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Abstract: An assignment problem arises when there exists a set of tasks that must be allocated
to a set of agents. The bottleneck assignment problem (BAP) has the objective of minimising
the most costly allocation of a task to an agent. Under certain conditions the structure of
the BAP can be exploited such that subgroups of tasks are assigned separately with lower
complexity and then merged to form a combined assignment. In particular, we discuss merging
the assignments from two separate BAPs and use the solution of the subproblems to bound the
solution of the combined problem. We also provide conditions for cases where the solution of
the subproblems produces an exact solution to the BAP over the combined problem. We then
introduce a particular algorithm for solving the BAP that takes advantage of this insight. The
methods are demonstrated in a numerical case study.
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1. INTRODUCTION

An assignment problem arises when multiple tasks are to
be allocated to multiple agents. For example, situations
where jobs are to be assigned to a group of workers or
passengers positioned at different locations in a city are to
be picked up by a fleet of cars. Tasks can be assigned based
on many different criteria. See Gerkey and Matarić (2004),
Burkard et al. (2009), and Pentico (2007) for reviews on
the different objectives for assignment problems.

One particular objective is to assign tasks to agents
such that the total cost of the assignment is minimised.
This type of assignment problem is called the linear
assignment problem (LAP). The Hungarian Method in
Kuhn (1955) is a well-studied algorithm for solving the
LAP. In Chopra et al. (2017), a distributed version of the
Hungarian Method is presented; a distributed algorithm
is one that does not rely on a centralised decision-maker
for computation. In Bertsekas and Castañon (1991) and
Zavlanos et al. (2008), so-called auction algorithms are
presented to solve the LAP. A greedy algorithm is one
where tasks are allocated to agents sequentially. Each
allocation is made according to the lowest cost amongst the
remaining choices. In Choi et al. (2009), the Consensus-
Based Auction Algorithm (CBAA) is presented, which is
a greedy algorithm used to obtain suboptimal solutions
to the LAP with low computational cost compared to
algorithms for solving the LAP exactly.

Another objective is to assign tasks to agents such that
the costliest allocation is minimised, which corresponds
to the bottleneck assignment problem (BAP). The BAP
has application in time-critical problems. For example in
? The research is funded by Defence Science and Technology Group
through research agreements MyIP: 7558 and MyIP: 7562.

Shames et al. (2017), a set of decoys must travel to a
set of positions such that the worst-case positioning time
is minimised. In Garfinkel (1971), a threshold algorithm
is presented, where a threshold is iteratively increased
until it is possible to find an assignment containing only
allocations of tasks to agents with costs smaller than the
threshold. In Gabow and Tarjan (1988); Punnen and Nair
(1994), the bound on the completion time of the threshold
algorithm is reduced moving the threshold according to a
binary search pattern. In Derigs and Zimmermann (1978),
an algorithm is presented that iteratively solves the BAP
over an increasing subset of agents and tasks. The subset
size is increased until it contains all the agents and tasks. In
Khoo et al. (2019), a distributed algorithm for solving the
BAP is introduced. There are other variants of the BAP.
Such variants include the scheduling problems in Carraresi
and Gallo (1984) and Aggarwal et al. (1986), which require
assigning more than one task per agent. In fact, this can
be regarded as an example of a time-extended assignment
from the taxonomy in Gerkey and Matarić (2004).

In this paper, we focus on the BAP and restrict the scope
to having each agent carry out at most one task and
each task requiring at most one agent for completion. The
contribution of this work is to investigate structure that
can be exploited to solve the BAP efficiently. Consider
partitioning the sets of agents and tasks, i.e., splitting
the assignment problem into two smaller BAPs. We can
use the two solutions of the subproblems for solving the
combined BAP. Consider the following three ways to
exploit the structure of the BAP. We relate each scenario
to a ride-sharing application for illustration.

For the first scenario, assume the sets of agents and tasks
were partitioned equitably, i.e., none of the subproblems
has fewer tasks than agents. Merging the solutions of the
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two subproblems forms a valid but possibly suboptimal
assignment in the combined problem. In fact, the cost of
the merged assignment is an upper bound on the cost of
the optimal BAP solution. In a ride-sharing application,
two rival companies may assign their own vehicles to their
own customers. However, they may find that pooling their
resources allows a better service for all customers.

For the second scenario, we define a bottleneck cluster as
a group of agents and tasks with small allocation costs
amongst each other. When the two subproblems consist of
two separate bottleneck clusters, we can determine condi-
tions under which the solutions of the subproblems form
an exact solution to the combined problem. Consider two
cities each with their own sets of vehicles and customers. If
the cities were geographically far apart, there is no benefit
for vehicles in one city to serve customers in the other city.

The third scenario relates to the algorithm in Khoo et al.
(2019). Knowing the solutions to the two subproblems
leads to information about task-to-agents allocations that
are particularly costly. We can eliminate suboptimal op-
tions when the algorithm is initialised to solve the com-
bined problem. Assume a group of customers has been
assigned to vehicles. Then, a new group of customers
requests to be picked up. By only considering the idle
vehicles for the new customers and not the previously
assigned ones, the resulting assignment problem has lower
complexity. The solution from the two subproblems can be
used as a warm-start to solving the combined problem.

2. PRELIMINARIES

Given an arbitrary undirected graph G = (V, E) with ver-
tex set V and edge set E , consider the following definitions
found in Hopcroft and Karp (1973) and Khoo et al. (2019).

Definition 1. (Maximum Cardinality Matching). A match-
ing M in G is a set of edges such that M ⊆ E and no
vertex v ∈ V is incident with more than one edge in M.
A maximum cardinality matching (MCM) is a matching
Mmax in G of maximum cardinality.

Let Ab be a set of agents and Bb be a set of tasks, where
Ab ∩ Bb = ∅. Consider an arbitrary complete bipartite
graph Gb = (Vb, Eb) with vertex set Vb = Ab ∪Bb and edge
set Eb = {{i, j}|i ∈ Ab, j ∈ Bb}. Let C(Gb) be the set of
all MCMs of Gb. Let w : Eb 7→ R map edges to real-valued
weights. The BAP for graph Gb is formulated as

BOT (Gb) : min
M∈C(Gb)

max
{i,j}∈M

w({i, j}). (1)

Definition 2. (Bottleneck edge). A bottleneck edge of graph
Gb is any e ∈ arg max{i,j}∈M w({i, j}), for any MCM M
that is a minimiser of BOT (Gb).
Definition 3. (Neighbours). The set of neighbours of ver-
tex v ∈ V in G is defined as Nv = {k|{v, k} ∈ E}.

Note that given a vertex v ∈ V, ∀k ∈ Nv, v ∈ Nk.

Definition 4. (Path). Let a sequence of distinct vertices
v1, v2, ..., vl+1 ∈ V be such that for k = 1, 2, ..., l, vk+1 ∈
Nvk . The set of edges P = {{vk, vk+1}}k=1,2,...,l is then
said to be a path between v1 and vl+1, with length l.

Definition 5. (Alternating path). Given a matching M
and a path P, P is an alternating path relative to M
if and only if each vertex that is incident to an edge in P

is incident with no more than one edge in P ∩M and no
more than one edge in P\M.

Definition 6. (Free vertex). Given a matchingM, a vertex
v ∈ V is free if and only if for all w ∈ V, {v, w} /∈M.

Definition 7. (Augmenting path). Given a matching M
and a path P between vertices v and v′, P is an augmenting
path relative to M if and only if P is an alternating path
relative to M and v and v′ are both free vertices.

Definition 8. (Alternating tree) Given a matching M, G
is an alternating tree relative to M if and only if G is a
tree and any path between the root vertex of G and every
other vertex in G is an alternating path relative to M.

3. PROBLEM FORMULATION

Let there be two sets of agents A1 = {a1, a2, ..., am1
}

and A2 = {α1, α2, ..., αm2
} and two sets of tasks B1 =

{b1, b2, ..., bn1
} and B2 = {β1, β2, ..., βn2

}. Define the sets
A3 := A1 ∪ A2 and B3 := B1 ∪ B2. Let m3 = m1 + m2

and n3 = n1 + n2 and assume m1 ≥ n1 and m2 ≥ n2.
For k = 1, 2, 3, define Vk := Ak ∪ Bk, Ek := {{i, j}|i ∈
Ak, j ∈ Bk} and graph Gk := (Vk, Ek). Define D(Gb) :=
arg minM∈C(Gb) max{i,j}∈M w({i, j}), the set of solutions
to BOT (Gb) for any bipartite graph Gb.
Assumption 1. Assume we have M1 ∈ D(G1) and e1 ∈
arg max{i,j}∈M1

w({i, j}), i.e., an arbitrary solution to
BOT (G1) and a corresponding bottleneck edge of G1.

Assumption 2. Assume we have M2 ∈ D(G2) and e2 ∈
arg max{i,j}∈M2

w({i, j}), i.e., an arbitrary solution to
BOT (G2) and a corresponding bottleneck edge of G2.

Problem 1. Given Assumptions 1 and 2, find a solution to
BOT (G3), i.e., find some matching M3 ∈ D(G3).

In Section 4, we define structures of the BAP that can
be exploited to solve Problem 1. Then in Section 5, we
discuss a specific algorithm that allows us to exploit some
structure of the BAP discussed in Section 4.

4. STRUCTURE OF THE BAP

In this section, we discuss structures of the BAP that
can be exploited. We first introduce an upper bound on
the weight of a bottleneck edge of G3, in terms of the
bottleneck edges G1 and G2. Then, we introduce bottle-
neck clusters and provide conditions when the solution to
Problem 1 is found by merging matchings M1 and M2.

4.1 A Bound on the Optimal BAP Solution

Theorem 1. Under Assumptions 1 and 2, it holds that
max{w(e1), w(e2)} is an upper bound on w(e3), where e3
is a bottleneck edge of G3.

Proof. By definition, w(e3) = max{i,j}∈M3
w({i, j}) ≤

max{i,j}∈M w({i, j}) for any arbitrary M ∈ C3. Since

M̃ = M1 ∪ M2 ∈ C3, w(e3) ≤ max{i,j}∈M̃ w({i, j}) =

max{w(e1), w(e2)}. 2

Given Assumptions 1 and 2, the setM1∪M2 is an MCM
of G3. This MCM is possibly suboptimal to BOT (G3).
However, this bound of the BAP allows us to make a de-
cision before solving Problem 1 exactly. If the suboptimal
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solution is sufficient in our application, there is no need to
invest further resources to solve Problem 1 exactly.

4.2 Bottleneck Clusters

We now introduce the novel concept of a bottleneck clus-
ter. In Khoo et al. (2019), conditions for determining if an
edge is a bottleneck edge of a given graph are presented.
We build on this result and discuss corresponding condi-
tions under whichM3 =M1 ∪M2 is an exact solution to
BOT (G3) when G1 and G2 are both bottleneck clusters.

Once again, consider an arbitrary complete bipartite graph
Gb = (Vb, Eb). Given M is an MCM of Gb, we define
φ(Gb,M) := M ∪ {e ∈ Eb|w(e) < maxe′∈M w(e′)}, the
union of M and the set of edges that have weight strictly
smaller than the largest edge in M. With this tool we
define a bottleneck cluster and a critical bottleneck edge.

Definition 9. (Bottleneck cluster). Let Mb be a solution
to BOT (Gb). Let e = {ab, bb} ∈ Mb be a bottleneck edge of
Gb. Graph Gb is a bottleneck cluster relative to e if and only
if for any vertex v ∈ Vb, there exists an alternating path P
between v and bottleneck task bb such that P ⊆ φ(Gb,Mb).

Definition 10. (Critical bottleneck edge). Let M be an
MCM of graph Gb. Edge ec is a critical bottleneck edge
of Gb relative to M if and only if ec ∈ arg maxe∈M w(e)
and φ(Gb,M)\{ec} does not contain an augmenting path
relative to M\{ec}.

Lemma 1 allows us to find a new MCM, which will have
at least one less edge with weight maxe∈M w(e) than M.

Lemma 1. (Proof in Khoo et al. (2019)). LetM be an ar-
bitrary MCM of graph Gb. Consider an edge e ∈
arg maxe∈M w(e). An augmenting path P ⊆ φ(Gb,M)\{e}
exists relative toM\{e} if and only if there exists an MCM
M′ of Gb such that M′ ⊆ φ(Gb,M)\{e}.
Corollary 1. From Lemma 1, it follows that every critical
bottleneck edge of Gb is a bottleneck edge of Gb.

An MCM that is a solution to BOT (Gb) may contain
more than one critical bottleneck edge. The following
proposition shows how a critical bottleneck edge forms a
particular alternating path between the bottleneck agent
and bottleneck task.

Assumption 3. Let Mb be a solution to BOT (Gb) and let
ec = {ac, bc} ∈ Mb be a critical bottleneck edge of Gb
relative to Mb.

Proposition 1. Consider Assumption 3. The length-one
path P = {ec} is a unique alternating path in φ(Gb,Mb)
relative to Mb between ac and bc.

Proof. Path P = {ec} is trivially an alternating path
relative to Mb; edge ec ∈ Mb, so P ⊆ φ(Gb,Mb).
It remains to show that there does not exist another.
Assume for contradiction that there exists an alternating
path P ′ 6= P , P ′ ⊆ φ(Gb,Mb) relative to Mb between
ac and bc. It follows that ec /∈ P ′ and therefore P ′ ⊆
φ(Gb,Mb)\{ec}. Furthermore, P ′ is an augmenting path
relative to Mb\{ec}. By Definition 10, ec is not a critical
bottleneck edge of Gb, which contradicts Assumption 3. 2

The following corollary describes the structure of a bottle-
neck cluster Gb based on Proposition 1.

Corollary 2. Consider Assumption 3 and let Gb be a bot-
tleneck cluster with respect to the critical bottleneck edge
ec. We form two subgraphs of Gb, denoted as Sµ(Gb) =
(Vµ, Eµ) and Sν(Gb) = (Vν , Eν). Let Vµ contain the bot-
tleneck agent ac, and let Vν contain the bottleneck task
bc. Let Vb = Vµ ∪ Vν and Vµ ∩ Vν = ∅. By Definition 9,
it must be possible to construct both Sµ(Gb) and Sν(Gb)
to be alternating trees such that Eµ ∪ Eν ⊆ φ(Gb,Mb). By
Proposition 1, for all agents a′ ∈ Vµ ∩Ab and for all tasks
b′ ∈ Vν ∩ Bb, {a′, b′} /∈ φ(Gb,Mb).
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Fig. 1. A bottleneck cluster. Dotted lines represent edges
not in matching Mb, solid lines represent edges in
Mb. Shown here, a set of agents {a1, a2, ..., a9} and a
set of tasks {b1, b2, ..., b9}. Edge {a1, b1} is a critical
bottleneck edge so Corollary 2 applies.

Fig. 1 illustrates Corollary 2. The graph Gb is represented
by two alternating trees Sν(Gb) and Sµ(Gb) with roots b1
and a1 respectively. The roots a1 and b1 are incident to
the critical bottleneck edge ec with weight w(ec) = 20.
All edges in both trees are elements of φ(Gb,Mb) as their
weights are smaller than or equal to w(ec) and all edges
not in the matching are strictly smaller than w(ec). Recall
from Theorem 1 that w(e3) ≤ max{w(e1), w(e2)}. Given
Assumptions 1 and 2, the contrapositive of the following
lemma provides conditions for the bottleneck edge of graph
G3 to have equal weight to max{w(e1), w(e2)}.
Lemma 2. Given Assumptions 1 and 2, assume both G1
and G2 are bottleneck clusters with respect to e1 and e2
respectively. Assume e1 is a critical bottleneck edge of G1
relative to M1 and e2 is a critical bottleneck edge of G2
relative toM2. Let w(e1) ≥ w(e2). If w(e3) < w(e1), then
there exists vertices i, j ∈ V2 such that

i. there exists an edge in E3 with weight less than w(e1)
between agent i and a task b′ in the vertex set of
subgraph Sν(G1), and

ii. there exists an edge in E3 with weight less than w(e1)
between task j and an agent a′ in the vertex set of
subgraph Sµ(G1), and

iii. there exists an alternating path P between i and j
containing only edges with weight less than w(e1), and
|P ∩M2| > |P\M2|.

Proof. Without loss of generality, let e1 = {a1, b1}. By
Proposition 1, e1 is the only alternating path between a1
and b1 in φ(G1,M1). Assume there does not exist vertices
i and j such that all i., ii., and iii. are true. Thus, e1 is
the only alternating path between a1 and b1 in φ(G3,M1∪
M2). By Definition 10, e1 is also a critical bottleneck edge
of G3 since e1 ∈ arg maxe∈M1∪M2 w(e) and there does not
exist an augmenting path in φ(G3,M1∪M2)\{e1} relative
to (M1 ∪M2)\{e1}. Thus, w(e3) = w(e1). 2
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In general, the converse of Lemma 2 does not hold unless
we apply some additional assumptions. This leads to the
following theorem.

Theorem 2. Given Assumptions 1 and 2, assume both G1
and G2 are bottleneck clusters with respect to e1 and e2
respectively. Assume e1 is a critical bottleneck edge of
G1 relative to M1 and e2 is a critical bottleneck edge
of G2 relative to M2. Assume that w(e1) > w(e2). Let
arg max{i,j}∈M1

w({i, j}) be a singleton. It holds that
w(e3) < w(e1) if and only if there exists vertices i, j ∈ V2
such that conditions i., ii., and iii. from Lemma 2 are true.

Proof. The necessary condition for w(e3) < w(e1) holds
from Lemma 2. We now prove the sufficient condition.
Assume there exists vertices i and j such that all i., ii., and
iii. are true. Then, aside from path P = {e1 = {a1, b1}},
there exists another alternating path P ′ between a1 and
b1, which does not contain the edge e1. Namely, the
alternating path P ′ constructed from the union of the
alternating paths between a1 and b′, b′ and i, i and j, j and
a′, and a′ and b1. Thus, there exists an augmenting path
P ′ ⊆ φ(G3,M1 ∪M2)\{e1} relative to (M1 ∪M2)\{e1}.
From Lemma 1, there exists an MCM M′ of G3 such that
M′ ∈ φ(G3,M1 ∪M2)\{e1}. By the assumptions on e1,
φ(G3,M1 ∪ M2)\{e1} contains only edges with weights
strictly smaller than w(e1). Thus, there exists an MCM of
G3 with all edges having weight smaller than w(e1), i.e.,
w(e3) must be smaller than w(e3). 2

a1 b1

a2

b2

a3

b3

α1β1
α2

β2

Fig. 2. An illustration of Theorem 2. We have V1 =
{a1, a2, a3}∪{b1, b2, b3} and G1 is a bottleneck cluster
with respect to e1 = {a1, b1}. Edge e1 is shown as a
solid red line. We have V2 = {α1, α2}∪{β1, β2} and G2
is a bottleneck cluster with respect to e2 = {α2, β2}.
The length of each line corresponds to the weight of
that edge. Solid lines show edges inM1∪M2. Dashed
lines show edges in M3 and w(e3) < w(e1).

Fig. 2 illustrates the sufficient condition of Theorem 2. The
orange dashed line is an edge that satisfies the condition
i. since α2 ∈ V2 and there exists edge {α2, b3} ∈ V3, where
b3 is a task in the vertex set of Sν(G1). The blue dashed
line satisfies condition ii. since β1 ∈ V2 and there exists
edge {β1, a2} ∈ V3, where a2 is an agent in the vertex set
of Sµ(G1). Condition iii. is satisfied since there is an al-
ternating path P = {{α1, β1}, {α2, β2}, {α1, β2}} between
β1 and α2, and |{{α1, β1}, {α2, β2}}| > |{{α1, β2}}|, i.e.,
P starts with a dashed line and ends with a dashed line.
Corollary 3 follows from Theorem 1 and 2.

Corollary 3. If one or more of conditions i., ii., or iii. in
Theorem 2 do not hold, thenM3 =M1∪M2 is a solution
to Problem 1.

5. ALGORITHM FOR SOLVING THE BAP

In this section, we discuss how the algorithm from Khoo
et al. (2019) makes use of Assumptions 1 and 2 to solve

Problem 1. Let us refer to this algorithm as pruneBAP.
Fig. 3 is an illustration of this algorithm.

Iteration 1:

e24 e42 e43 e34 e12 e21 e13 e22 e33 e23 e14 e31 e11 e41 e32 e44

Iteration 2:

e24 e42 e43 e34 e12 e21 e13 e22 e33 e23 e14 e31 e11 e41 e32 e44

Iteration 3:

e24 e42 e43 e34 e12 e21 e13 e22 e33 e23 e14 e31 e11 e41 e32 e44

Fig. 3. A demonstration of pruneBAP with A3 =
{a1, a2, a3, a4} and B3 = {b1, b2, b3, b4}. Edges in E3
are arranged in order of ascending weight, where epq is
the edge between agent ap and task bq. At iteration 1,
the initial arbitrary MCM is denoted by the 4 circled
edges. Edges to the right of the dashed lines have been
pruned from E3. Note, w(e44) ≥ w(e11) ≥ w(e21), i.e.,
with each iteration the weight of the largest edge in
the current MCM is non-increasing. The algorithm
terminates when a matching of size 4 does not exist
in the remaining edges to the left of the dashed line.

5.1 Warm-starting Versus Cold-starting pruneBAP

Solving Problem 1 by pruneBAP with an arbitrary MCM
M0 at initialisation does not make use of Assumptions
1 and 2. We denote this as a cold-start to pruneBAP.
Given Assumptions 1 and 2, consider the following. It
holds that the set M̃ := M1 ∪ M2 is an MCM of the
graph G3. Without loss of generality, let w(e1) ≥ w(e2).

Then, it also holds that e1 is the largest edge in M̃.
We use make use of M̃ to solve Problem 1 by choosing
it as the initial MCM of pruneBAP. Edges in the set
{e ∈ E3|w(e) ≥ w(e1), e /∈ M0} are removed from E3
in the first iteration. We denote this as a warm-start to
pruneBAP. Fig. 4 illustrates a warm-start to pruneBAP.

M1 from Assumption 1:

e12 e21 e22 e11

M2 from Assumption 2:

e43 e34 e33 e44

Warm-start, Iteration 1:

e24 e42 e43 e34 e12 e21 e13 e22 e33 e23 e14 e31 e11 e41 e32 e44

Fig. 4. A demonstration a warm-start. Here, A1 =
{a1, a2}, A2 = {a3, a4}, B1 = {b1, b2}, and B2 =
{b3, b4}. Then, A3 and B3 are the same as in Fig. 3.
In this example, warm-starting pruneBAP allows the
solution to BOT (G3) to be found in 1 iteration.

Remark 1. Warm-starting is a heuristic, a warm-start does
not guarantee fewer iterations for convergence to a solution
to BOT (GG3). For a cold-start, we choose an arbitrary
initial MCM Mcold; by chance this Mcold could be the
solution to BOT (G3).

Given Assumptions 1 and 2, warm-starting is a way to
make use of the available information to solve Problem 1.

6. CASE STUDIES

Consider agents and tasks represented by points in a vector
space S with a distance function D : S × S 7→ R+.
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For example, this could be a ride-sharing application,
where agents are vehicles and their tasks are to pick up
customers. Here we consider a 2-dimensional space S = R2

and Euclidean distance D(x, y) = ‖x− y‖2. Agents are to
be assigned to move from their initial positions to target
destinations based on the BAP with distance as weights.

6.1 Task Reassignment

Case Study 1. Let A = {a1, a2, ..., am3} ⊂ S be the initial
locations of a set of agents. Let B1 = {b1, b2, ..., bn1} ⊂ S
be the set of goal locations. Assume m3 > n1. We first
solve BOT ((A ∪ B1, E)), where E = {{i, j}|i ∈ A, j ∈
B1} to determine an assignment of tasks to agents that
minimises the worst-case distance an agent must travel to
reach a goal location. Without loss of generality, assume
vehicles at positions A1 = {a1, a2, ..., an1} are assigned to
goals at B1. Now assume that a second set of goal locations
becomes available to agents. Let B2 = {β1, β2, ..., βn2} ⊂ S
be the set of new goal locations. Assume thatm3 ≥ n1+n2.
Let A2 = {an1+1, an1+2, ..., am3} be the locations of the
remaining unassigned agents. We now assign the new goals
to the remaining agents, i.e., solve BOT ((A2 ∪ B2, E2)),
where E2 = {{i, j}|i ∈ A2, j ∈ B2}.

By Theorem 1, the assignment obtained from solving
BOT ((A∪B1, E)) and BOT ((A2∪B2, E2)) in Case Study 1
is not necessarily the optimal solution to BOT ((A ∪ B1 ∪
B2, E3)), where E3 = {{i, j}|i ∈ A, j ∈ B1 ∪ B2}. Fig. 5
shows a numerical example of a case where the optimal
assignment is of lower cost than the assignment used to
warm-start pruneBAP. For this example, m3 = 40, n1 =
20 and n2 = 20. The data was generated using continuous
uniform distributions with range [0, 100) for both coordi-
nates x and y. Fig. 6 shows a plot of the average cost of the
assignment used as warm-start to initialise pruneBAP and
the average cost of the optimal assignment after pruneBAP
has terminated. For all simulations, m3 = n1 + n2. For
each even value of m3, 100 simulations were generated. We
observe that the cost of the assignment obtained from the
subproblems is never greater than the cost of an optimal
solution to BOT (G3), in accordance with Theorem 1. In
this case, the unstructured distribution of the locations
results in all of the conditions in Theorem 2 being satis-
fied and we observe that w(e3) < max{w(e1), w(e2)} as
expected.

6.2 Clustering of Agents and Tasks

Case Study 2. Let A1 = {a1, a2, ..., am1
} ⊂ S and A2 =

{α1, α2, ..., αm2
} ⊂ S be the initial locations of two sets

of agents. Let B1 = {b1, b2, ..., bn1
} ⊂ S and B2 =

{β1, β2, ..., βn2
} ⊂ S be the sets of goal locations. Assume

that m1 ≥ n1 and m2 ≥ n2, i.e., there are more agents
than there are goals. Assume the set of locations A1 and
B1 are separated geographically from A2 and B2.

In Case Study 2, we illustrate an example where not all of
the conditions i., ii., and iii. in Lemma 2 hold. Fig. 7 shows
a numerical example where the initial assignment M1 ∪
M2 used to warm-start pruneBAP is in fact the optimal
assignment of B1∪B2 toA1∪A2. In this example, m1 = 20,
m2 = 20, n1 = 20 and n2 = 20. The data in Fig. 7 was
generated using independant normal distributions with a
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Fig. 5. Case Study 1: Sample configuration of agents
and tasks. The locations in A1, A2, B1, and B2 are
represented by blue dots, red dots, blue crosses and
red crosses respectively. The bottleneck edges from
solving BOT ((A ∪ B1, E)), BOT ((A2 ∪ B2, E2)) and
BOT ((A ∪ B1 ∪ B2, E3)) are shown by the solid blue,
solid red and black dash-dotted lines respectively.
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Fig. 6. Case Study 1: Cost of assignments. Red crosses
show the average weight of the largest edge in the
MCM used to warm-start pruneBAP, from 100 sim-
ulations. Black dots show the average weight of the
bottleneck edge from solving BOT ((A∪B1∪B2, E3)),
from 100 simulations.

variance of 100 for each distribution. The distributions
for sets A1 and B1 are centred at the point (x, y) =
(40, 60). The distributions for sets A2 and B2 are centred
at the point (x, y) = (60, 40). Fig. 8 shows the number of
instances out of 100 simulations for which the behaviour
in Fig. 7 is observed. That is, the instances where the
bottleneck edges obtained from the subproblems directly
results in an optimal solution to BOT (G3), where G3 is
defined as in Section 3. The number of agents equals the
number of tasks for each simulation, i.e., m1 = n1 = m2 =
n2. For each simulation, positions were generated using
the same normal distribution as in Fig. 7. We now observe
realisations where the cost of the assignment obtained from
the subproblems is equal to the cost of an optimal solution
to BOT (G3). This illustrates that with this distribution
of agents and tasks there are instances where there is
structure such that the conditions in Theorem 2 do not
all hold and w(e3) = max{w(e1), w(e2)}.

7. CONCLUSION

We discussed properties of pruneBAP that allow us to
warm-start the algorithm given BAP solutions to divided
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Fig. 7. Case Study 2: Sample configuration of agents and
tasks. The positions of agents and tasks A1, A2, B1,
and B2 are represented by blue dots, red dots, blue
crosses and red crosses respectively. The solid blue
line shows the bottleneck edge from solving BOT (G1).
The solid red line shows the bottleneck edge from
solving BOT (G2). The black dash-dotted line shows
the bottleneck edge from solving BOT (G3).
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Fig. 8. Case Study 2: Empirical probability of solution
to subproblems resulting in exact solution of the
combined problem. Each cross shows the number
of instances out of 100 simulations that the MCM
M3 =M1 ∪M2 is an optimal solution to BOT (G3).
The number of agents represents m1 +m2.

sets of tasks and agents. The solutions based on the divided
problems forms an MCM of the combined problem. The
pruneBAP algorithm can be initialised with any MCM,
and thus allows us to make use of the solutions based
on the divided sets. We then have an upper bound on
the BAP solution to the combined problem in terms
of the bottleneck edges of the divided problems. We
also introduced the novel concept of a bottleneck cluster
relative to a bottleneck edge. This idea is inspired by
the pruneBAP algorithm and the alternating tree that is
obtained as a result of the algorithm. Using bottleneck
clusters, we provided conditions such that the initial MCM
used to warm-start pruneBAP is a solution to the BAP.
From numerical simulations motivated by ride-sharing, we
illustrate an example where the conditions hold if there
exist clusters that are separated in space.

An interesting future direction is the investigation of
methods to optimally partition agents and tasks. Another
direction would be to investigate clustering properties for
the LAP.
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