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Abstract: A predictor feedback control for attitude stabilization of quadrotors with input time
delay has been proposed in this paper by representing the attitude using rotation matrices to
avoid the singularities and ambiguities associated with Euler angles and quaternions. The closed
loop system is shown to be asymptotically stable with respect to a norm defined in the text. The
norm has been defined in terms of states and past control efforts and hence explicitly results in
Lyapunov Krasovskii functional for the system. A cascade of PDE-ODE system and the concept
of transport delay has been used in the proof.
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1. INTRODUCTION

Control of unmanned aerial vehicles are very challenging
due to their highly nonlinear dynamics, external distur-
bances and parameter variations with flight conditions.
Several linear and nonlinear control techniques have been
proposed in the literature for stabilization and tracking
control of quadrotors. In Bouabdallah et al. [2004], PID
and LQR control techniques are applied on a simplified
linear model for stabilization of a quadrotor. Since then
nonlinear control approaches such as feedback lineariza-
tion have been employed to achieve better performance.
Since the dynamics is underactuated and any combination
of outputs for input output feedback linearization results
in unstable zero dynamics, dynamic extension to feedback
linearization has been attempted in literature. A dynamic
feedback extension of the control input is employed in
Mistler et al. [2001] to develop the controller. While com-
pensating gyroscopic and Coriolis effects, a novel feedback
controller is proposed in Tayebi and McGilvray [2004].

Backstepping and sliding mode control methodologies are
reported in Bouabdallah and Siegwart [2005], Madani and
Benallegue [2006], Xu and Ozguner [2006, 2008] for stabi-
lization of quadrotor dynamics. Resorting to advantages of
sliding mode control such as insensitivity to modeling er-
rors, parametric uncertainties and other disturbances such
a controller has been proposed in Xu and Ozguner [2006,
2008]. All of the above reported literature either utilize
Euler angles or quaternions for representing attitude of
the quadrotor. To remove the singularities associated with
Euler angles and ambiguities with quaternions, rotation
matrices have been used to develop controllers in Lee et al.
[2010, 2012], Lee [2013], Mellinger and Kumar [2011]. In
Lee et al. [2010] nonlinear tracking controller has been
developed directly on SE(3) which is almost global. Robust
Lee et al. [2012], Lee et al. [2013] and adaptive robust Lee
[2013] variant of this controller have also been proposed in
the literature.

Time delays are ubiquitous in physical systems and engi-
neering applications. The literature on control of quadro-
tors with input delay is very limited. In Liu et al. [2016b], a
robust attitude controller was designed for multiple input
multiple output uncertain quadrotors considering para-
metric uncertainties, external disturbances and input time
delays. A similar robust controller considering parametric
uncertainties, unmodeled uncertainties and input as well
as state delays is designed in Liu et al. [2016a] Liu et al.
[2017].

The contributions of this article are mentioned below.
Firstly, the article proposes a stabilizing controller for
quadrotors with input time delay using rotation matrices
for attitude dynamics. It is well known that Euler angles
exhibit singularity when representing attitude of a rigid
body whereas the quaternions exhibit sign ambiguities.
Hence rotation matrices have been used to represent the
attitude of the quadrotors. There are very few references
in literature compensating input delay in a quadrotor and
this article is an attempt to bridge that gap. A predictor
feedback has been developed to compensate for input time
delay in rotation dynamics of the quadrotor. The method
does not make any approximations on input delay which
is prevalent in current literature on input delay compen-
sation. The predictor based method has the advantage of
yielding an expression for Lyapunov Krasovskii functional
in the process of designing the controller and we do not
have to assume such a functional beforehand. The asymp-
totic stability of the closed loop system is proved based
on a norm defined with respect to current states and past
control efforts.

The paper is organized as follows. Section 2 of the paper
presents the problem formulation and various configura-
tion errors. Some definitions used in this paper are given in
Section 3. Section 4 presents the proposed controller along
with the proof. Numerical simulation results are given in
Section 5.
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2. PROBLEM FORMULATION

2.1 Dynamic Model

The attitude dynamics of a quadrotor with input delay is
represented below:

Ṙ = RΩ̂

IΩ̇ = −Ω× IΩ + U(t−D) (1)

R ∈ SO(3) : Rotation matrix from body reference frame
to inertial reference frame.
Ω : angular velocity of rigid body w.r.t inertial frame.

(̂·) : map from R3 to so(3), space of skew symmetric
matrices i.e. if Ω = [b1 b2 b3]T , then

Ω̂ =

[
0 −b3 b2
b3 0 −b1
−b2 b1 0

]
I : Moment of Inertia.
τ : external torque input in the body frame.
D : known input delay.

2.2 Configuration Error

The angular velocity error is given by, eΩ = Ω. The error
function on SO(3) Bullo and Lewis [2004] is chosen to be :

Ψ =
1

2
tr(I −R)

The properties of the error function used in this paper
can be recalled from Invernizzi and Lovera [2017] but is
mentioned below for the sake of completeness.
(1) Ψ is locally positive definite about R = I3×3.
(2) The time derivative of Ψ is

d

dt
Ψ = (skew(R)∨)T eΩ = eTRΩ

where (·)∨ denotes map from so(3) to R3 and eR is attitude
error vector. Here,

eR = skew(R)∨ =
1

2
(R−RT ) (2)

(3) For Ψ < ψ < 2, it is locally quadratic

h1||eR||2 ≤ Ψ ≤ h2||eR||2 (3)

h1 =
1

2
, h2 =

1

(2− ψ)

(4) The time derivative of the attitude error vector eR is
given by

ėR = E(R)eΩ

where E(R) =
1

2
(tr(R)I3×3 −RT )

The norm of ėR satisfies the following inequality and will
be used in the stability analysis Invernizzi and Lovera
[2017]

||ėR|| ≤
3√
2
||Ω||

The problem of stabilizing the attitude of a quadrotor
without input delay is not trivial but the problem has been
tackled in several papers. In this article we will present
a method of stabilizing the attitude in presence of input
delay.

3. SOME DEFINITIONS

3.1 Forward Completeness

A system

ẋ = f(x, u) (4)

with a locally Lipschitz vector field f : Rn × R → Rn is
said to be forward complete if, for every initial condition
x(0) = ζ and every measurable locally essentially bounded
input signal u : R+ → R, the corresponding solution is
defined for all t ≥ 0 i.e., the maximal interval of existence
of solutions is Tmax = +∞.

Theorem 1. Krstic [2009] System (4) is forward complete
if and only if there exist a nonnegative-valued, radially
unbounded, smooth function V : Rn → R+ and a class-
K∞ function σ such that

∂V (x)

∂x
f(x, u) ≤ V (x) + σ(|u|)

3.2 Input to State Stability

The nonlinear system

ẋ = f(t, x, u) (5)

is said to be input to state stable(ISS) Khalil [2002], Krstic
et al. [1995] if there exist a class KL function β and a class
K function γ such that for any initial state x(t0) and any
bounded input u(t), the solution exists for all t ≥ t0 and
satisfies

||x(t)|| ≤ β(||x(t0)||, t− t0) + γ(supt0≤τ≤t||u(τ)||)
Theorem 2. Khalil [2002] Let V : [0,∞)× Rn → R be a
continuously differentiable function such that

α1(||x||) ≤ V (t, x) ≤ α2(||x||)
∂V

∂t
+
∂V

∂x
f(t, x, u) ≤ −W3(x), ∀ ||x|| ≥ ρ(||u||) > 0

∀(t, x, u) ∈ [0,∞) × Rn × Rm, where α1, α2 are class
K∞ functions, ρ is a class K function, and W3(x) is a
continuous positive definite function on Rn. Then the
system 5 is input to state stable with γ = α−1

1 ◦ α2 ◦ ρ.

3.3 Norms for PDE state variables

Since the PDE state variable u(x, t) is a function of two
arguments, x and t, taking a norm in one of the variables,
for example, in x, makes the norm a function of the other
variable i.e.

||u(t)||L2[0,D] =
(∫ D

0

u2(x, t)
) 1

2

or

||u(t)||L∞[0,D] = supx∈[0,D]|u(x, t)|

4. CONTROLLER DESIGN

Proposition 1. The controller given below asymptoti-
cally stabilizes system (1) for D=0.

κ(Ω) = −eR − kΩΩ + Ω× IΩ

Proof This can be proved from Invernizzi and Lovera
[2017], Lee et al. [2010]
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The delay in the system (1) can be modeled by the fol-
lowing first-order hyperbolic PDE, also referred to as the
”transport PDE” :

ut(x, t) = ux(x, t)

u(D, t) = U(t)

The solution to this equation is

u(x, t) = U(t+ x−D),

and therefore the output

u(0, t) = U(t−D)

gives the delayed input. The system (1) can be modeled by
the following ODE-PDE cascade known as plant system

IΩ̇ = −Ω× IΩ + u(0, t)

ut(x, t) = ux(x, t)

u(D, t) = U(t) (6)

Let us define the following direct and inverse backstepping
transformation

w(x, t) = u(x, t)− κ(p(x, t)) (7)

u(x, t) = w(x, t) + κ(π(x, t)) (8)

Then the plant system (6) can also be represented by the
following ODE-PDE cascade known as target system :

IΩ̇ = −eR − kΩΩ + w(0, t)

wt(x, t) = wx(x, t)

w(D, t) = 0 (9)

The predictor variables are represented by the following
differential equations with appropriate initial conditions
given below :

Ṙ = Rp(x, t)
∧

Ipx(x, t) = −p(x, t)× Ip(x, t) + u(x, t)

p(0, t) = Ω(t) (10)

and

Ṙ = Rπ(x, t)
∧

Iπx(x, t) = −eR − kππ(x, t) + w(x, t)

π(0, t) = Ω(t) (11)

The p-system (10) and the π-system (11) are used to
generate the plant-predictor and the target predictor in
the following manner :

P (t) = p(D, t),

Π(t) = π(D, t).

Proposition 2.

pt(x, t) = px(x, t),

πt(x, t) = πx(x, t).

Proof This can be proved by noting that u(x, t) and
w(x, t) are functions of only one variable, x + t, and
therefore so are p(x, t) and π(x, t) based on the ODEs (10)
and (11). This implies that

pt(x, t) = px(x, t),

πt(x, t) = πx(x, t).

Proposition 3. The plant system (10) is forward com-
plete

Proof Let us consider the following nonnegative-valued,
radially unbounded, smooth function

J =
1

2
p(x, t)T Ip(x, t) + Ψ

Then,
1

2
λmin(I)||p||2 + h1||eR||2 ≤ J ≤

1

2
λmax(I)||p||2

+ h2||eR||2

and

J̇ = pTu+ eTRp

≤ ||p||2 +
1

2
||eR||2 +

1

2
||u||2

≤ 1

min( 1
2λmin(I), h1)

J +
1

2
||u||2

= J(p(x, t)) + σ(||u||)
Hence from Section 3.1 system (10) is forward complete.

Proposition 4. The target system (11) is input to state
stable.

Proof Let us consider the following Lyapunov function

L = π(x, t)T Iπ(x, t) + Ψ + cIeTRπ(x, t) (12)

Then,

λmin(W1)||zR||2 ≤ L ≤ λmax(W2)||zR||2

where

W1 =

[ 1

2
λmin(I)

c

2
λmin(I)

c

2
λmin(I) h1

]
W2 =

[ 1

2
λmax(I)

c

2
λmax(I)

c

2
λmax(I) h2

]
and zR = [||eR|| ||π||]. The time derivative of (12) is

L̇ ≤ −kπ||π||2 + πTw − c||eR||2 − ckπeTRπ + ceTRw

+
3c√

2
||π||2

≤ −λmin(A)||zR||2 +
1 + c

2
||w||2

≤ −λmin(A)||zR||2 ∀ ||zR|| ≥

√
1 + c

2λmin(A)
||w||

A =

 1

2
c

ckπ

2
ckπ

2
kπ −

1

2
−

3c
√
2


Hence from Section 3.2 system (11) is input-to-state stable.

Proposition 5. Consider the closed loop system

IΩ̇ = −Ω× IΩ + U(t−D)

U(t) = −eR − kΩP (t) + P (t)× IP (t)

P (t) =

∫ t

t−D
(−P (θ)× IP (θ) + U(θ))dθ + Ω(t), t ≥ 0

P (θ) =

∫ θ

−D
(−P (σ)× IP (σ) + U(σ))dσ + Ω(0), t ∈ [−D, 0]

with an initial condition Ω0 = Ω(0) and U0(θ) = U(θ),
θ ∈ [−D, 0]. Then there exists a function β ∈ KL such
that

||eR(t)||2 + ||Ω(t)||2 +

∫ t

t−D
||U(θ)||2dθ ≤

β(||eR(0)||2 + ||Ω(0)||2 +

∫ 0

−D
||U(θ)||2dθ, t)

Proof The proof will be completed in four steps :

4.1 Step 1

Since the plant system is forward complete from Proposi-
tion 3 we can write
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J̇(p(x, t)) ≤ J(p(x, t)) +
1

2
||u(x, t)||2

Therefore,

J(p(x, t)) ≤ exJ(p(0, t)) +
1

2

∫ x

0

ex−ζ ||u(ζ, t)||2dζ

= exJ(Ω(t)) +
1

2

∫ x

0

ex−ζ ||u(ζ, t)||2dζ

= exJ(Ω(t)) +
1

2
(ex − 1) sup

0≤ζ≤x
||u(ζ, t)||2

From Proposition 3 we get
1

2
λmin(I)||p||2 + h1||eR||2 ≤ ex(

1

2
λmax(I)||Ω||2 + h2||eR||2)

+
1

2
(ex − 1) sup

0≤ζ≤x
||u(ζ, t)||2

=⇒ min

(
1

2
λmin(I), h1

)
(||p||2 + ||eR||2) ≤

eD(max

(
1

2
λmax(I), h2

)
(||Ω||2 + ||eR||2))

+
1

2
(eD − 1) sup

0≤ζ≤x
||u(ζ, t)||2

Therefore we have

||p(x, t)||2 + ||eR(x, t)||2 ≤
ρ1(||eR||2 + ||Ω(t)||2 + sup

0≤ζ≤x
||u(ζ, t)||)

for some ρ1 ∈ K∞. Defining the L2 norm in x as

||l(t)||L2[0,D] =

(∫ D

0

||l(x, t)||2dx
) 1

2

we can write

(||p(t)||+ ||eR(t)||)L2[0,D] ≤
ρ1(||eR(t)||2 + ||Ω(t)||2 + ||u(t)||L2[0,D])

From Proposition 1

||κ(p)|| ≤ ||eR||+ kp||p||+ λmax(I)||p||2 = ρ2(||p||)
for ρ2 ∈ K∞. Considering (10) with (7) as output map we
can conclude :

||Ω(t)||2 + ||eR(t)||2 + ||w(t)||L2[0,D] ≤
ρ3(||eR||2 + ||Ω(t)||2 + ||u(t)||L2[0,D])

for some ρ3 ∈ K∞.

4.2 Step 2

Since the target system is input-to-state stable we get from
Proposition 4

||π(x, t||) ≤ β1(||π(0, t)||, t) + γ1

(
sup

0≤ζ≤x
||w(x, t)||

)
||π(x, t||) ≤ β1(||Ω(t)||, t) + γ1

(
sup

0≤ζ≤x
||w(x, t)||

)

for some class KL function β1 and class K function γ1.
Similar to Step 1 taking a L2-norm on both sides we get :

(||π(t)||+ ||eR(t)||)L2[0,D] ≤
β1(||eR(t)||2 + ||Ω(t)||2, 0) + γ1(||w(t)||L2[0,D])

Considering (11) with (8) as output map we can conclude
:

||Ω(t)||2 + ||eR(t)||2 + ||u(t)||L2[0,D] ≤
ρ4(||eR||2 + ||Ω(t)||2 + ||w(t)||L2[0,D])

4.3 Step 3

Let us consider the target system (9) and prove its expo-
nential stability. Let us consider the following Lyapunov
function for that purpose :

V (t) =
1

2
ΩT IΩ + Ψ + cIΩT eR+

(c+ 1)

∫ D

0

e(c+1)x||w(t, x)||2

V is bounded by

min(λmin(W3), (c+ 1))(||zR||2 +

∫ D

0

e(c+1)x||w(t, x)||2)

≤ V (t) ≤

max(λmax(W4)|, c+ 1)(||zR||2 +

∫ D

0

e(c+1)x||w(t, x)||2)

where

W3 =

 h1
cλmin(I)

2
cλmin(I)

2

λmin(I)

2

 W4 =

 h2
cλmax(I)

2
cλmax(I)

2

λmax(I)

2


Then its time derivative is given by :

V̇ = −kΩ||Ω||2 + ΩTw(0, t)− c||eR||2 − ckΩe
T
RΩ + ceTR

w(0, t) + cIΩT ėR + (c+ 1)

∫ D

0

e(c+1)xw(t, x)Twt(x, t)dx

≤ − c
2
||eR||2 − (kΩ −

1

2
− 3√

2
cλmax(I))||Ω||2

+
c+ 1

2
||w(0, t)||2 + ckΩ||eR||||Ω||

+ (c+ 1)

∫ D

0

e(c+1)xw(t, x)Twx(x, t)dx

≤ − c
2
||eR||2 − (kΩ −

1

2
− 3√

2
cλmax(I))||Ω||2

+
c+ 1

2
||w(0, t)||2 + ckΩ||eR||||Ω||

+
c+ 1

2

∫ D

0

e(c+1)xd||w(t, x)||2

≤ −λmin(B)||z||2 − (c+ 1)

∫ D

0

e(c+1)x||w(t, x)||2

where in the last step integration by parts has been applied
and z = [||eR|| ||Ω||] with

B =

 c

2

ckΩ

2
ckΩ

2
kΩ −

1

2
−

3
√
2
cλmax(I)


Therefore

V̇ ≤ −µV
where

µ =
min(λmin(B), c+ 1)

max(λmax(W4), c+ 1)

Hence there exists a class-KL function β2 such that

V (t) ≤ β2(V (0), t), ∀t ≥ 0.
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Also there exists a function β4 ∈ KL such that

||eR(t)||2 + ||Ω(t)||2 + ||w(t)||L∞[0,D] ≤
β4(||eR(0)||2 + ||Ω(0)||2 + ||w(0)||L∞[0,D], t).

4.4 Step 4

From steps 1,2 and 3 one obtains the following result

||eR(t)||2 + ||Ω(t)||2 + ||u(t)||L2[0,D] ≤
ρ4(β4(ρ3(||eR(0)||2 + ||Ω(0)||2 + ||u(0)||L2[0,D]), t)).

Then there exists a function β5 ∈ KL such that :

||eR(t)||2 + ||Ω(t)||2 + ||u(t)||L2[0,D] ≤
β5(||eR(0)||2 + ||Ω(0)||2 + ||u(0)||L2[0,D], t).

or

||eR(t)||2 + ||Ω(t)||2 +

∫ t

t−D
||U(θ)||2dθ ≤

β(||eR(0)||2 + ||Ω(0)||2 +

∫ 0

−D
||U(θ)||2dθ, t)

5. NUMERICAL SIMULATIONS

Numerical simulations were carried out for the system
whose moment of inertia is mentioned below.

Ixx = 0.082kg/m2, Iyy = 0.0845kg/m2, Izz = 0.1377kg/m2

The initial conditions for simulation are assumed to be

Ω(0) = [0.2; 0.1; 0.5], Ω̇(0) = [0; 0; 0],

R(0) =

[
0 0 1
0 1 0
−1 0 0

]
The proposed control law is simulated in MATLAB for the
quadrotor attitude dynamics with the initial conditions
mentioned above. The stabilization performance of the
control law is shown in Figs.1-3 for delay D=0.1 sec. It
is observed that the quadrotor stabilizes to (R,Ω) = (I, 0)
within 5 sec. The control law proposed in Lee et al.
[2010], Invernizzi and Lovera [2017] fails to stabilize the
quadrotor in presence of input delay of 0.1 sec while
the proposed controller is able to stabilize the quadrotor.
Similar stabilization results are obtained with input delay
of 0.05 sec, 0.2 sec and 0.3 sec but the simulation results
are not given due to repetition as well as lack of space.
We can observe that the stabilization results are valid for
long input delay as well as small input delay. The results
are even robust to variations in inertia matrix and can
be demonstrated by repeating the simulation for small
deviation in inertia matrix.

6. CONCLUSION

A nonlinear geometric finite-time controller was proposed
for attitude stabilization of quadrotors where the atti-
tude is represented using rotation matrices. The predictor
method proposed in this paper is able to stabilize the
quadrotor in presence of input delay while the methods
proposed in the current literature is not able to stabilize
the quadrotors in presence of input delay. The proposed
method works for wide variation in input delay and is even
robust to delay mismatch.

(a)

(b)

(c)

Fig. 1. Attitude Tracking.
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