY −1LTR2, L =
[
LT1 L

T
2

]T
,

R1 = [ 0 I 0 0 0 0 ] , R2 =

[
I 0 0 0 0 0
0 0 I 0 0 0

]
,

Ξ
(11)
ij = [Q1Ai]s + φU + [L1]s,Ξ

(12)
ij = −Q1 +AT

i Q
T
2−

L1 +LT2 ,Ξ
(13)
ij = Q1BiFj +AT

i Q
T
3 −L1 +LT2 ,Ξ

(14)
ij =

−Q1BiFj ,Ξ
(15)
ij = −Q1Bi,Ξ

(16)
ij = Q1Bi,Ξ

(22)
ij =

− [Q2]s,Ξ
(23)
ij = −QT

3 +Q2BiFj ,Ξ
(24)
ij = −Q2BiFj ,

Ξ
(25)
ij = −Q2Bi,Ξ

(26)
ij = Q2Bi,Ξ

(33)
ij = −[L2]s + νΥ

+ [Q3BiFj ]s,Ξ
(34)
ij = −Q3BiFj − νΥ,Ξ

(35)
ij = −Q3Bi

+NT
j M ,Ξ

(36)
ij = Q3Bi,Ξ

(44)
ij = (ν − 1)Υ,Ξ

(55)
ij =

− 2M ,Ξ
(66)
ij = −ξI,

then the control goals can be achieved by employing event-
triggered fuzzy controller (12) within local region E (U , 1).

Proof. For the purpose of demonstrating the theorem,
the following Lyapunov functional V (t) is constructed for
system (13),

V (t) = V1(t) + V2(t, tlk), t ∈ Φl (21)

where V1(t) = x(t)TUx(t) and

V2(t, tlk) = (tlk + hl+1 − t)
∫ t

tl
k

e−φ(t−α)ẋT (α)Y ẋ(α)dα

By differentiating V (t), we can obtain

V̇1(t) =2xT (t)Uẋ(t) + φx(t)TUx(t)− φV1(t) (22)
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V̇2(t, tlk) = (tlk + hl+1 − t)ẋ(t)Y ẋ(t)−
∫ t

tl
k

e−φ(t−α)ẋT (α)

× Y ẋ(α)dα− φ(tlk + hl+1 − t)
∫ t

tl
k

e−φ(t−α)ẋT (α)Y

× ẋ(α)dα ≤ (tlk + hl+1 − t)ẋ(t)Y ẋ(t)−
∫ t

tl
k

e−φhẋT (α)

× Y ẋ(α)dα− φV2(t, tlk)

≤ (tlk + hl+1 − t)ẋT (t)Y ẋ(t) + (t− tlk)ϕT (t)LeφhY −1

×LTϕ(t) + 2ϕT (t)L
(
x(t)− x(tlk)

)
− φV2(t, tlk)

(23)

where ϕ(t) =
[
xT (t) xT (tlk)

]T
.

In addition, it is also follows that

2

λ∑
i=1

λ∑
i=j

ζiζjk
{[
xT (t)Q1 + ẋT (t)Q2 + xT (tlk)Q3

]
×
[
Aix(t) +BiFjx(tlk)−BiFje(tlk)−Bi$ (u(t))

+Biτ (t)− ẋ(t)]} = 0

(24)

Considering the condition (10), when tlk is not the trigger-
ing instant, it is true that

0 < −eT (tlk)Υe(tlk)

+ ν
[
x(tlk)− e(tlk)

]T
Υ
[
x(tlk)− e(tlk)

]
(25)

Furthermore, it can be inferred from (19) that∣∣∣∣∣
λ∑
i=1

ζik (Fis −Nis)x(t)

∣∣∣∣∣
2

≤ u2s

1 + ξτ2

φ

xT (t)Ux(t), (26)

which indicates that E(U , 1) ⊆ G. Therefore, according to
inequality (17), we have

V̇ (t) ≤V̇ (t)− 2$T (u(t))M$(u(t))

+ 2$T (u(t))

λ∑
j=1

ζjkMNjx(tlk)
(27)

Substituting (22)-(25) into (27), one obtains

V̇ (t) + φV (t)

≤
r∑
i=1

r∑
j=1

ζiζjkψ
T (t)

{
tlk + hl+1 − t

hl+1
Λij1(hl+1)

+
t− tlk
hl+1

Λij2(hl+1)

}
ψ(t) + ξτT (t)τ (t)

(28)

where

ψ(t) = [xT (t) ẋT (t) xT (tlk) eT (tlk) $T (u(t)) τT (t)]T .

Under the condition of (18), inequality (28) will result in

V̇ (t) ≤ −φV (t) + ξτT (t)τ (t) (29)

Integrating (29) over [tlk, t) and noting limt→tl−
k
V (t) ≥

V (tlk), it is easy to find that

V (t) ≤e−φ(t−t
l
k)V (tlk) + ξ

∫ t

tl
k

e−φ(t−α)τT (α)τ (α)dα

≤e−φ(t−tk)V (tk) + ξ

∫ t

tk

e−φ(t−α)τT (α)τ (α)dα

≤ · · ·

≤e−φtV (0) + ξ

∫ t

0

e−φ(t−α)τT (α)τ (α)dα

(30)
Moreover, from (21), we have

V (t) ≥ xT (t)Ux(t), t ∈ Φl (31)

When τ (t) = 0, by substituting (31) into (30), one obtains

‖x(t)‖2 ≤ e−φt V (0)

ιmin(U)
(32)

Hence, system (13) is exponentially stable when τ (t) = 0.

In the sequel, the aim is to demonstrate the L∞-gain
performance for system (13). Firstly, from (30) and (31),
we can further know that

xT (t)Ux(t) ≤ V (0) +
ξ

φ
‖τ (t)‖2∞ (33)

Therefore, when x(0) ∈ E(U, 1), it is found that xT (t)Ux(t)
≤ 1+ ξτ2/φ. Due to the existence of (26), it is known that
x(t) ∈ G in the scenario of τ (t) 6= 0.

Noting zero initial conditions, one has

xT (t)Ux(t) ≤ ξ

φ
‖τ (t)‖2∞ (34)

Additionally, (20) leads to

yT (t)y(t) < γφxT (t)Ux(t) + (γ2 − γξ)τT (t)τ (t) (35)

Then, with combining (34) and (35), we have

‖y(t)‖2∞ < γ2‖τ (t)‖2∞, (36)

which means supτ (t)∈L∞
‖y(t)‖∞
‖τ (t)‖∞ < γ. The proof is there-

fore complete.

The problem of controller synthesis is solved in the follow-
ing theorem.

Theorem 2. Take into account the spacecraft system (13).
Given the positive constants ξ, γ, φ, τ , ν, us (s ∈ 1,m),
εi (i ∈ 1, 3), κi (i ∈ 1, λ), and hl+1 ∈ {h, h}, if there exist

appropriately dimensioned matrices Û > 0, Ŷ > 0, Υ̂ > 0,

Q̂, L̂i (i ∈ 1, 2), F̂i, N̂i, Pijr > 0, Gijr > 0, Kijr = KT
jir,

Ki(j+λ)r = KT
(j+λ)ir (i, j ∈ 1, λ, r ∈ 1, 2), and diagonal

matrix M > 0 such that the inequalities exhibited below
are feasible,

Pijr + Pjir −Gijr −Gjir ≤Kijr +Kjir, (37)

Λ̂ijr(hl+1)− 2Pijr + 2Gijr +

λ∑
s=1

κs (Pisr + Psir

+Gisr +Gsir) ≤Ki(j+λ)r +K(j+λ)ir (38)[
W11r W12r

? W11r

]
< 0, (39)[

u2s/
(
1 + ξτ2/φ

)
Û F̂ Tis − N̂T

is
? I

]
≥ 0, (40) φÛ 0 Q̂CT

i
? (γ − ρ)I 0
? ? γI

 > 0 (41)
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where

W11r =

K11r · · · K1λr

...
. . .

...
Kλ1r · · · Kλλr

 ,
W12r =

K1(λ+1)r · · · K1(2λ)r

...
. . .

...
Kλ(λ+1)r · · · Kλ(2λ)r

 ,
Λ̂ijr(hl+1) = Ξ̂ij + Ω̂r(hl+1), Ω̂1(hl+1) = hl+1R

T
1 Ŷ R1,

Ω2(hl+1) = hl+1R
T
2 L̂e

φhŶ −1L̂TR2, L̂ =
[
L̂T1 L̂

T
2

]T
,

R1 = [ 0 I 0 0 0 0 ] , R2 =

[
I 0 0 0 0 0
0 0 I 0 0 0

]
,

Ξ̂
(11)
ij = [ε1AiQ̂

T ]s + φÛ + [L̂1]s, Ξ̂
(12)
ij = −ε1Q̂T + ε2

× Q̂AT
i − L̂1 + L̂T2 , Ξ̂

(13)
ij = ε1BiF̂j + ε3Q̂A

T
i − L̂1

+ L̂T2 , Ξ̂
(14)
ij = −ε1BiF̂j , Ξ̂

(15)
ij = −ε1Bi, Ξ̂

(16)
ij = ε1Bi,

Ξ̂
(22)
ij = −[ε2Q̂]s, Ξ̂

(23)
ij = −ε3Q̂+ ε2BiF̂j , Ξ̂

(24)
ij = −ε2

×BiF̂j , Ξ̂
(25)
ij = −ε2Bi, Ξ̂

(26)
ij = ε2Bi, Ξ̂

(33)
ij = −[L̂2]s

+ νΥ̂ + [ε3BiF̂j ]s, Ξ̂
(34)
ij = −ε3BiF̂j − νΥ̂,

Ξ̂
(35)
ij = −ε3Bi + N̂T

j M , Ξ̂
(36)
ij = ε3Bi,

Ξ̂
(44)
ij = (ν − 1)Υ̂, Ξ̂

(55)
ij = −2M , Ξ̂

(66)
ij = −ξI,

then there exists event-triggered fuzzy controller (12) with

Fi = F̂iQ̂
−T such that the control goals can be achieved

within local region E (U , 1).

Proof. To demonstrate the theorem, we define the ma-

trices as follows: Q̂ = Q−1, Q1 = ε1Q, Q2 = ε2Q,

Q3 = ε3Q, Û = Q̂UQ̂T , Ŷ = Q̂Y Q̂T , L̂1 =

Q̂L1Q̂
T , L̂2 = Q̂L2Q̂

T , Υ̂ = Q̂ΥQ̂T , F̂j = FjQ̂
T ,

N̂j = NjQ̂
T , ∆1 = diag

{
Q̂, Q̂, Q̂, Q̂, I, I

}
, ∆2 =

diag
{
Q̂, Q̂, Q̂, Q̂, I, I, Q̂

}
, ∆3 = diag

{
Q̂, I

}
, ∆4 =

diag
{
Q̂, I, I

}
. According to the Corollary 2 in Arino and

Sala (2008), (37)-(41) can be achieved by implementing
congruent transformations for (18)-(20) using ∆1, ∆2, ∆3,
and ∆4, respectively. The proof is therefore complete.

4. ILLUSTRATIVE EXAMPLE

To prove the effectiveness of the proposed control method,
simulation results are shown in this section. It is as-
sumed that the aperiodic event-triggered mechanism (10)
is implemented in the sensor module which interacts with
controller module through wireless communication. The
inertia matrix J and external disturbance τ (t) are set as

J =

[
350 3 4
3 270 10
4 10 190

]
(kg ·m2)

τ (t) =

[−1.5 + 2 cos(0.06t)− 0.5 cos(0.2t)
2 + 1.5 sin(0.06t)− 1 cos(0.2t)
−1.5 + 2 sin(0.06t)− 1.5 sin(0.2t)

]
× 10−3 (N ·m)

The operating regions of system are defined as ωi(t) ∈
[−1rad/s, 1rad/s] and qi(t) ∈ [−0.56, 0.56] (i ∈ 1, 3).
System state x(t) is chosen as the premise variable ρ(t).
The T-S fuzzy model of the spacecraft under consideration
is stated as

Model Rule 1: IF ω(t) is about [0 0 0]T and q(t) is
about [0 0 0]T , THEN

ẋ(t) = A1x(t) +B1sat (u(t)) +B1τ (t)

Model Rule 2: IF ω(t) is about [0 0 0]T and q(t) is
about [0.56 0.56 0.56]T , THEN

ẋ(t) = A2x(t) +B2sat (u(t)) +B2τ (t)

Model Rule 3: IF ω(t) is about [0 0 0]T and q(t) is
about [−0.56 − 0.56 − 0.56]T , THEN

ẋ(t) = A3x(t) +B3sat (u(t)) +B3τ (t)

Model Rule 4: IF ω(t) is about [0.5 0.5 0.5]T and q(t)
is about [0 0 0]T , THEN

ẋ(t) = A4x(t) +B4sat (u(t)) +B4τ (t)

Model Rule 5: IF ω(t) is about [−0.5 − 0.5 − 0.5]T

and q(t) is about [0 0 0]T , THEN

ẋ(t) = A5x(t) +B5sat (u(t)) +B5τ (t)

Model Rule 6: IF ω(t) is about [1 1 1]T and q(t) is
about [0.56 0.56 0.56]T , THEN

ẋ(t) = A6x(t) +B6sat (u(t)) +B6τ (t)

Model Rule 7: IF ω(t) is about [−1 −1 −1]T and q(t)
is about [−0.56 − 0.56 − 0.56]T , THEN

ẋ(t) = A7x(t) +B7sat (u(t)) +B7τ (t)

Additionally, using the membership functions Hi
j (i ∈ 1, 7,

j ∈ 1, 6) similar to the ones given in Xu et al. (2017),
defining ξ = 0.08, φ = 0.05, us = 2Nm (s ∈ 1, 3), εi = 1
(i ∈ 1, 3), τ = 0.01, κi = 0.12 (i ∈ 1, 7), h = 0.001, h = 0.1,
ν = 0.2, µ1 = 10, µ2 = 1, µ3 = 0.02, and resolving the
LMIs presented in Theorem 2 to find the minimized γ
by Matlab LMI Toolbox, the performance index γmin =
0.1616 is obtained. Concurrently, the weighting matrix Υ
of aperiodic event-triggered condition (10) and feedback
gain matrices Fi (i ∈ 1, 7) of controller (12) are also
calculated out, which are all presented in Appendix A.

Setting the initial conditions as q0(0) = 0.7477, q(0) =
[−0.3802 0.2124 0.5013]T , and ω(0) = [0 0 0]T , and ap-
plying event-triggered fuzzy control law (12) to spacecraft
models (1)-(3), the time-domain responses of quaternions,
angular velocities, and saturated control inputs are de-
scribed in Figs. 1-3, respectively. In Figs. 1 and 2, we
find that, with using fuzzy controller (12), the quaternions
and angular velocities can all be stabilized rapidly and
smoothly. In addition, it is observed from Fig. 3 that the
control inputs are limited in the range of [−2Nm, 2Nm]
even in the presence of aperiodic event-triggered condi-
tion (10). Hence, it is concluded that the proposed event-
triggered controller is effective in stabilizing the networked
spacecraft under complex constraints.

5. CONCLUSION

In this work, a robust fuzzy attitude control strategy is
developed for a networked spacecraft with actuator satura-
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Fig. 3. Responses of saturated control inputs.

tion and persistent bounded disturbance under aperiodic
event-triggered mechanism. Without the requirement of
continuous measurements, a discrete-time event-triggered
condition consisting of aperiodically sampled measure-
ments is employed to reduce the communication burden
for networked spacecraft. Based on the established fuzzy
model of spacecraft, an aperiodic event-triggered fuzzy
control law is proposed to carry out exponential attitude
stabilization. Meanwhile, the problem of actuator satu-
ration is solved by anti-windup design scheme and the
persistent bounded disturbances are attenuated by L∞-
gain performance. The stability and robustness of the
resulting closed-loop system are demonstrated strictly.
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Appendix A

The weighting matrix Υ is stated as:

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

15079



Υ =


2.8914 −0.3518 −0.1452
? 1.6962 −0.0533
? ? 0.9666
? ? ?
? ? ?
? ? ?

0.3317 −0.0362 0.0542
0.0037 0.2039 0.0777
−0.0210 −0.0422 0.1158
0.4205 −0.0388 −0.0319
? 0.4071 −0.0351
? ? 0.4022

 ,

The feedback gain matrices Fi (i ∈ 1, 7) are stated as:

F1 =

[−157.7479 12.8948 6.9567
11.6462 −117.2082 4.5123
2.7898 0.1396 −85.1616

−35.0656 0.0821 −2.6976
−0.5367 −37.3799 −3.5277
2.4968 4.1414 −40.3453

]
,

F2 =

[−160.3611 11.3954 4.6658
13.9409 −122.8972 2.3392
7.9967 4.2449 −93.5620

−23.4441 0.5155 −3.8503
−1.4773 −21.5913 −5.6948
1.7209 4.0652 −19.9650

]
,

F3 =

[−160.1550 11.4178 4.6782
13.9519 −122.7574 2.3558
8.0056 4.2671 −93.4807

−23.4211 0.5149 −3.8407
−1.4739 −21.5815 −5.6831
1.7236 4.0662 −19.9589

]
,

F4 =

[−157.2247 13.2673 −1.8554
10.5887 −112.9959 7.4392
1.7306 0.2727 −83.0726

−34.6536 9.7486 0.5205
−14.2646 −36.7005 −2.2717
10.2856 −3.8188 −40.7727

]
,

F5 =

[−152.2206 13.4019 13.4530
8.3479 −115.0668 −1.6433
1.7797 −1.5907 −84.7755

−34.6074 −9.1900 −5.9847
12.7452 −36.7167 −5.1645
−5.6095 11.8770 −39.6755

]
,

F6 =

[−148.2593 12.4893 −6.7283
5.8268 −99.5105 −7.6464
−4.5217 8.3651 −84.7807

−20.6118 23.9252 7.3831
−35.0864 −19.6879 −5.0968
18.8000 −14.7530 −20.6681

]
,

F7 =

[−139.0046 10.1777 0.1234
5.1162 −105.0553 −8.5991
10.9205 −7.3551 −86.4632

−22.2481 −22.0403 −16.0851
31.4435 −17.5781 −7.2848
−16.6470 21.5510 −17.8586

]
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