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Abstract: This paper investigates the whole system behavior caused by the influence of the
agents’ strategic behavior while utilizing their individual control and private information for a
dynamic linear-quadratic (LQ) network in the presence of a principal-agent relationship. The
principal aims at integrating agents’ behavior into the socially optimal one based on private
information bid by the agents. To avoid a moral hazard on agents’ controls, the principal must
give a reward to the agents. The reward induces the agents to choose their controls achieving
the social objective under the true private information case, but the reward cannot prevent the
strategic bidding of the agents’ private information. Under this situation, the case is considered
that all the agents minimize their net cost composed of their own private cost and the reward
from the principal, which is called the strategic bidding problem under moral hazard. Then, the
strategic bidding problem is formulated and the optimal design of the problem is analytically
derived. Their effectiveness and limitations are also discussed through a simulation.

Keywords: Strategic bidding; principal-agent problems; moral hazard; LQ dynamic game;
incentives.

1. INTRODUCTION

Social infrastructure systems have human/machine-in-the-
loop controls. Such humans and machines are regarded as
agents. The economically rational agent, which is called
homo economicus in economics, intends to minimize his
own individual cost reflecting his objective. In the social
infrastructure systems, each agent has a different goal. To
integrate all the agents’ strategic behavior rationally and
impartially, it is required to introduce an integration mech-
anism, which is managed by a principal. In economics (see,
e.g., Bolton and Dewatripont (2005)), the agents’ strate-
gic behavior is divided into two parts: adverse selection
(hidden information) and moral hazard (hidden action).
Without an appropriate incentive from the principal to the
agents, the system behavior led by such strategically selfish
behavior of the agents differs greatly from the socially
optimal one which is the principal’s objective.

The typical example of control problems in the presence
of a principal-agent (PA) relationship is in power network
systems. In the literature of electricity markets, the strate-
gic bidding problem of private information for competitive
agents has been addressed since the late 1990s. Wen and
David (2001) propose an optimal bidding strategy for
competitive power suppliers in the early days. Steeger et
al. (2014) make recent surveys of the strategic bidding
problem for hydro-electric producers in day-ahead elec-
tricity market. Ghamkhari et al. (2017) point out that
one of the unsolved problems in electricity markets is to
solve an optimal bidding strategy efficiently. Towards the
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realization of smart society projects all over the world, it is
expected that the strategic bidding problem will occur in
a variety of social infrastructure systems including energy
management, traffic, and cyber-physical systems.

In this paper, a PA-type dynamic linear-quadratic (LQ)
network is considered. The network is constituted by a
principal and multiple heterogeneous agents. In the engi-
neering literature of strategic bidding in dynamical sys-
tems, Berger and Schweppe (1989) proposed pioneering
problem formulation in electricity markets. For the last
several years, in order to reform the electricity regula-
tion markets, dynamic incentive mechanisms based on
mechanism design are proposed in Tanaka et al. (2012),
Taylor et al. (2013) and Murao et al. (2015, 2018). Murao
et al. (2015) handle a strategic bidding problem with a
dynamic LQ network system, but they do not discuss the
performance analysis of the strategic bidding. Wasa et al.
(2019b) investigate an optimal design problem for strategic
bidding of private parameters without moral hazard in a
dynamic LQ network. Many kinds of researches including
these five papers focus on only adverse selection without
moral hazard. Hence, many academic challenges in strate-
gic bidding problems still remain.

Regarding the moral hazard problem in engineering, there
are relatively few papers (Chen and Zhu (2018); Venki-
tasubramaniam and Gupta (2019); Wasa et al. (2018,
2019a)). The incentives, sometimes called rewards, in
moral hazard problems lead the agents’ controls to a
socially optimal state. The incentive synthesis problem
under moral hazard is motivated by the PA problem in
contract theory (Holmstrom and Milgrom (1987); Bolton
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and Dewatripont (2005); Sannikov (2008); Cvitanić et al.
(2018)). Chen and Zhu (2018) apply a PA-type moral haz-
ard problem to a differential game between single-principal
and single-agent in dynamical cybersecurity management.
Wasa et al. (2018) propose an optimal control and incen-
tive synthesis under moral hazard between single-principal
and multi-agents in dynamic electricity regulation mar-
kets. However, Chen and Zhu (2018) andWasa et al. (2018,
2019a) do not consider strategic bidding problems of pri-
vate information under moral hazard. Our objective in this
paper is to consider the case integrating both adverse selec-
tion and moral hazard. Venkitasubramaniam and Gupta
(2019) consider both adverse selection and moral hazard
between single-principal and single-agent in static systems,
whereas our problem in this paper addresses a strategic
bidding problem between a principal and two-agents in
dynamical LQ model.

This paper extends the framework proposed in Wasa et al.
(2019b) to a strategic bidding model under moral hazard
by merging the concept of the strategic bidding problem
presented in Wasa et al. (2019b) and the idea for moral
hazard problem proposed in Wasa et al. (2018). Specially,
private parameter bidding problems of the agents’ cost
function are handled. The objective is to analytically
seek equilibrium for the agents’ strategic bidding problem
under moral hazard on agents’ control. First, an optimal
reward is designed to avoid moral hazard action of agents’
controls in a PA type dynamic LQ network, following the
approach in Wasa et al. (2018). Under the situation, all
the agents minimize their own costs without the principal’s
intervention and an optimal bidding strategy of the agents
is characterized. The effectiveness, implementation and
limitations of the proposed mechanism are also discussed
through a simulation.

2. DYNAMIC LQ NETWORK MODEL IN
PRINCIPAL-AGENT RELATIONSHIP

2.1 Network Model

This paper considers an LQ dynamic network model. The
network is managed by two types of participants: Principal
and Agent. The principal harmonizes the agents’ individ-
ual behavior to achieve a socially optimal state by pro-
viding each agent with an appropriate pricing information
on the basis of their private information bid strategically.
Each agent executes suitable control according to the
price. Following Wasa et al. (2019b), this paper consid-
ers a two-agent model so as to avoid complex technical
discussions. The problem can be extended to any number
of agents. The state evolution of agent i (i = 1, 2) obeys

ẋi = Aixi +Biui, xi(t0) = x0i, (1)

with the individual cost:

Ji =

∫ tf

t0

[
(θi − Cixi)

⊤Qi(θi − Cixi) + u⊤
i Riui

]
dt, (2)

where Qi and Ri are positive-definite symmetric ma-
trices. Agent i can observe his own state xi(t) online
and has private information θi(t), t ∈ [t0, tf ] a pri-
ori. The private information θi(t) is continuous functions
of time t. The system parameters and cost parameters
Ai(t), Bi(t), Ci(t), Qi(t), Ri(t), t ∈ [t0, tf ], i = 1, 2 in

(1) and (2) are continuous functions of t and common
information to all the participants in advance.

The state evolution of the principal, which indicates vari-
ous imbalance outcomes on the network, obeys

ẋ0 = A0x0 +A01x1 +A02x2, x0(t0) = x00, (3)

with the imbalance cost

J0 =

∫ tf

t0

x⊤
0 Q0x0dt, (4)

where Q0 is a semi-positive-definite symmetric matrix.
The principal can observe all the states xi(t), i = 0, 1, 2,
online. All the system and cost parameters in (3) and (4)
are common information to all the participants as well.

2.2 Social Optimal Control Problem

To evaluate the efficiency over the network, the social cost
is defined by

Is = J0 + J1 + J2, (5)

where the collective dynamics for the state x = [x⊤
0 , x

⊤
1 ,

x⊤
2 ]

⊤ with the controls u = [u⊤
1 , u

⊤
2 ]

⊤ is described as

ẋ = Ax+Bu, x(t0) = [x⊤
00, x

⊤
01, x

⊤
02]

⊤, (6)

A =

[
A0 A01 A02

0 A1 0
0 0 A2

]
, B =

[
0 0
B1 0
0 B2

]
.

Using (6), the social cost (5) is rewritten as

Is =

∫ tf

t0

(x⊤C⊤QCx− 2θ⊤QCx+ θ⊤Qθ + u⊤Ru)dt,

where θ = [0⊤, θ⊤1 , θ
⊤
2 ]

⊤,

C =

[
I 0 0
0 C1 0
0 0 C2

]
, Q =

[
Q0 0 0
0 Q1 0
0 0 Q2

]
, R =

[
R1 0
0 R2

]
.

From the definitions, the matrices Q and R are symmetric
positive-definite matrices and I is the identity matrix. The
social optimal control problem solved by the principal
is to find an optimal control minimizing (5). This social
optimal control problem is one of the standard LQ control
problems. Each agent bids his private information θi(t),
t ∈ [t0, tf ]. Then, the agents’ optimal controls are given by

u∗
i = −1

2
R−1

i B⊤
i pi, i = 1, 2, (7)

where pi is the adjoint variable (afterward it is called
(shadow) price), and the price vector p = [p⊤0 , p

⊤
1 , p

⊤
2 ]

⊤

obeys the adjoint equation

ṗ = −A⊤p− 2C⊤QCx+ 2C⊤Qθ, p(tf ) = 0. (8)

The optimal pair (x, p) of state and price can be deter-
mined uniquely by solving the two point boundary value
(TPBV) problem given by the forward equation (6) and
the backward equation (8) (see Bryson and Ho (1975)
and Ascher et al. (1995)). Ideally, the optimal control
u∗ = [u∗⊤

1 , u∗⊤
2 ]⊤ is implemented as follows. If agent i

bids his private information θi, the principal solves the
TPBV problem offline and determines the price pi, which
is optimal from the point of view of the social cost (5). The
principal dispatches the price pi to each agent i and the
agent i performs his control (7) in a distributed fashion.

From Bryson and Ho (1975) and Ascher et al. (1995),
the price as well as the control can be realized in a state
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feedback form with the backward sweep formula for the
TPBV problem:

pi = 2Pix+ 2gi, i = 1, 2, (9)

where P =
[
P⊤
0 P⊤

1 P⊤
2

]⊤
, Pi = [ Pi0 Pi1 Pi2 ] , i =

0, 1, 2, is the solution to the Riccati equation:

Ṗ + PA+A⊤P − PBR−1B⊤P +C⊤QC = 0, P (tf ) = 0,
(10)

and g = [g⊤0 , g
⊤
1 , g

⊤
2 ]

⊤ obeys the linear equation:

ġ = −(A⊤ − PBR−1B⊤)g + C⊤Qθ, g(tf ) = 0. (11)

Here the implementation is discussed to realize the state
feedback laws for the price (9) and the control (7). All the
model information (all participants’ system and weighting
variables) except the private information θi, i = 1, 2 is
available to all the participants in common. Any distur-
bance is not considered in the model. Hence, the principal
can calculate the price and the controls in the open-loop
form by solving the TPBV problem defined by (6), (7)
and (9)–(11) and in the state feedback form as well, as the
principal gets the private information bid by all the agents
and the state information of all participants’ dynamics.

3. OPTIMAL REWARD DESIGN PROBLEM UNDER
MORAL HAZARD

3.1 Problem Formulation

As pointed as Wasa et al. (2019b), the agents have a
potential to behave strategic actions and the principal
cannot achieve the social cost minimization without an
appropriate incentive. To incentivize an agent’s behavior,
the principal uses a reward functional Wi(x;u, θi, hi),
i = 1, 2 with a parameter hi.

1 By combining the reward
functional Wi with the individual cost functionals J0,
J1 and J2, the agent’s net cost functional Ii and the
principal’s net cost functional I are defined as

Ii(x;u, θi, hi)=Ji(x;u) +Wi(x;u, θi, hi), i = 1, 2, (12)

I(x;u, θ, h)=J0−W1(x;u, θ1, h1)−W2(x;u, θ2, h2), (13)

where h := [h⊤
1 , h

⊤
2 ]

⊤. Then, our reward design problem
under moral hazard is formulated as follows: Given an
initial condition x(t0) = x and private information θ =
[0⊤, θ⊤1 , θ

⊤
2 ]

⊤, the principal finds an optimal parameter
h = [h⊤

1 , h
⊤
2 ]

⊤ that implements an optimal control u =
[u⊤

1 , u
⊤
2 ]

⊤ in an admissible set, such that

min
u=[u⊤

1 ,u⊤
2 ], h=[h⊤

1 ,h⊤
2 ]⊤

I(x;u, θ, h) (14)

subject to Ii(x;ui, u−i, θi, hi) = min
vi

Ii(x; vi, u−i, θi, hi),

i = 1, 2, (15)

Ii(x;ui, u−i, θi, hi) ≤ 0, i = 1, 2, (16)

where the subscript notation ·−i = ·2 if i = 1, and
vice versa. 2 The optimal reward functional Wi and the
agents’ optimal controls are obtained from the solution to
1 This approach is motivated by the reward-functional formulation
in Sannikov (2008) and Cvitanić et al. (2018), which are investigated
in the context of contract theory. Wasa et al. (2018) reveal that the
reward design for the initial and terminal cost can be independent
of that for the transient cost. Therefore, this paper focuses on the
reward functional for only the transient cost, which is given by (18).
2 Since the control parameter u is composed of (ui, u−i), i = 1, 2,
we sometimes use Ii(x;ui, u−i, θi, hi) in place of Ii(x;u, θi, hi).

this problem. Assuming the private information (θ1, θ2)
is reported in all sincerity, constraint (15) claims that
the optimal reward functional incentivizes each agent
to adopt the optimal control that minimizes its own
net cost. This constitutes a Nash equilibrium together
with the other agents’ control. Constraint (16) ensures a
prescribed level of each agent’s net cost, which is set as
0 in this paper. The above formulation (14)–(16) is an
application of the moral-hazard problem, particularly the
PA problem, in contract theory (e.g. see Holmstrom and
Milgrom (1987)); using the terminology of contract theory,
(15) is called the incentive-compatibility constraint and
(16) is the individual-rationality constraint.

3.2 Solution

In this section, the case is considered that all the agents
report truthful private parameters (θ1, θ2) to the principal.
Following Sannikov (2008) and Wasa et al. (2018), an
appropriate reward functional and agents’ control policy
satisfying the constraints (15) and (16) can be obtained
straightforwardly. This paper focuses only on the primary
results of the problem (14)–(16) in Wasa et al. (2018). See
Wasa et al. (2018) for the mathematical assumptions and
the rigorous proofs.

First, to solve the reward design problem (14)–(16), a form
of the reward functional Wi with hi is specified. Suppose
that there is a Nash equilibrium (u∗

1, u
∗
2) defined by

u∗
i = argmin

vi
Ii(x; vi, u

∗
−i, θi, hi), i = 1, 2. (17)

for a pair of reward functionals (W1,W2). Then, conse-
quently, given an initial condition x(t0) = x and optimal
controls u∗

−i of the other agent, the reward functionalWi of
the agent i (i = 1, 2) with arbitrary implementable control
ui has the form:

Wi(x;ui, u
∗
−i, θi, hi)

= −
∫ tf

t0

[
h⊤
i (t, x(t))(Ax(t) +Biu

∗
i +B−iu

∗
−i − ẋ(t))

+ (θi − Cixi(t))
⊤Qi(θi − Cixi(t)) + u∗⊤

i Riu
∗
i

]
dt (18)

along the dynamics ẋ(t) = Ax(t) + Biui + B−iu
∗
−i, t ∈

[t0, tf ]. By substituting (18) into (12) and (15), the opti-
mality of the obtained reward functional (18) can be veri-
fied. Then, by taking the price parameter pi (9) depending
on time t and state x and the parameter

hi = [h⊤
i0, h

⊤
i1, h

⊤
i2]

⊤, hij =

{
pi if j = i
0 otherwise

, i = 1, 2, (19)

which is provided by the principal, 3 the corresponding
optimal control for u∗

−i is obtained as

u∗
i =argmin

ui

[
(θi − Cixi)

⊤Qi(θi − Cixi)

+ u⊤
i Riui + p⊤i (Aixi +Biui)

]
=− (1/2)R−1

i B⊤
i p⊤i . (20)

Note that each agent’s control policy (20) with (9) is a
function of state x, i.e. a Markov control policy. Thanks
3 The parameter hi in (18) is the principal’s design parameter
fulfilling the constraints (15) and (16). From Sannikov (2008) and
Wasa et al. (2018), the principal generally has all manner of options
of hi including (19) and Proposition 1 holds for all the candidates of
hi. Meanwhile, solving the specific optimization problem (14) defined
by (13), the principal consequently selects (19).
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to the control structure and necessary conditions for
Markov Nash equilibrium (u∗

i , u
∗
−i) of the controls (20),

the form of the reward functional (18) is acquired. Hence,
by using (18), Proposition 1 is obtained regarding the
relationship between the parameters (h1, h2) with (19) and
the constraints (15) and (16).

Proposition 1. (a) For the reward functionals (18) with pa-
rameters (h1, h2) based on (19), a pair of controls (u1, u2)
is a Nash equilibrium if and only if the control has the
form defined by (20).
(b) For the reward functionals (18) with reward param-
eters (h1, h2) and the Nash equilibrium (u∗

1, u
∗
2) obtained

by (20), the constraint (16) is fulfilled.

Proof. See Wasa et al. (2018).

From this result, as long as all the agents report
truthful private parameters (θ1, θ2) to the principal,
the reward functional given by (18) guarantees the
incentive-compatibility constraint (15) and the individual-
rationality constraint (16) on the agent’s input ui. More-
over, the Nash equilibrium (20) and the reward functional
(18) with the parameter (h1, h2) defined by (19) and (9)
achieve social cost minimization (Wasa et al. (2018)).

4. STRATEGIC BIDDING PROBLEM UNDER
MORAL HAZARD

4.1 Problem Formulation

When each agent bids his own private information θi(t),
t ∈ [t0, tf ], the principal can determine an optimal reward
functional led by (18) with (19) for the bidden private
information (θ1, θ2) and the social optimal control pre-
venting agents’ moral hazard control behavior for (θ1, θ2)
is guaranteed as above. Meanwhile, each agent can bid
his private information strategically. Let us denote by
θ̄i(t), t ∈ [t0, tf ] the true private information of agent i,
(i = 1, 2). As long as each agent implements (20), the
prescribed level of agent’s net cost and the social optimal
control for (θ1, θ2) are guaranteed. The input constituted
by Nash equilibrium (20) is independent of the strategic
bidding information θi. Afterward, it is assumed that each
agent i always implements his control led by (20) and the
strategic bidding problem of his information θi is handled.

The main objective of the strategic bidding problem is
to find a Nash equilibrium in a parameter space of the
(θ1, θ2). To describe the strategic bidding problem clearly,
the state x, the price p, and the parameter g in the
backward sweep are determined dependently on the bid
parameter (θ1, θ2) from the foregoing discussion. From
(11), g is determined by

ġ = −(A−BR−1B⊤P )⊤g +

 0 0
C⊤

1 Q1 0
0 C⊤

2 Q2

[ θ1
θ2

]
,

g(tf ) = 0. (21)

For the optimal control (7) with (9) in the state feedback
form, the state equation (6) is also described by

ẋ = (A−BR−1B⊤P )x−BR−1Bg,

x(t0) = [x⊤
00, x

⊤
01, x

⊤
02]

⊤. (22)

By combining (2), (9), (12), (18), (19) and (20), the agent’s
net cost Ii, i = 1, 2 is given by

I∗i (θ1, θ2) =

∫ tf

t0

[
(θ̄i − Cixi)

⊤Qi(θ̄i − Cixi)

− (θi − Cixi)
⊤Qi(θi − Cixi)

]
dt

=

∫ tf

t0

[
θ̄⊤i Qiθ̄i − 2(Cixi)

⊤Qi(θ̄i − θi)− θ⊤i Qiθi

]
dt,(23)

where x in (23) and g depend on (θ1, θ2) and obey (22)
and (21), respectively. As Qi is defined as a positive-
definite matrix, the private information θi minimizing the
cost (23), particularly −θ⊤i Qiθi, takes a value on the
boundary in parameter space. As long as all the agents
implement Nash equilibrium (20), all the agents’ estimated
(enormous) costs with bid information (θ1, θ2) are shared
with the principal and the agents will make a large profit.

Then, although the principal’s objective is to minimize
the social cost for evaluating the efficiency of the network,
the principal will pay enormous money and the network
is unstabilized at its worst. From the point of view of the
budget, as the incentive cost Wi led by (18) is born by the
principal, it is realistic not to exceed a prescribed level of
the principal’s budget k. Hence, a revised strategic bidding
problem adding the inequality constraint on the principal’s
net cost

I∗(θ1, θ2) ≤ k (24)

is reformulated. The constraint (24) is an integral con-
straint. Therefore, given a Lagrange multiplier ρ ≥ 0,
which is independent of time t, the constraint (24) is
equivalent to

ρ(I∗(θ1, θ2)− k) = 0, ρ ≥ 0 (25)

(e.g., see Liberzon (2011)). From (9), (13) and (18)–(20),
the cost functional I∗ is given by

I∗(θ1, θ2)=

∫ tf

t0

[
x⊤
0 Q0x0 +

∑
i=1,2

(θi − Cixi)
⊤Qi(θi − Cixi)

+ (Px+ g)⊤BR−1B⊤(Px+ g)
]
dt. (26)

The feasible space of the bidding parameter θi of the agent
i (i = 1, 2) is limited to the space satisfying the budget
constraint (24). Hence, it is assumed that each agent i
minimizes his own net cost I∗i subject to the principal’s
budget constraint (24). Considering the necessary condi-
tion of the constrained nonlinear optimization problems,
the agent i modifies his objective function to the sum of
the original net cost and the penalty functional on I∗ led
by (25), i.e.,

I†i (θ1, θ2) := I∗i (θ1, θ2) + ρi(I
∗(θ1, θ2)− k), ρi > 1, (27)

along the dynamics (21) and (22). 4 The parameter ρi in
(27) can be regarded as a penalty parameter. The objective
function (27) can be interpreted as balancing the agents’
individual rationality and the principal’s budget for the
suitable incentive by using ρi and k. Substitute (23) and
(26) into (27), then

I†i (θ1, θ2) =

∫ tf

t0

Li(x, g, θ̄i, θ, ρi, k, t)dt, (28)

4 The constraint ρi > 1 instead of ρi ≥ 0 is led by the necessary
condition in Theorem 2. See Section 4.2 for more details.
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where

Li(x, g, θ̄i, θ, ρ, k, t)

= (θ̄i − Cixi)
⊤Qi(θ̄i − Cixi) + ρix

⊤
0 Q0x0

+ (ρi − 1)(θi − Cixi)
⊤Qi(θi − Cixi)

+ ρi(θ−i − C−ix−i)
⊤Q−i(θ−i − C−ix−i)

+ ρi(Px+ g)⊤BR−1B⊤(Px+ g)− ρik

tf − t0

= θ̄⊤i Qiθ̄i − 2θ̄⊤i QiCixi + x⊤
i C

⊤
i QiCixi

+ θ⊤Qρiθ − 2θ⊤QρiCx+ x⊤C⊤QρiCx

+ ρi(Px+ g)⊤BR−1B⊤(Px+ g)− ρik

tf − t0
, (29)

Qρ1 := ρ1Q−

[
0 0 0
0 Q1 0
0 0 0

]
, Qρ2 := ρ2Q−

[
0 0 0
0 0 0
0 0 Q2

]
.

Denote by Θi the set of the admissible bid information θi
of the agent i, i = 1, 2. As each agent has his own cost
for evaluating the strategic bidding of θi, it is ideal that
agent i expects to find his bid information θi minimizing
his individual cost (28) subject to dynamic equations (21)
and (22) for an information θ−i bid by agent −i. Then, the
strategic bidding problem under moral hazard is defined
as follows: given a principal’s maximum budget k and the
corresponding penalty parameters ρ1 > 1 and ρ2 > 1,

the agents form a Nash equilibrium (θ†1, θ
†
2) in Θ1 × Θ2

satisfying the criterion

I†1(θ
†
1, θ

†
2) ≤ I†1(θ

†
1, θ2), ∀ θ2 ∈ Θ2, (30a)

I†2(θ
†
1, θ

†
2) ≤ I†2(θ1, θ

†
2), ∀ θ1 ∈ Θ1, (30b)

under the condition that the backward equation (21) and
the forward equation (22) are implemented.

Here, the feasible space of the parameters (ρ1, ρ2) is limited
in order to be consistent with the purpose of the optimal
reward design problem under moral hazard for control
(u1, u2) in Section 3. To be concrete, the agent’s net cost

I∗i (θ
†
1, θ

†
2) with the Nash equilibrium (θ†1, θ

†
2) constituted

by (30) must satisfy the individual-rationality constraint
(16). As a result, the principal determines the maximum
budget k minimizing the principal’s net cost (social cost)

I∗(θ†1, θ
†
2) in the range of the parameters (ρ1, ρ2) satisfying

I∗i (θ
†
1, θ

†
2) ≤ 0, i = 1, 2. As the resulting cost I∗(θ†1, θ

†
2) is

equivalent to k, the constraint (25) holds.

4.2 Solution

Let us seek (θ†1, θ
†
2) constituted by (30). The strategic

bidding problem formulated in Section 4.1 is an open-loop
LQ Nash game with the strategies θi, i = 1, 2, and has the
dynamic constraints (21) and (22) defined with a TPBV
condition. As Qi is a symmetric positive-definite matrix

and ρi > 1, the cost I†i led by (28) and (29) is strictly
convex with respect to θi. Then, Theorem 2 is obtained.

Theorem 2. Suppose that, for ρi > 1, i = 1, 2, there is an

(open-loop Nash) equilibrium (θ†1, θ
†
2) led by (30) and let

us set k := I∗(θ†1, θ
†
2). Then, given parameters ρi > 1,

(I) the strategic bidding problem defined by (21)–(23) and

(26)–(30) has a unique equilibrium (θ†1, θ
†
2) in Θ1 ×Θ2;

(II) the unique equilibrium (θ†1, θ
†
2) is given by

θ†i = Cixi −
1

ρi − 1
Ciµii, i = 1, 2, (31)

where µii is an element of µi = [µ⊤
i0, µ

⊤
i1, µ

⊤
i2]

⊤, i = 1, 2,
and µi is determined as a unique solution of the TPBV

(linear) equations led by θi = θ†i , i = 1, 2:

ẋ =(A−ABP )x−ABg, x(t0) = [x⊤
00, x

⊤
01, x

⊤
02]

⊤, (32a)

ġ =− (A−ABP )⊤g +ACx

− 1

ρ1 − 1
A1

Cµ
1 − 1

ρ2 − 1
A2

Cµ
2, g(tf ) = 0, (32b)

λ̇i =− (A−ABP )⊤λi −ACµ
i − 2(ρiP

⊤AB)g

− 2(ρi(A
0
C + P⊤ABP ) +Ai

C)x+ 2ciθ̄,

λi(tf ) = 0, i = 1, 2, (32c)

µ̇i =(A−ABP )µi +ABλ
i − 2(ρiAB)g − 2(ρiABP )x,

µi(t0) = 0, i = 1, 2, (32d)

where AB = BR−1B⊤, AC = A1
C +A2

C ,

A1
C =

 0 0 0
0 C⊤

1 Q1C1 0
0 0 0

 , A2
C =

 0 0 0
0 0 0
0 0 C⊤

2 Q2C2

 ,

A0
C =

[
Q0 0 0
0 0 0
0 0 0

]
, c1θ̄ =

 0
C⊤

1 Q1θ̄1
0

 , c2θ̄ =

 0
0

C⊤
2 Q2θ̄2

 .

Proof. Since the open-loop Nash equilibrium is consid-
ered and the parameters (ρ1, ρ2) are fixed, the necessary

condition for (θ†1, θ
†
2) can be derived by using the maximum

principle (Bryson and Ho (1975); Liberzon (2011)). From
Basar and Olsder (1999), the necessary condition is given
as the TPBV problem composed of (21) and (22) and their
adjoint equations (32c) and (32d) with the equilibrium
(31). Thus, by using the existence and uniqueness theorem
of the TBPV problem for linear differential equations (As-
cher et al., 1995, Theorem 3.26b) with ρi > 1, the TBPV
problem (32) has a unique solution and the equilibrium

(θ†1, θ
†
2) is given by (31) and (32). This completes the proof.

Theorem 2 indicates that the necessary (and sufficient)
condition of the Nash equilibrium (30) led by the mini-
mization problem with (27) is given as the unique solution

of the TPBV problem (32) under I∗(θ†1, θ
†
2) = k. How-

ever, Theorem 2 does not theoretically find the principal’s
maximum budget k and the corresponding parameters ρ1
and ρ2 satisfying the budget constraint I∗(θ†1, θ

†
2) = k and

the individual-rationality constraint I∗i (θ
†
1, θ

†
2) ≤ 0. This

theoretical issue including convergence properties remains
as one of the future works and it will be discussed in a
separate paper. In Section 5, a heuristic computational
method will be proposed to seek suitable parameters k
and ρi, i = 1, 2.

5. SIMULATION

In this section, the quantitative influence of the proposed
strategic bidding under moral hazard is analyzed through a
simulation. Each agent i (i = 1, 2) has the local dynamics
obeying ẋi = ui, xi(0) = x0i = 1 with the individual

strategic cost
∫ 15

0

[
10(θi − xi)

2 + u2
i

]
dt and his actual cost

Ji =
∫ 15

0

[
10(θ̄i − xi)

2 + u2
i

]
dt, that is t0 = 0, tf = 15,
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Fig. 1. Time evolution of θ, x and u for social optimal control with true private information (θ1 = θ̄1 = 0.1,
θ2 = θ̄2 = −0.1). The resulting costs are I∗ = 7.3580, I∗1 = I∗2 = 0, W1 = −2.8370 and W2 = −4.1246.
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Fig. 2. Costs (I∗, Ji and I∗i ) and incentive (Wi) for strategic bidding of private information at each ρ1 = ρ2 > 1.

Ai = 0, Bi = 1, Ci = 1, Qi = 10, Ri = 1 and the
agent’s true private information θ̄1 = 0.1, θ̄2 = −0.1. The
principal’s dynamics obey ẋ0 = x1 + x2, x0(0) = x00 = 0

with the cost J0 =
∫ 15

0
x2
0dt, which is A00 = 0, A01 = 1,

A02 = 1 and Q0 = 1. Although there might be a variety
of options as the performance analysis of the strategic
bidding, the case of ρ1 = ρ2 > 1 is considered.

Before discussing the strategic bidding problem in Sec-
tion 4, the case of the social optimal control is verified.
The case is also the solution of the optimal reward design
problem under moral hazard with true private informa-
tion, based on Proposition 1 in Section 3. Then, the time
evolution of θ, x and u is shown in Fig. 1 and the resulting
costs are I∗ = 7.3580 and I∗1 = I∗2 = 0. From Fig. 1,
Proposition 1 holds.

To verify the performance of the strategic bidding based on
Theorem 2, a parameter ρi in the range of 1 < ρi ≤ 1000
is selected and the TPBV problem (32) for the fixed

parameter ρi is solved. Fig. 2 shows the costs I
∗(θ†1, θ

†
2) and

I∗i (θ
†
1, θ

†
2) and the corresponding information for (θ†1, θ

†
2)

given by the solution of the TPBV problem (32) with
(31) in the range of 1 < ρi ≤ 1000. We see from Fig. 2
that I∗ is a monotonically-decreasing function for ρi and
I∗i is a monotonically-increasing function. To satisfy the
individual-rationality constraint I∗i ≤ 0, i = 1, 2, let us

denote by ρ∗i the parameter ρi such that I∗i (θ
†
1, θ

†
2) = 0.

From the center and right figures in Fig. 2, ρ∗1 = 14.8 and

ρ∗2 = 11.3. Hence, as the principal finds k = I∗(θ†1, θ
∗
2)

minimizing I∗ from 1 < ρ1 = ρ2 ≤ ρ∗ := min{ρ∗1, ρ∗2}, we
obtain k∗ = I∗(θ†1, θ

∗
2) = 9.7146 at ρ∗ = 11.3.

Figs. 3 and 4 show θi, x and u given by the solution of
the TPBV (32) with (31) for ρi = ρ∗ and ρi = 1000,
respectively. We see from Fig. 3 that, compared with
Fig. 1, xi, i = 1, 2 goes to θ̄i but x0 converges to 0.2 not
0. This is caused by the influence of the agents’ strategic

bidding taking the individual rationality constraint into
account. Hence, the results in Fig. 3 give the limitations
of the strategic bidding case. Fig. 4 indicates that the
principal sets a relatively small k taking a sufficient large
ρ and prioritizes the minimization of J0. As a result, the
agents receive a small reward Wi and pays a large cost
due to the gap between xi and θ̄i. However, the individual
rationality does not hold and the agents will not agree with
the proposed mechanism from the principal.

6. CONCLUSION

This paper has investigated the whole system behavior
caused by the influence of the agents’ strategic behavior
while utilizing their individual control and private informa-
tion. In particular, we have formulated a strategic bidding
problem under moral hazard for a dynamic LQ network
in the presence of a principal-agent relationship. Then, we
have analytically derived an optimal design of the strate-
gic bidding problem and discuss their effectiveness and
limitations through a simulation. The resulting controls
and strategic bidding give the construction of a (near-
)optimal agreement between the principal and the agents
while satisfying the individual-rationality constraint.

The problem formulation considered in this paper can
be regarded as a special case of strategic bidding prob-
lems combining moral hazard and adverse selection. To
achieve such a strategic bidding problem, Nash equilibrium
on both (θ1, θ2) and (u1, u2) under (W1,W2) should be
sought. Another issue of the proposed approach is imple-
mentation in real systems. These are our next challenge. As
the standard problem under moral hazard uses a stochastic
system, another future direction is to extend our prob-
lem formulation to a stochastic model, e.g. LQG systems.
Due to risk-neutral agents and principal, it is expected
to directly solve the problem by using the mathematical
technique in Wasa et al. (2018) and this paper.
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Fig. 3. Time evolution of θ, x and u for strategic bidding of private information with ρ1 = ρ2 = ρ∗ = 11.4. The resulting
costs are I∗ = 9.7146, I∗1 = −0.9046, I∗2 = −0.0180, W1 = −4.2710 and W2 = −4.4637.
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Fig. 4. Time evolution of θ, x and u for true private information with ρ1 = ρ2 = 1000. The resulting costs are I∗ = 3.3973,
I∗1 = 3.7660, I∗2 = 3.9416, W1 = −1.2703 and W2 = −1.2925.
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