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Abstract: This paper investigates the distributed observer design for linear system under
time-variant disconnected communication network. By constructing basic eigenvectors of 0-
eigensubspace of disconnected Laplacian Matrix and using LMIs method, we prove the
distributed observer cannot achieve omniscience asymptotically under switching topology
without constraining the system matrix or alternative topologies set. To deal with this problem,
this paper investigates three kinds of constraints and the system matrix only needs to satisfy any
one of them. Then a group of sufficient conditions corresponding to the asymptotic omniscience
of distributed observer under switching topology are proved by Lyapunov analysis. Finally, a
numerical simulation shows the validity of our method.
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1. INTRODUCTION

The distributed observer problem has attracted a lot
of attention to recent years. The dynamical system is
monitored by a network of local observers. Each local
observer, or named node, is required to estimate the whole
states of system using its own (limited) measurements and
via information exchange in network.

The main difficult of the distributed observer problem
come from the limitation that no single observer can
estimate the whole states. Therefore, it is necessary to
introduce the coupling term appearing in the multi-agent
problem into the classical observer dynamics, such as
distributed Luenberger observer Zhu et al. (2014); Kim
et al. (2016), distributed augmented state observer Park
and Martins (2017), and distributed high-gain observer Xu
and Wang (2020). Han et al. (2019) and Han et al. (2018)
extend the distributed observer from the perspective of
directed graph and minimum order observer respectively.
Silm et al. (2019) studies the conditions of distributed
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finite-time observer, and Xu and Wang (2019) gives a
group of sufficient conditions for distributed nonlinear
observer.

However, all of these papers are based on fixed commu-
nication topology, and assume that the communication
network is connected (undirected graph) or strongly con-
nected (directed graph). According to author’s knowledge,
there is no systematic research on distributed observer
designed under switching topology.

Despite all this, the research on the consensus of multi-
agent systems under switching topology can be traced
back to several decades. In the early years, the research on
switching topology mainly focused on the first-order multi-
agent system, for which the corresponding compact system
matrix equals to negative Laplacian matrix. This property
enables a non increasing Lyapunov function along each
subsystem, so the consensus of multi-agent system can be
guaranteed under switching topology if all the alternative
topologies are balanced digraph (Reza and Richard (2004);
Ren and Beard (2005)). The problem becomes more chal-
lenging when the agent dynamics becomes to second-order
integrators or more complex system dynamics, because
unstable poles will appear in the system matrices. Some
results can be founded in Hong et al. (2007); Lin and
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Jia (2010) but they add at least one connected graph in
alternative topologies set.

During the recent years, few scholars have chosen to
include connected graphs (undirected graph) or strong-
ly connected graphs (directed graph) in the alternative
topologies set of devices. They are more inclined to as-
sume that all the topologies in the set can satisfy the
average connectivity (Münz et al. (2011)), uniformly quasi-
strong connectivity (Monshizadeh et al. (2016); Reza and
Richard (2004)) or joint connectivity, see (Shi and Hong
(2009); Yang et al. (2015); Casadei et al. (2017)). Under
these conditions, if the subsystems themselves are stable
or marginally stable, the multi-agent system can achieve
consensus (Wei and Cheng (2010)). But for the case where
the subsystems themselves contains unstable poles, some
special technologies are needed to achieve consensus, such
as input-state stable (Khan et al. (2019); Zhu et al. (2016))
and hierarchical control framework (Liu et al. (2017)).
However, the contribution of these kind of researches main-
ly based on the designing and consensus of the reference
models. But in the end, the reference models are still
designed to be marginally stable. Similar cases can also
be seen in Su and Jie (2012); Peng and Jia (2010).

In this paper, we will study the asymptotic omniscience
(equivalent to the consensus of error system) of distributed
linear observers under switched disconnected topologies by
referring to the existing literature on switched systems
or multi-agent systems under switching topologies. The
most challenging of this work mainly comes from the
weighted matrix in coupling term, which is significantly
different from the multi-agent system. This weight matrix
is indispensable for the stability of error dynamic between
distributed observer and real system, but it will prevent us
from getting non increasing Lyapunov function as easily as
in the multi-agent problem.

The contributions of this paper mainly include: (i) We
prove by LMIs methods that the distributed observer with
switching (disconnected) topologies fails to achieve omni-
science asymptotically without adding constraints on sys-
tem matrix or alternative topologies set. (ii) By focusing
on adding constraints on the system matrix, three kinds of
constraints are proposed and the system matrix is required
to fulfilled at least one of them. (iii) A group of sufficient
conditions are proved by Lyapunov analysis to guarantee
the distributed observer designed on time-variant discon-
nected topology to achieve omniscience asymptotically
under the proposed system matrix constraints.

This paper is organized as follows. Section 2 summarizes
the notations used throughout the paper and formulates
the problem. Section 3 analyzes the conditions and con-
straints for the existence of distributed observer under
switching topology. Section 4 is used to prove the result
of Section 3, and the sufficient conditions for the asymp-
totic omniscience of distributed observer under switching
topology are proposed and proved in Section 5. Section 6
verifies our method with an example.

2. PROBLEM FORMULATION

Notations used throughout this paper are summarized
here. Denote In and 0n as n-dimensional identity matrix

and zero matrix respectively. col{a1, · · · , an} represents
the stack of column ai, i = 1, · · · , n. diag{M1, · · · ,Mn}
is defined as a block diagonal matrix. A symmetric sign
sym{M} represents M + MT . The rank of matrix M is
rank{M}. We denote λ(M) as the characteristic polyno-
mial of M and denote Λ(M) as the spectral set of M . De-
note an index set as P = {1, 2, · · · , ϖ}, and σ : [0,∞) → P
is a switching signal whose value at time t belongs to
P. card(·) represents the cardinality of set. This paper
denotes disconnected and undirected communication net-
work at time t as Gσ(t) = (Vσ(t), Eσ(t),Aσ(t)), in which

Vσ(t), Eσ(t), and Aσ(t) = [a
σ(t)
ij ] ∈ RN×N are the set of

nodes, set of edges, and the adjacent matrix respectively.

a
σ(t)
ij = 1 if there is an edge between node i and node

j at time t, otherwise, a
σ(t)
ij = 0. Laplacian matrix of

Gσ(t) is calculated by Lσ(t) = Dσ(t) − Aσ(t), where the
ith diagonal entry of diagonal matrix Dσ(t) is given by

d
σ(t)
i =

∑N
j=1 a

σ(t)
ij .

Consider a linear system

ẋ = Ax,

y = Cx = [CT
1 , C

T
2 , · · · , CT

N ]Tx,
(1)

where x ∈ Rn is state, y ∈ Rp is measurement output,
and A ∈ Rn×n, C ∈ Rp×n are system matrix and output
matrix respectively. Here, the portion yi = Cix is the only
output information can be obtained by each node. The
distributed Luenberger observer is introduced as:

˙̂xi = Ax̂i +Hi(yi − Cix̂i) + γPi

N∑
i=1

a
σ(t)
ij (x̂j − x̂i) , (2)

where x̂i is the state estimation of node i, a
σ(t)
ij is the

element of adjacent matrix of the time-dependence com-
munication graph, observer gain Hi, coupling gain γ and
weighted matrix Pi are the designing parameters which
need to be designed. Note the difference between (2) and
classic distributed Luenberger observer is that aσij is time-
variant. The objective of this paper is

lim
t→∞

∥x̂i(t)− x(t)∥ = 0, (3)

which is the property asymptotical omniscience of dis-
tributed observer. Next, we will give three basic assump-
tions of this paper.

Assumption 1. We assume that all the graph Gk, k ∈ P
are not connected but the union of all communication
topologies

∪
k∈P Gk is connected (jointly connected, see

Definition 2 in Wei and Cheng (2010)).

Assumption 2. Consider an infinite sequence of nonempty,
bounded time series t0 = 0, t1, · · · , tk, · · · satisfied tk+1 −
tk ≤ T for k = 0, 1, · · · , and a subsequence in [tk, tk+1)

defined as t0k, · · · , t
ℓk
k with tj+1

k − tjk ≥ τ, j = 1, · · · , ℓk − 1,
where τ > 0 and T > 0 are two given constants. Then we
suppose the interconnection topology in each of [tjk, t

j+1
k )

remains unchanged and we further suppose each topology
in P appears at least once in the time intervals [tk, tk+1).

For saving of statement, we define that a connected branch
of Gk is observable if the state of the whole system can be
observed by the output information about nodes only in
this connected branch.
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Assumption 3. We assume the pair (C,A) is observable
and further assume that (Ci, A) is not completely observ-
able for all i = 1, 2, · · · , N . Moreover, for each topology
Gk, k ∈ P, we assume there is at least one connected
branch of Gk is unobservable.

3. CONDITIONS OF CONSISTENCY

3.1 Research Method of Distributed Observer under Fixed
Topology

This subsection will review the research method of dis-
tributed observer under the fixed topology. Note that
card{P} = 1 when the topology is fixed, so that σ(t) is a
constant function. For saving of writing, we omit σ in this
subsection.

Denote ei = x̂i − x, then the error dynamic between (1)
and (2) can be introduced as

ėi = (A−HiCi)ei + γP−1
i

N∑
i=1

aij (ej − ei) , (4)

By setting Ψ = diag{Ψ1, · · · ,ΨN} with Ψi = A − HiCi

and e = col{e1, · · · , eN}, a compact form of error dynamic
can be obtained as follows:

ė = Ψe− γP−1 (L ⊗ In) e, (5)

where P = diag{P1, · · · , PN}. For ∀i ∈ V, let Ti be an
orthogonal matrix such that

TT
i ATi =

[
Aio 0
Air Aiu

]
, CiTi = [Cio 0] , (6)

where Aio ∈ Rvi×vi with vi being the dimension of ob-
servable subspace of (Ci, A), and Aiu, Air, Cio are block
matrices corresponding to Aio with appropriate dimen-
sions. Note that the consensus of distributed observer (2)
is equivalent to the stability of error system (5). So what

we need to do next is to define V (e(t)) =
∑N

i=1 e
T
i Piei and

prove

V̇ (t) = eT
(
ΨTP + PΨ

)
e− 2γeT (L ⊗ In) e < 0. (7)

Han et al. (2019) proves that (7) holds if for all gi > 0, i =
1, · · · , N , there exists ε > 0 such that

TT (L ⊗ In)T +G ≥ εInN , (8)

TT
(
ΨTP + PΨ

)
T + 2γG < εInN , (9)

where T = diag{T1, · · · , TN}, G = diag{G1, · · · , GN},
and Gi = diag{giIvi , 0n−vi}.

3.2 Problems and Solutions in Switching Topology

As for the situation of switching topology, the sufficient
conditions of classic distributed observer cannot be ful-
filled. In fact, equation (7) can be fulfilled with fixed
topology mainly depending on the coupling term. We
know from the proof of Lemma 4 of Han et al. (2019)
that though the Laplacian matrix of a connected graph
is only a semi-positive definite matrix (including a zero
eigenvalue), the observability of the whole system makes
up for this deficiency and makes equation (8) be fulfilled.
In the following lemma, we will describe this problem with
a more general perspective.

Lemma 4. Set σ0 = σ(t0) ∈ P with a given constant t0.
And denote Lσ0 as Laplacian matrix of Gσ0 . Then we alarm
that the necessary condition of

TT (Lσ0 ⊗ In)T +G ≥ εInN (10)

is that every connected branch of a graph Gσ0 is observable.

The proof of this Lemma will be showed in Section 4. Since
all connected branches are assumed to be unobservable
(Assumption 3), (10) cannot be fulfilled. As a result,
coupling term −2γ(Lk ⊗ In) in (7) cannot compensate for
the unstable modes of ΨTP + PΨ by increasing coupling
gain. This means that if we want to achieve omniscience
asymptotically for the distributed observer under the time-
varying disconnected topologies, some constraints must be
imposed on the system matrix or alternative topology. For
instance, Yang et al. (2015) assumes system matrix to
be marginally stable, and Stilwell et al. (2005) assumes
the alternative topologies can be switched at any fast
frequency. Due to the limitation of space, this paper only
considers the constraints on system matrix. Fortunately,
in the sense of distributed observer problem, we can allow
the system matrix to be unstable under certain conditions,
i.e., system matrix need not to be assumed as marginally
stable. These conditions will be given in form of theorems
in Section 5.

4. PROVE OF LEMMA 4

We know rank(Lσ0) < N − 1 owing to Lσ is dis-
connected and there are m-multiple zero eigenvalue if
rank(Lσ0) < N − 1 includes m connected branches. Let
Ik ⊂ {1, 2, · · · , N} be the index set of the kth connected
component of Gσ0 . Thus we know

∑m
k=1 card{Ik} = N .

Now m basic eigenvectors of 0-eigensubspace of Lσ0 can
be designed as:

ηki =

{
1/

√
ck, if i ∈ Ik

0, if i /∈ Ik
, (11)

where ck = card{Ik}, ηki is the ith entry of vector ηk.
Note that all the ηk, k = 1, 2, · · · ,m are the eigenvectors
corresponding to 0. Moreover, they are orthogonal. For
saving the expression, we let η = [η1, · · · , ηm]. Before the
proof, we denote λ1 ≥ · · · ≥ λN−m > 0 as the nonzero
eigenvalues of Lσ0 .

Proof. Equation (10) holds if and only if(
UT ⊗ In

)
(Lσ0 ⊗ In) (U ⊗ In)

+
(
UT ⊗ In

)
TGTT (U ⊗ In) > 0, (12)

where U = [η, V ] with V ∈ RN×(N−m) is an orthogonal
matrix such that

UTLσ0U = diag{0, · · · , 0︸ ︷︷ ︸
m

, λ1, · · · , λN−m}. (13)

Notice that the necessary condition of (12) is[
λ1 ⊗ IN −

[
λ1Im 0
0 0N−m

]]
⊗ In

+
(
UT ⊗ In

)
TGTT (U ⊗ In) > 0. (14)

By pre- and post-multiplying U ⊗ In and UT ⊗ In on the
both side of (14), we have

λ1InN −
{
[η, V ]

[
λ1Im 0
0 0N−m

] [
ηT

V

]}
⊗ In + TGTT > 0,

(15)
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which is equivalent to

λ1InN − λ1T
T (η ⊗ In)

(
ηT ⊗ In

)
T +G > 0. (16)

The definition of η could deduce the detail of TT (η ⊗ In):

TT (η ⊗ In) =


η11T

T
1 η21T

T
1 · · · ηm1T

T
1

η12T
T
2 η22T

T
2 · · · ηm2T

T
2

...
...

. . .
...

η1NTT
N η2NTT

N · · · ηmNTT
N

 . (17)

Using Schur complement lemma on equation (16) yields

Φ1 0 · · · 0 η11T
T
1 · · · ηm1T

T
1

0 Φ2 · · · 0 η12T
T
2 · · · ηm2T

T
2

...
...

. . .
...

...
. . .

...
0 0 · · · ΦN η1NTT

N · · · ηmNTT
N

η11T1 η12T2 · · · η1NTN
1

λ1
In · · · 0

...
...

. . .
...

...
. . .

...

ηm1T1 ηm2T2 · · · ηmNTN 0 · · · 1

λ1
In


> 0,

(18)
where Φi is denoted as:

Φi = λ1In +Gi =

[
(λ1 + gi)Ivi 0

0 λ1In−vi

]
. (19)

Denote Ik(ℓ) as the first ℓ elements of the index set Ik and
further denote

Σ∗
kℓ =

1

λ1
In − 1

ck

∑
i∈Ik(ℓ)

1

λ1 + gi
Ti1T

T
i1 , (20)

Σkℓ =
1

λ1
In − 1

ck

∑
i∈Ik(ℓ)

1

λ1 + gi
Ti1T

T
i1

− 1

ck

∑
i∈Ik(ℓ)

1

λ1
Ti2T

T
i2 . (21)

Then by supposing the first observer belongs to index
set Ik0 , equation (18) can be calculated by using schur
complement lemma again:

λ1In−vi · · · 0 η11T
T
12 · · · ηm1T

T
12

...
. . .

...
...

. . .
...

0 · · · ΦN η1NTT
N · · · ηmNTT

N
η11T12 · · · η1NTN Σ∗

k01 · · · 0
...

. . .
...

...
. . .

...

ηm1T12 · · · ηmNTN 0 · · · 1

λ1
In


> 0. (22)

Continuing to use Schur complement lemma, we can
further obtain

Φ2 · · · 0 η12T
T
2 · · · ηm2T

T
2

...
. . .

...
...

. . .
...

0 · · · ΦN η1NTT
N · · · ηmNTT

N
η12T2 · · · η1NTN Σk01 · · · 0

...
. . .

...
...

. . .
...

ηm2T2 · · · ηmNTN 0 · · · 1

λ1
In


> 0. (23)

By using Schur complement lemma repeatedly according
to the calculation methods of (22) and (23), formula (16)
can be simplified to

diag{Σ1c1 ,Σ2c2 , · · · ,Σmcm} > 0. (24)

Equation (24) holds if and only if Σkck > 0 for all
k = 1, · · · ,m. Because of the similarity of each diagonal
block structure, we will only discuss one of them. Actually,
we can show

Σkck =
1

λ1
In − 1

ck

∑
i∈Ik(ck)

1

λ1 + gi
Ti1T

T
i1

− 1

ck

∑
i∈Ik(ck)

1

λ1
Ti2T

T
i2

− 1

ck

∑
i∈Ik(ck)

1

λ1
Ti1T

T
i1 +

1

ck

∑
i∈Ik(ck)

1

λ1
Ti1T

T
i1

=
1

λ1
In − 1

ck

∑
i∈Ik(ck)

(
Ti1T

T
i1 + Ti2T

T
i2

)
+

1

ck

∑
i∈Ik(ck)

(
1

λ1
− 1

λ1 + gi

)
Ti1T

T
i1 . (25)

Denote gmax = maxi{gi} and then the necessary condition
of Σkck > 0 is(

1

λ1
− 1

λ1 + gmax

) ∑
i∈Ik(ck)

Ti1T
T
i1 > 0, (26)

which indicates ∑
i∈Ik(ck)

Ti1T
T
i1 > 0. (27)

It is equivalent to

rank{[Ti11, · · · , Tick1︸ ︷︷ ︸
i1,··· ,ick∈Ik(ck)

]} = n. (28)

Equation (28) is obtained from Han et al. (2019). This
means that every connected branch of Gσ0 is observable.

5. MAIN RESULTS

This section will prove a set of constraints for the system
matrix. Moreover, we prove a group of sufficient condi-
tions for the distributed observer to be asymptotically
omniscient for the systems that meets any one of matrix
constraints. One now states the following.

Theorem 5. Consider system (1). Assume that Assump-
tions 1-3 are satisfied. Then Ψi = A−HiCi, i = 1, 2, · · · , N
is marginally stable if one of the following three conditions
hold:

(1) A is marginally stable.
(2) The polynomial λ(A)/λ(Aio) has not multiple roots

on virtual axis for all i = 1, 2, · · · , N if A is polyno-
mial instability, where Aio represents the observable
subspace corresponding to Ci.

(3) Λu ⊂
∩N

i=1 Λ(Aio) and λ(A)/λ(Aio) has not multiple
roots on virtual axis if A is exponential instability
with Λu being the set of open right half plane (ORHP)
poles of A.

Proof. Due to the limitation of space, we omit this
relatively simple proof.

Theorem 6. Consider system (1) and a set of alternative
topologies Gk, k ∈ P. Assume that Assumptions 1-3 are
satisfied and further assume the pair (C,A) satisfies at
least one condition of Theorem 5. Then the designed
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distributed observer (2) can achieve omniscience asymp-
totically under the switching topologies {Gk : k ∈ P} if
there exists some constants gi ≥ 1, ς > 0 and γ > 0, and
symmetric positive definite matrices Pio ∈ Rvi×vi , Piu ∈
R(n−vi)×(n−vi), i = 1, 2, · · · , N such that Pi = TiP̃iT

T
i ,

P̃i = diag{Pio, Piu} and

(C1)PioΨio +ΨT
ioPio = −2γIvi , (29)

(C2)sym{PiuAiu} −
1

ρi
PiuAirA

T
irPiu ≤ −ςIn−vi , (30)

where ρi = 2γ(gi − 1) + ς.

Proof. Since at least one conditions is satisfied by (C,A),
observer gain matrix Hi can be designed as Hi =
TT
i [HT

io, 0]
T so that Ai −HioCio is Hurwitz. Similar with

the steps in subsection 3.1, the error dynamic and the
derivation of Lyapunov function V (t) = eTPe can be
calculated as follows:

ė = Ψe− γP−1 (Lσ ⊗ In) e, (31)

V̇ (t) = eT
(
ΨTP + PΨ

)
e− 2γeT (Lσ ⊗ In) e. (32)

By using Schur complement lemma on (30), we can obtain[
2γ(gi − 1)Ivi + ςIvi AT

irPiu

PiuAir sym{PiuAiu}+ ςIn−vi

]
≤ 0. (33)

Then we denote Ψio = Aio − HioCio and there is a
positive definite symmetric matrix Pio such that PioΨio +
ΨT

ioPio = −2γIvi . Therefore, (33) is equivalent to[
sym{PioΨio}+ 2giγIvi AT

irPiu

PiuAir sym{PiuAiu}

]
+ ςIn ≤ 0. (34)

For saving of compactness, (34) can be rewritten as

TT
(
ΨTP + PΨ

)
T + 2γG ≤ −ςInN . (35)

Furthermore, we know from the proof of Lemma 4 that

TT (Lσ ⊗ In)T +G ≥ 0. (36)

Now by Substituting (36) and (35) into (32), we get

V̇ (t) = eTTTT
(
ΨTP + PΨ− 2γLσ(t) ⊗ In

)
TTT e

= eTT
[
TT

(
ΨTP + PΨ

)
T + 2γG

−2γG− 2γTT
(
Lσ(t) ⊗ In

)
T
]
TT e

≤ −ςeTTInNTT e = −ςeT e ≤ 0. (37)

Thanks to the proof of Theorem 2 of Wei and Cheng
(2010), we can prove limt→∞ ei(t) = 0, i = 1, 2, · · · , N
from the fact V̇ (t) = −ς

∑N
i=1 e

T
i ei ≤ 0, which indicates

the designed distributed observer (2) can achieve omni-
science asymptotically. For saving of space, we omit this
proof.

6. SIMULATION

Consider the following linear system

ẋ = Ax, y = Cx,

A =

 1 0 0 10.2
−1.5 −2 0 0
0 0 −1.5 1.63
3.2 0 0 −2.2

 , C =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 .

Notice that Λ(A) = {−2,−1.5, 5.33,−6.53}. There is a
ORHP pole 5.33, thus A is an exponentially unstable
matrix. The observable index of C1, C2, C3, C4 are 2, 3, 3, 2
respectively. By calculating observable decomposition, we

can obtain A1u = diag{−2,−1.5}, A2u = −1.5, A3u = −2,
and A4u = diag{−2,−1.5}. It means the third condition

Λu ⊂
∑4

i=1 Λ(Aio) of Theorem 5 if fulfilled. The alterna-
tive communication networks are given in Figure 1.

Fig. 1. Alternative communication networks

Let gi = 1, i = 1, · · · , 4, γ = 1 and ς = 1. Then we can cal-
culate P1, P2, P3, P4 andH1,H2,H3, H4. Due to the limita-
tion of the paper, the calculation results of Pi, i = 1, · · · , 4
and the observer gain matrix H = [H1,H2,H3,H4] are
omitted. The initial states of actual system are chosen
as x(0) = [1, 1, 1, 1]T and the initial states of each local
observer are chosen randomly. As shown in the Figure
2, the error dynamics between distributed observer and
actual system converge to zero even A includes a unstable
pole. Figure 3 is the switching sequence of this Example.

7. CONCLUSION

This paper has considered the asymptotic omniscience
of distributed linear observer under time-variant discon-
nected communication network. Firstly, we have proved
by LMIs method that the designing distributed observer
under time-variant disconnected communication network
can only achieve clustered consensus, but not omniscience
asymptotically if there are no constraints on system matrix
and alternative topologies set. Moreover, we have also
analyzed the requirements of the system matrix to meet
the omniscience asymptotically. Based on the analysis,
three kinds of constraints on system matrix and a group
of sufficient conditions for guaranteeing the omniscience
asymptotically have been proposed and proved. Finally,
we have completed a numerical simulation that verified
the validity of our method.
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