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Abstract: The dynamics of nonlinear systems become linear systems when lifted to higher
or infinite dimensional spaces. We call such linear system representations and approximations,
’lifting linear’ representations. The lifting linear representations are linear system representations
that are closer to the original systems than Taylor series approximations. Once we have such
a linear system representation, we can apply linear control theory to the nonlinear systems.
In Model Predictive Control (MPC), the computation time is reduced because the nonlinear
optimization problem becomes a convex quadratic optimization problem. In this paper, we
propose a method to make Dual Faceted Linearization (DFL) robust for uncertainties of the
plants. It will be shown that the proposed method can yield a lifting linearization leading to
better control results for MPC by numerical examples.
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1. INTRODUCTION

It is now well known that dynamics of nonlinear systems
can be transformed to linear systems in higher or infinite
dimensional spaces. We call such linear system representa-
tions and approximations, ’lifting linear’ representations.
As described in Koopman (1931), Koopman theory shows
that general nonlinear systems can be represented as linear
systems in infinite dimensional spaces. From Asada and
Sotiropoulos (2019), Dual Faceted Linearization (DFL)
method offers a consistent method for selecting the aug-
mented states based on the system model. There are other
methods such as Carleman linearization for Steeb and Wil-
helm (1980) and machine learning for Lusch et al. (2018).
These linearization methods give very different linear mod-
els compared to Taylor series linear approximations, and
yield behaviors that are valid in larger state spaces. Once
such linear representations are obtained, linear control the-
ory, e.g., analysis of oscillation modes, design of observer
and predictor, Model Predictive Control (MPC) can be
applied. See Korda and Mezić (2018), Surana (2016) and
Arbabi et al. (2018). In addition, a fast Stochastic MPC
algorithms can be constructed in Oyama et al. (2016).

When we apply MPC for nonlinear systems and higher
order terms of states and input are considered in the
stage cost of MPC, we are required to solve nonlinear
optimization problems online. This leads to significant
problems due to computational time and convergence of
the optimal solution. When the target systems are linear

and conventional cost functions can be applied with linear
constraints, the optimization problems become convex
quadratic optimization problems, which are expected to
have much shorter computational times and yield solutions
with improved optimality.

In papers Igarashi et al. (2020), we verified the computa-
tional speed and optimality of MPC for a nonlinear system
using DFL. From the numerical simulations, it was con-
firmed that the computational time can be shortened much
and the optimality is maintained. And we studied that
computational time of MPC dramatically improves and
performances of MPC for nonlinear systems are improved
by taking account of higher order terms of the states.

DFL is a lifting linearization method that can be used
when the system model is known. The augmented state
variables have a clear physical meaning and the augmented
state space should not be too large in dimension. How-
ever, this method cannot be used if the system model is
unknown.

In this paper, we propose a method to make DFL robust
for uncertainties of the plants. It will be shown that the
proposed method can yield a lifting linearization with bet-
ter control performance for MPC. First we summarize the
concept of lifting linearizations and then propose a robust
method for DFL. Finally, the efficiencies of the proposed
method are shown through numerical simulations.
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2. LIFTING LINEARIZATION

In this section, we simply explain the lifting linearization
by an illustrative nonlinear system. In addition, Koopman
method and DFL are described as lifting linearization
methods related to the proposed method.

2.1 Illustrative example

Let us consider a nonlinear system given as[
ẋ1
ẋ2

]
=

[
ρx1

µ(x2 + x21)

]
, (1)

where x1, x2 are state variables and ρ, µ are constant
parameters. For this system, we introduce an augmented
state x∗3 as x∗3 = x21 and the dimension of the system is
increased. Then the time derivative of x∗3 is given as

ẋ∗3 = ˙(x21) = 2x1ẋ1 = 2ρx21 = 2ρx∗3 (2)

and the state space representation of the augmented sys-
tem with x1, x2, x

∗
3 can be given as[

ẋ1
ẋ2
ẋ∗3

]
=

[
ρ 0 0
0 µ µ
0 0 2ρ

][
x1
x2
x∗3

]
. (3)

The obtained system is a Linear Time Invariant (LTI)
system, but the state variables are not independent. In
general, however, we can not obtain such complete LTI
system as in eq. (3) and some approximation must be
made, ignoring some nonlinear terms when the dimensions
of the augmented system are finite.

2.2 Koopman theory

In Koopman theory, Koopman operators are introduced
and linear system representations are obtained. Let us
consider the following discrete time nonlinear system:

x(k + 1) = f(x(k)), (4)

where x(k) is a state vector at time instance k. For this
system we introduce observation functions (or basis func-
tions) g(x(k)). We define a space of observation functions
F which contains the original state variable x and their
corresponding observation functions g(x(k)). In general, F
becomes an infinite dimensional space. For this observation
space, we define a Koopman operator K : F → F as

(Kg)(x(k)) := g(f(x(k))). (5)

It is shown that the Koopman operator K is linear opera-
tor. (For the details, please refer Koopman (1931).)

Time advance of the observation function can be repre-
sented using the Koopman operator K as

g(x(k)) = g(f(x(k − 1))) = (Kg)(x(k − 1))

= (K2g)(x(k − 2)) = · · · = (Kkg)(x(0)). (6)

The problem with the above representation is how to de-
termine the observation function and the approximation of
Koopman operator K. For these problems, Extended Dy-
namic Mode Decomposition (EDMD) (Korda and Mezić

�

Fig. 1. Conceptual diagram of DFL (Asada and Sotiropou-
los (2019)) .

(2018), Arbabi et al. (2018) and Williams et al. (2015))
and methods based on machine learning (Yeung et al.
(2019) and Takeishi et al. (2017)) have been proposed in
the literatures. These methods can approximate a linear
expression even with respect to the inputs.

2.3 Dual Faceted Linearization

Dual Faceted Linearization (DFL) is a lifting linearization
method which possesses the following two features:

1) Usage of natural linearity in physical modeling
When we consider lumped parameter systems, elements,
e.g., mass, spring, damper or capacitor, inductor, resistor,
are connected linearly. For example, it can be formulated
that the summation of forces for each of the mechanical
elements is zero using Newton’s law and d’Alembert’s
principle as

F1(x) + F2(x) + · · ·+ FN (x) = 0, (7)

which is a linear relationship. In such systems, nonlinear-
ity arises from the property of each element. When the
nonlinear quantities are defined as auxiliary variables and
they are used with the new variables, the system behaviors
can be represented as linear relationships.

2) Usage of dual variables for one nonlinear element
Let us consider two sets of equation of motion using two
different variables for one dynamical system. When one
expression can be transformed to another one by a linear
transformation, there is no advantage gained by using
both expressions. However, if two variables are related
by a nonlinear relationship, they may correspond to one
physical system but show different behaviors in different
coordinate systems. As shown in Fig. 1, each representa-
tion is (approximately) linear of the original system and
when both are combined, more accurate behavior of the
original system can be obtained.

Let us consider the following nonlinear system:

ẋ = f(x, u), (8)

where x is a state vector and u is an input vector. We
introduce an auxiliary vector η(x) for nonlinear elements
and we assume that system (8) can be represented as

ẋ = Axx+Aηη +Bxu, (9)
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where Ax, Aη, Bx are constant system matrices. Even
when the input is not linear in the original system, a linear
expression can be obtained by approximation. Next we
approximate the dynamics of η(x) with a linear dynamic
relationship in the form

η̇ = Hxx+Hηη +Huu, (10)

where Hx,Hη,Hu are constant system matrices. When we
define the following matrix:

H := [Hx,Hη,Hu] (11)

and ξ = [xT , ηT , uT ]T , then we consider the following
criterion function with observation data of η̇ as η̇ob:

H = argmin
H

E[∥η̇ − η̇ob∥2] (12)

to determine the parameter matrices where E[·] stands for
expectation operator and H is calculated as

H = E[η̇obξ
T ](E[ξξT ])−1. (13)

3. MODEL PREDICTIVE CONTROL

3.1 Model Predictive Control

In MPC, future state sequences are predicted in a receding
horizon, and a control input sequence is determined to
optimize a criterion function based on a system model,
and this process is repeated. Let us consider a nonlinear
system given by

ẋ(t) = f(x(t), u(t)), (14)

where x(t) is a state vector and u(t) is an input vector.
In MPC, we consider and minimize the following criterion
function J defined within [t, t+ T ]:

min J = φ(x(t+ T )) +

t+T∫
t

L(x(τ), u(τ))dτ, (15)

s.t. ẋ(t) = f(x(t), u(t)), (16)

x0(t) = x(t), (17)

C(x(t), u(t)) ≤ 0, (18)

where φ(x(T )) is a terminal cost, L(x(τ), u(τ)) is a stage
cost, C(x(t), u(t)) is a constraint vector. When an optimal
control sequence u(τ) (t ≤ τ ≤ t + T ) is determined,
the first control input u(t) is injected. In nonlinear MPC,
the system dynamics are usually discretized by Euler
approximation to suppress the computation in nonlinear
dynamics analysis. When the receding horizon discretized
by N interval and the discrete time interval is defined as
dτ = T/N , the corresponding discrete time optimization
problem is defined as

min J = φ(xN (t)) +

N−1∑
i=0

L(xi(t), ui(t))dτ, (19)

s.t. xi+1(t) = xi(t) + f(xi(t), ui(t))dτ, (20)

x0(t) = x(t), (21)

C(xi(t), ui(t)) ≤ 0. (22)

The optimal control input is determined by solving a static
nonlinear optimization problem.

3.2 Model predictive control using lifting linearization

In nonlinear MPC, it is difficult to apply a static nonlinear
optimization method to determine the optimal control
input sequence due to large computation burden, and
some approximation and continuation method such as
C/GMRES method in Ohtsuka (2004) is used. In this
paper, we consider the use of lifting linearizations to reduce
the computation time.

When the augmented state vector represented as x∗ and
the linear system obtained by the lifting linearization for
the original system (14) is given as

ẋ∗ = Ax∗ +Bu, (23)

where A,B are constant system matrices. If the control
input u is constant during the sampling interval, the
discrete time system can be given as

x∗i+1 = Adx
∗
i +Bdui, (24)

where the matrices are given by

Ad = exp(Adτ), (25)

Bd =A−1(exp(Adτ)− I)B, (26)

where I is an identity matrix. If the original state vector
is included in the augmented vector as x∗ = [xT , g(x)T ]T ,
the same cost function and constraint can be used and the
optimization problem becomes

min J = φ̄(x∗N (t)) +

N−1∑
i=0

L̄(x∗i (t), ui(t))dτ (27)

s.t. x∗i+1(t) = Adx
∗
i (t) +Bdui(t), (28)

x∗0(t) = [x(t)T , g(x(t))T ]T , (29)

C̄(x∗i (t), ui(t)) ≤ 0. (30)

In this paper, we assume that φ̄(x∗), L̄(x∗, u) contain
quadratic terms of x∗ − x∗d and control input or difference
of control input. x∗d is a constant desired state which is
compatible to xd. We also assume that φ(x), L(x, u) are
quadratic form of the augmented state variables. This
criterion function may have a higher order terms of the
original states than the original one. Further, we assume
that the constraint C̄(x∗i , ui) ≤ 0 is given by a linear
equation for the augmented states in the form

C̄x∗i + D̄ui ≤ Ē, (31)

where C̄, D̄, Ē are constant matrices.

By assumptions, the original optimization can be trans-
formed to the quadratic optimization problem as

min J =
1

2
UTQ∗

1U +Q∗
2
TU + x∗0

TQ∗
3x

∗
0, (32)

s.t. x∗0 = [x(t)T , g(x(t))T ]T , (33)

C∗x∗0 +D∗U ≤ E∗, (34)

where U = [uT1 , u
T
2 , · · · , uTN−1]

T , and matrices above can
be calculated from the original problem. The quadratic
problem can be solved quickly and the optimality is
ensured. Please note that the initial augmented states
for the optimization problem are calculated every time
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based on the observed x(t) using g(x) as in eq. (33).
The augmented linear system has some approximation
error and thus, long term prediction accumulate large
errors; however, the prediction in the receding horizon is
suppressed since the augmented initial state are reset to
the true state.

4. PROPOSED METHOD

In the DFL method, we assume that dynamics of the
systems are given in principle though the equations are not
used directly but corresponding to signals are collected.
However, there exist uncertainties or parasitic dynamics
in practice. So we should consider such uncertainties when
constructing lifting linearizations. In order to consider such
unmodeled terms, we propose introducing basis functions,
which may be thin plate spline radial basis functions as
in Korda and Mezić (2018), in addition to the auxiliary
vector in DFL. Let us assume that a vector γ consists of
such basis functions as its elements, then we consider the
following augmented state vector x∗ as x∗ := [xT , ηT , γT ]T

and its dynamics is approximated by

ẋ=Axx+Aηη +Aγγ +Bxu, (35)

η̇ =Hxx+Hηη +Hγγ +Huu, (36)

γ̇ = Fxx+ Fηη + Fγγ + Fuu, (37)

where A.,H., F., B. are constant system matrices of appro-
priate dimensions, and the those system matrices can be
estimated using the observed data in the same way as eq.
(12) in DFL.

Furthermore, if there may exist dynamic uncertainties
whose states are independent to x, we assume that the
observed x∗ can be determined as a summation of x̂∗ plus
an output of the parasitic dynamics yp as

x∗ = x̂∗ + yp, (38)

where x̂∗ is calculated from the definition of the augmented
state vector using x. The parasitic dynamics can be
determined from the data of (x∗ − x̂∗, u) as

ẋp =Apxp +Bpu, (39)

yp =Cpxp +Dpu, (40)

using any identification method Oyama et al. (2016).
Please note that if xp is introduced, it must be estimated
online using the identified model. If the dimensions of
x∗, xp are very high, they can be reduced by any model
reduction technique.

5. NUMERICAL SIMULATION

We compare performances and robustness for open loop
approximation and MPC of the proposed method to other
lifting linearization methods using numerical simulations.
In this numerical simulation, only uncertainties of the
nonlinear terms are considered. All simulations were done
using Matlab. For the static nonlinear optimization, ’fmin-
con’ is used and for the quadratic optimization, ’quadprog’
is used, and a computer used for the numerical simulations
has Intel Core i7 CPU, 3.40 GHz with 8 GB RAM.

�
�� �� �� ��

�� �� ��

�� �� ��

��, ��� ��, ��� ��, ��� ��, ���

Fig. 2. Target model

5.1 Target Model

We consider a nonlinear system in Fig. 2 as the target
system in which 4 masses are connected with nonlinear
springs and dampers. The weight of the mass is 1 and
the origin of the state vector is the equilibrium state,
and x, ẋ are position and velocity vectors of the masses,
respectively, and control force is applied to mass m1

and the control force vector is denoted u. The dynamic
equation of the system is given as ẍ1ẍ2ẍ3

ẍ4

 =

 u− (eR1
+ eC1

+ ω1)
(eR1

+ eC1
+ ω1)− (eR2

+ eC2
+ ω2)

(eR2
+ eC2

+ ω2)− (eR3
+ eC3

+ ω3)
(eR3

+ eC3
+ ω3)

 , (41)

where eCi , eRi , (i = 1, 2, 3) are nonlinear spring and
damper terms which are given as

eC1
= a1(x1 − x2) + b1(x1 − x2)

3, (42)

eC2 = a2(x2 − x3) + b2(x2 − x3)
3, (43)

eC3 = a3(x3 − x4) + b3(x3 − x4)
3, (44)

eR1
= c1(ẋ1 − ẋ2)

2 sign(ẋ1 − ẋ2), (45)

eR2
= c2(ẋ2 − ẋ3)

2 sign(ẋ2 − ẋ3), (46)

eR3
= c3(ẋ3 − ẋ4)

2 sign(ẋ3 − ẋ4), (47)

and ωi, (i = 1, 2, 3) are unmodeled terms which are given
as

ω1 = d1(x1 − x2)
5, (48)

ω2 = d2(x2 − x3)
5, (49)

ω3 = d3(x3 − x4)
5, (50)

where a1, a2, · · · , d3 are constant parameters and they are
all 1 in this simulation. The original state vector for the
nonlinear system is defined as

x = [x1, ẋ1, x2, ẋ2, x3, ẋ3, x4, ẋ4]
T . (51)

5.2 Linearization Method

To compare the proposed method with other linearization
methods, a linear model was calculated using the same
data. Observation data to determine the system matrices
are generated by a grid point sampling so that x has its
value in [−0.5, 0.5]8 and u has its value in [-1,1].

1) Koopman linearization
For comparison with DFL, the size is the same as that
of the proposed method and this method does not use
a model of the system. The observation function is the
original state x and 16 thin plate spline radial basis
functions of g(x). It is defined as ψ(x) = ∥x−x0∥2 log(∥x−
x0∥), the center positions of the basis functions x0 are
generated randomly in [−0.5, 0.5]8. The augmented vector
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is x∗ = [xT , g(x)T ]T , and the dimension of the augmented
linear system becomes 24, the same as the proposed
method.

2) DFL
The auxiliary variables η are eR, eC from eq. (42) to
eq. (47). The unmodeled terms ωi are not ued and not
included in the linear system. The linear system with η is
given as

ẋ = Axx+Aηη +Bxu, (52)

where η = [eC1 , eC2 , eC3 , eR1 , eR2 , eR3 ]
T , and system ma-

trices are given as

Ax =



0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0


, (53)

Aη =



0 0 0 0 0 0
−1 0 0 −1 0 0
0 0 0 0 0 0
1 −1 0 1 −1 0
0 0 0 0 0 0
0 1 −1 0 1 −1
0 0 0 0 0 0
0 0 1 0 0 1


, (54)

Bx =
[
0 1 0 0 0 0 0 0

]T
. (55)

The dynamics of η is determined as

η̇ = Hxx+Hηη +Huu, (56)

and the system parameters are determined using η̇ calcu-
lated from the same data used in Koopman linearization.

3) Proposed method
The auxiliary variables η are the same as DFL. The
additional auxiliary variable γ are 10 thin plate spline
radial basis functions. The system matrices from eq. (35)
to eq. (37) can be estimated based on the same observation
data.

5.3 Numerical calculation

We compared the error between the actual nonlinear model
and the discretized models. The discretization state for
N = 10 steps was taken. The initial state x0 has its
value in [−0.5, 0.5]8 and input u has its value in [−1, 1].
We compared the discretized linearization model obtained
by the three linearization methods with the discretized
nonlinear system by the Euler method with and without
the unmodeled terms. The root mean square (RMS) error
with the actual model is shown in Fig. 3. By incorporating
unmodeled elements, it is confirmed that the proposed
method is better than discretization of nonlinear systems
without the unmodeled terms.

5.4 Simulation result

Control results by MPC are compared where the control
interval is dt = 0.01[sec] and the prediction step is N = 10.
The initial position is randomly generated in [0, 0.5]4 and

Fig. 3. Discretization error

Table 1. Mse and calculation time

MSE Calculation time[sec]

Koopman 0.0123 0.00106
DFL 0.0145 0.00095

Proposed Method 0.0095 0.00101
NP 0.0141 0.06978

the velocities are all set 0. The desired state is xd =
[0, 0, 0, 0, 0, 0, 0, 0]T . In this simulation with no constraints
is considered. The criterion function is a quadratic form of
the original state and input as follows.

φ(x) = (x− xd)
TSf (x− xd), (57)

L(x, u) = (x− xd)
TQ(x− xd) + uTRu (58)

Parameters in the criterion function are set as Sf =
2000 I8, Q = 1000 I8, R = 1. To compare MPC per-
formances, control input is determined by the following
methods:

• Quadratic optimization using Koopman linearization
• Quadratic optimization using DFL
• Quadratic optimization using Proposed method
• Nonlinear optimizaton (from eq. (19) to (22))

In Fig. 4, responses for the control input determined by
each method are shown and the Mean Squared Error
(MSE) of the deviation between actual state and the
desired state, and the average computational times are
shown on Table 1. From the table, it can be seen that the
MSE of the three linearization methods are similar to that
of the nonlinear optimization but the computation times
are very small, and the MSE of the proposed method is
the smallest among the linearization methods.

6. CONCLUSIONS

In this paper, we propose a method to robustify the
Dual Faceted Linearization (DFL) for uncertainties of the
plants. By giving additional auxiliary variables to DFL,
unmodeled terms can be incorporated into the lineariza-
tion model from the observed data. Numerical simulations
confirmed that the proposed method outperforms other
linearization methods.

As future work, we will investigate the basis functions and
sizes of additional auxiliary variables.
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Fig. 4. Simulation result
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