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Abstract: This manuscript addresses the parameter and state estimation problem for continu-
ous time nonlinear systems with unknown slowly time-varying parameters, which are assumed to
belong to a known compact set. The problem is tackled by using the multi-observer approach un-
der the supervisory framework, which generates parameter and state estimates by using a finite
number of sample points of the parameter set, a bank of observers, a set of monitoring signals
and a selection criterion. This note proposes a novel dynamic sampling policy for the multi-
observer technique and studies its convergence properties. We prove that the parameter and state
estimation errors are ultimately bounded where the ultimate bounds can be made arbitrarily
small if the parameter varies sufficiently slowly, and the number of samples is sufficiently large.
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1. INTRODUCTION

The parameter and state estimation problem has been of
central importance in control theory. There is a number
of approaches and methodologies addressing state estima-
tion e.g., Nijmeijer and Fossen (1999); Besançon (2007);
Khalil (2017), and parameter estimation or identification
e.g., Ioannou (1996); Ljung (1999); Adetola and Guay
(2008), to cite a few. The simultaneous estimation of both
parameter and state is commonly tackled by augmenting
the state vector with the parameter vector so that the
original problem is transformed into a state estimation
task. Nevertheless, augmenting the state may lead to a
model with nonlinearities, which are difficult to handle,
even in the linear case. Adaptive observers for linear and
nonlinear systems allow to overcome this issue e.g., Zhang
(2002); Tyukin et al. (2007); Farza et al. (2009). However,
these results only apply to specific classes of systems, and
the construction of an adaptive observer is a challenging
task in general.

The multi-observer approach under the supervisory frame-
work is another technique for the joint parameter and
state estimation of nonlinear systems with unknown con-
stant parameters, see Chong et al. (2015). This estimation
technique was motivated by works on supervisory control
for uncertain systems e.g., Morse (1996); Hespanha et al.
(2003); Vu and Liberzon (2011). The multi-observer ap-
proach relies on the assumption that the unknown param-
eter belongs to a known compact set and that we know
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how to design a global state observer when the parameter
is known. The technique consists of a hybrid scheme with
two main parts, 1) a bank of state observers synthesized
for a finite set of nominal parameter samples, and 2) a
selection criterion that uses a set of monitoring signals to
choose the best parameter and state estimates.

Chong et al. (2015) introduced a static and a dynamic
sampling policies to create the set of nominal samples. The
static policy samples the parameter set at the initial time
(t = 0) so that it creates a large number of samples to
ensure accurate estimates (accuracy is understood as the
estimation errors being sufficiently small). On the other
hand, the dynamic sampling policy periodically updates
the samples to generate estimates with a comparable ac-
curacy as the static case by using a smaller number of
observers. This policy uses a zoom-in procedure inspired
by the techniques presented in Liberzon and Nešić (2007).
The zoom-in procedure is used to reduce the size of the
sampled set and obtain a denser set, which may lose the
parameter after a sufficiently large time. However, if the
multi-observer is appropriately tuned, the error will be suf-
ficiently small when the sampled set loses the parameter.

Although nonlinear systems with constant unknown pa-
rameters are common, there is a number of nonlinear dy-
namical systems with slowly varying unknown parameters;
for instance, the Duffing system and the van der Pol sys-
tem, see Thompson and Stewart (1986); Rajagopalan et al.
(2008). Results in Chong et al. (2015) do not a priori apply
to the case when the parameters vary slowly. The static
sampling policy proposed by Chong et al. (2015) may
exhibit implementation issues when choosing the estimates
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based on the most recent data as they assume the unknown
parameters are constant. On the other hand, their dynamic
sampling policy is unable to provide arbitrarily small es-
timation errors when the real changing parameters move
away from the zoomed-in sampled set.

Here, we address the parameter and state estimation
problem for nonlinear systems with slowly time-varying
parameters that evolve in a known compact set. We revisit
the multi-observer approach and propose a novel dynamic
sampling policy to overcome the inability of existing re-
sults to work under our setting. The new dynamic policy
incorporates zoom-out and zoom-in procedures inspired
by quantized control techniques from Liberzon and Nešić
(2007). These procedures allow to the sampled set to follow
the varying parameter. The zoom-in procedure moves the
centre of the “box” where the samples are taken from to
the last parameter estimate and uses a zoom-in factor to
reduce the size of the sampled set. On the other hand, the
zoom-out procedure keeps the centre of the “box” at the
same position of the last zoom-in and increases the size
of the sampled set when the parameter has potentially
left it. In this manuscript, we characterise the convergence
properties of the parameter and state estimation errors
when using our novel dynamic sampling policy. Moreover,
we provide appropriate tuning algorithms that guarantee
such convergence properties and an illustrative example.

Notation: Let R := (−∞,∞), R≥0 := [0,∞), N :=
{0, 1, . . .}, N≥1 := {1, . . .}. The ∞-norm of x ∈ Rn is
denoted as |x|∞ = maxi |xi|, where x = (x1, . . . , xn)> and
|xi| denotes the absolute value of xi. Let s : R≥0 → R,
we say that s ∈ L∞ if ||s||∞ ≤ ∞, where ||s||∞ :=
ess supt≥0|s(t)|. Let Θ(θc,∆) := {θ ∈ Rm | |θ−θc|∞ ≤ ∆}
be the hypercube centred at θc ∈ Rm with distance to the
edge ∆ > 0. For a vector θ ∈ Rn and a non-empty and
closed set Θ ⊂ Rm, the distance from θ to Θ is denoted
by d (θ,Θ) := minθ̃∈Θ |θ − θ̃|∞. A continuous function
α : R≥0 → R≥0 is a function of class-K, if it is strictly
increasing and α(0) = 0; additionally, if α(r) → ∞ as
r → ∞, then α is a function of class-K∞. A continuous
function β : R≥0 × R≥0 → R≥0 is a function of class-KL,
if: (i) β(·, s) is a function of class-K for each s ≥ 0; (ii)
β(r, ·) is non-increasing and (iii) β(r, s) → 0 as s → 0 for
each r ≥ 0. The left-limit operator is denoted by (·)−.

2. SYSTEM MODEL

Consider the following class of nonlinear systems

ẋ(t) = f(x(t), θ(t), u(t)), (1a)

y(t) = h(x(t), θ(t), u(t)), (1b)

where x ∈ Rn is the state of the system, y ∈ Rp is the
measured output, u ∈ Rr is a known input, and θ ∈ Θ is an
unknown time-varying parameter vector where Θ ⊂ Rm
is assumed to be a known compact set. We make the next
assumptions on system (1).

Assumption 1. θ is continuously differentiable and |θ̇|∞ is
sufficiently small, i.e. there exists ε∗ � 1 such that, for
ε ∈ (0, ε∗), |θ̇(t)|∞ ≤ ε for all t ≥ 0. 2

Assumption 2. The maps f and h in (1) are continuously
differentiable. 2

Assumption 3. Consider the nonlinear system (1) with
θ(t) satisfying Assumption 1. For any ∆x > 0 and ∆u > 0,

there exists kx > 0 such that for all |x(0)| ≤ ∆x, ||u||∞ ≤
∆u, the following holds

|x(t)|∞ ≤ kx ∀ t ≥ 0. (2)

2

Assumption 3 implies that the solutions to (1) are bounded
for any bounded initial conditions, bounded inputs and
any θ(t) satisfying Assumption 1. Constant kx > 0 in (2)
does not need to be known in order to implement the
estimation algorithm presented in the sequel.

3. A NOVEL DYNAMIC SAMPLING POLICY

Let us introduce the hypercube Θ which satisfies that
Θ ⊂ Θ, and discretise it with N ∈ N sample points where
N is generated by Theorem 10. The sampled set is denoted
as

Θ̂ := {θ̂1, . . . , θ̂N} | θ̂i ∈ Θ for i ∈ {1, . . . , N}. (3)

The sample points are generated such that the following
property is verified

max
θ∈Θ

d
(
θ, Θ̂

)
≤ π(∆, N), (4)

where π(·, ·) ∈ KL satisfies that π(∆, N) ≤ ∆ where ∆ > 0
is the distance from the center of Θ to its edge. Observe

that, for a uniform sampling, π(s, r) = min

{
s, s

r
1
p

}
ensures (4), see Chong et al. (2015). When implementing
a dynamic sampling policy, we work with time-varying

sets Θ(tk) and Θ̂(tk) = {θ̂1(tk), . . . , θ̂N (tk)}, where tk,
for k ∈ N, is the updating time satisfying

tk+1 − tk = Td, (5)

with Td > 0 being a design parameter. Hence, tk = kTd,
for k ∈ N. The full algorithm for the updating of Θ(tk) is
explained in Section 3.3.

3.1 Multi-observer

We work under the assumption that, if the parameter value
is known and is constant for all time, we know how to
design a state observer for system (1), as formalized in the
following. A state observer for the system (1) is designed

for each θ̂i(tk) ∈ Θ̂(tk), for i ∈ {1, · · · , N} and k ∈ N.
Hence, consider the following multi-observer

˙̂xi(t) = fo(x̂i(t), θ̂i(tk), u(t), y(t)), ∀ t ∈ [tk, tk+1), (6a)

ŷi(t) = h(x̂i(t), θ̂i(tk), u(t)), (6b)

x̂i(tk) = x̂i(t
−
k ), (6c)

where x̂i ∈ Rn, for i ∈ {1, . . . , N}, are the potential
estimates of x ∈ Rn, and ŷi ∈ Rp is the output estimate

for each θ̂i(tk) ∈ Θ̂(tk), for i ∈ {1, · · · , N} and k ∈ N.

Assumption 4. The map fo in (6) is continuous and con-
tinuously differentiable in its first argument. Furthermore,
the solutions to (6) are unique and defined for all positive
times, for all initial conditions, any input u ∈ Rr, any
system output y ∈ Rp and any sampled parameter point

θ̂i(tk) ∈ Θ̂(tk), for i ∈ {1, · · · , N} and k ∈ N. 2

Denoting the state estimation error as exi := x̂i − x, the
output error as eyi := ŷi − y, and the parameter error as
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eθi := θ̂i−θ, we obtain the following state estimation error
systems for system (1) and observer (6),

ėxi(t) = fei(x(t), θ(t), exi(t), eθi(t), u(t)),

∀ t ∈ [tk, tk+1), (7a)

eyi(t) = he(x(t), θ(t), exi(t), eθi(t), u(t)), (7b)

for i ∈ {1, · · · , N} and k ∈ N, where fei = fo(exi(t) +
x(t), eθi(t) + θ(t), u(t), y(t)) − f(x(t), θ(t), u(t)) and he =
h(exi(t)+x(t), eθi(t)+θ(t), u(t))−h(x(t), θ(t), u(t)). Note
that eθi(t) are piecewise continuous functions with jumps
(discontinuities) at each t = tk, k ∈ N. The assumption we
make on observer (6) is stated next.

Assumption 5. Consider the state estimation error system
(7), for i ∈ {1, · · · , N} and k ∈ N. There exists ai > 0, for
i ∈ {1, . . . , 4}, λ0 > 0, a continuous non-negative function
γ̃ : Rm × Rn × Rr → R≥0 with γ̃(0, x, u) = 0 for all

x ∈ Rn, u ∈ Rr such that for any θ̂i(tk) ∈ Θ̂(tk), for
i ∈ {1, · · · , N} and k ∈ N, there exists a continuously
differentiable function Vi : Θ×Rn → R≥0, which satisfies
the following for all exi ∈ Rn, x ∈ Rn, θ ∈ Θ, u ∈ Rr

a1|exi |2∞ ≤ Vi(θ, exi) ≤ a2|exi |2∞, (8)

∂Vi(x, exi)

∂exi
fei(x, θ, exi , eθi , u) ≤ −λ0Vi(θ, exi)

+ γ̃(eθi , x, u), (9)∣∣∣∣∂Vi(θ, exi)∂exi

∣∣∣∣
∞
≤ a3|exi |∞, (10)∣∣∣∣∂Vi(θ, exi)∂θ

∣∣∣∣
∞
≤ a4|exi |2∞. (11)

2

Assumption 5 implies that each observer is robust with
respect to small parameter errors on compact sets. When
eθi = 0, (8) and (9) imply that the origin of the state
estimation error system (7a) is globally exponentially
stable. Observe that the negativity of the derivative would
depend on how large is the magnitude of exi with respect
to eθi so that for large eθi the error dynamics (7a)
may become unstable. Inequalities in (10) and (11) are
needed to handle perturbations when the parameter is
slowly time-varying, see Section 9.6 in Khalil (2001). For
instance, observers based on the circle criterion, e.g. Arcak
and Kokotović (2001) and Chong et al. (2012), satisfy
Assumption 5.

3.2 Supervisor: Monitoring signals and selection criterion

We next define monitoring signals µi(·, ·), for i ∈
{1, . . . , N}, which are used to select the “best” estimate

from the potential estimates x̂i, θ̂i, for i ∈ {1, . . . , N},
produced by the multi-observer (6). The signal associated
with each observer is the exponentially weighted L2-norm
of the output error defined as, for any 0 ≤ t1 ≤ t2 <∞,

µi(t1, t2) =

t2∫
t1

exp(−λ(t2 − s))|eyi(s)|2∞ds, (12)

for i ∈ {1, . . . , N}, where λ > 0 is a design parameter, see
Vu and Liberzon (2011). We next assume that the output
error of each of the observers satisfies the property below.

Assumption 6. Let θ̇ = 0. Then, for any ∆x > 0, ∆ex > 0,
and ∆u > 0, there exist a class-K∞ function αey (·) and

a constant Tey = Tey (∆x,∆ex ,∆u) > 0 such that for

all θ̂i(tk) ∈ Θ, i ∈ {1, . . . N}, |x(0)| ≤ ∆x, |exi(0)| ≤ ∆ex ,
and ||u||∞ ≤ ∆u, the corresponding solution to systems (1)
and (7) satisfies

t∫
t−Tey

|eyi(τ)|2∞dτ ≥ αey (|eθi(tk)|∞), (13)

for all t ≥ tk+Tey for any tk ≥ 0. 2

The inequality (13) is known as a persistence of excitation
(PE) condition that appears in identification and adaptive
literature. Note that the excitation level grows as the
norm of the parameter error increases. Then, the left-hand
side of (13) gives quantitative information regarding the
parameter estimation error. Assumption 6 holds when the
output errors eyi ∈ Rp, for i ∈ {1, . . . , N}, satisfy the
classical PE condition, see Chong et al. (2015).

We now define the signal σ : R≥0 → {1, . . . , N} which
is used to choose a parameter estimate and an observer
from (6) at every time instant. It is defined as

σ(tk+1) ∈ arg min
i∈{1,...,N}

µi(tk, tk+1), (14)

for k ∈ N. Based on the signal (14), the estimated

parameter and the estimated state are given by θ̂(t) :=

θ̂σ(t−k )(t), and x̂(t) := x̂σ(t−k )(t), for all t ∈ [tk, tk+1). Hence,

θ̂(t) and x̂(t) are discontinuous in general as they switch
among a finite family of continuous trajectories that are
in general different at the switching instants.

3.3 Algorithm: Dynamic sampling policy

Let ∆0 ≥ 0 and θc ∈ Rn be given such that Θ ⊂ Θ(θc,∆0).
Let a ∈ (0, 1), b > 1, c > 0, δ0 > 0, and δ1 ∈ (0, δ0), and
let N ∈ N and Td > 0, where a and b are the zoom-
in and zoom-out factors, respectively, c is a threshold for
the zoom-out procedure, δ0 and δ1 are thresholds for the
monitoring signals, N is the number of samples and Td is
the sampling time in (5). We explain how to tune these
parameters in the following. In view of (5), let tk := kTd,

for k ∈ N. Moreover, let θ̂0 be the initial condition for the
parameter estimate and let m(tk) be a discrete variable
which will take values in the set {‘zoom-in’, ‘zoom-out’}
with initial value m(t0) = ‘zoom-in’.

i. Set k = 0. Let θc(t0) = θc and ∆(t0) = ∆0

such that Θ ⊂ Θ(θc(t0),∆(t0)) and define Θ(t0) =
Θ(θc(t0),∆(t0)) ∩Θ.

ii. Generate the set Θ̂(tk) by using (3) and (4).
iii. Design the multi-observer (6) for the system (1).

Then, the monitoring signals (12) are implemented
as follows, for i ∈ {1, . . . , N} and k ∈ N
µ̇i(tk, t) = −λµi(tk, t) + |eyi(t)|2, ∀ t ∈ [tk, tk+1),

µi(tk, tk) = 0. (15)

The selection criterion signal is as in (14), for k ∈ N.
iv. Let µσ(tk+1) = mini∈{1,...,N} µi(tk, tk+1), and

m(tk+1) =

‘zoom-in’ if µσ(tk+1) < δ1,
‘zoom-out’ if µσ(tk+1) > δ0,
m(tk) if µσ(tk+1) ∈ [δ1, δ0].

(16)

v. Implement the following,
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• Zoom-in: If m(tk+1) = ‘zoom-in’, let

θc(tk+1) = θ̂σ(t−k+1)(t
−
k+1), (17)

∆(tk+1) = a∆(tk), (18)

Θ(tk+1) = Θ(θc(tk+1),∆(tk+1)) ∩Θ(tk). (19)

• Zoom-out: If m(tk+1) = ‘zoom-out’, let

θc(tk+1) = θc(tk), (20)

∆(tk+1) = bmax{∆(tk), c}, (21)

Θ(tk+1) = Θ(θc(tk+1),∆(tk+1)) ∩Θ(t0). (22)

vi. Let k = k + 1. Then, go to step ii.

Step i is an initialization step used to generate the first
set where the samples will be taken from at t0. Step ii
generates the sampled set at the k-th iteration. Step iii
corresponds to the implementation of the multi-observer
technique by itself. Step iv uses the information from the
monitoring signals to indirectly evaluate if the changing
parameter is within the sampled set or not by using the
hysteresis switching law in (16). Step v implements a
zoom-in or a zoom-out procedure. First, a hypercube is de-
fined by specifying its centre θc(tk+1) and half of its edge’s
length ∆(tk+1). Then, the hypercube Θ(θc(tk+1),∆(tk+1))
is intersected with the previous set Θ(tk) for the zoom-in
case, and with the initial set Θ(t0) for the zoom-out. The
final step closes the loop so that the new set generated in
Step v is used to create the new set of samples for the next
Td time interval. Note that our proposed algorithm is such

that θ̂i(tk) ∈ Θ, for i ∈ {1, . . . , N} and k ∈ N.

4. MAIN RESULT

We first present three useful lemmas which are the key
ingredients to state our main result. In Lemma 7, we
state an input-to-state stability property with respect to
the parameter error eθi , for i ∈ {1, . . . , N}, for each of
the error systems (7a). Then, we show in Lemma 8 that
Assumption 6 leads to a weaker persistence of excitation
condition when θ̇(t) 6= 0 and |θ(t)|∞ ≤ ε. Furthermore, we
state in Lemma 9 that the monitoring signals µi(tk, tk+1),
for i ∈ {1, . . . , N}, are lower and upper bounded by
class-K∞ functions of the parameter estimation error. In
Theorem 10, we characterise the convergence properties of
the multi-observer (6) and our dynamic sampling policy.
We do not present any proofs due to the page limitation.

Lemma 7. Consider the system (1), and the estimation
error systems (7a). Let Assumptions 1 - 5 hold. Then,
there exist κ > 0, λL1 > 0 and ε̃∗ > 0 such that for any
∆x > 0, ∆ex > 0 and ∆u > 0, there exists γL(·) ∈ K∞
such that the corresponding solutions to (7a) satisfy, for
i ∈ {1, . . . , N},
|exi(t)|∞ ≤ κ exp (−λL1t) |exi(0)|∞ + γL(||eθi ||∞), (23)

for all ε ∈ (0, ε̃∗), θ, θ̂i ∈ Θ, |x(0)|∞ ≤ ∆x, |exi(0)|∞ ≤
∆ex , ||u||∞ ≤ ∆u, and t ≥ 0. 2

Lemma 8. Consider the error systems (7a) and let As-
sumptions 1 - 6 hold. Then, for any ∆x > 0, ∆ex > 0
and ∆u > 0, there exist a class-K∞ function αL(·), a
constant Tf = Tf (∆x,∆ex ,∆u) > 0, κ̂ > 0 and ε̃∗ > 0,
such that, for i ∈ {1, . . . N} and for k ∈ N,

t∫
t−Tf

|eyi(τ)|2∞dτ ≥ max
{
αL(|eθi(tk)|∞)− ε2κ̂, 0

}
, (24)

for all t ≥ tk+Tf , for any tk ≥ 0, ε ∈ (0, ε̃∗), |x(0)|∞ ≤ ∆x,
|exi(0)|∞ ≤ ∆ex

, and ||u||∞ ≤ ∆u. 2

Lemma 9. Consider the system (1), the error system (7a),
and the monitoring signals (12). Let Assumptions 1 - 6

hold. For any ∆̃x > 0, ∆̃ex > 0, ∆̃u > 0 and ν > 0,
there exist class-K∞ functions χ(·) and χ(·) independent

of ν, kLM > 0, a constant T = T (∆̃x, ∆̃ex , ∆̃u, ν) > 0,
Td ≥ T and ε∗ > 0 such that the monitoring signals
µi(tk, t) satisfy, for i ∈ {1, . . . , N} and for k ∈ N,

max
{
χ(|eθi(tk)|∞)− ε2kLM , 0

}
≤ µi(tk, t)

≤ χ(|eθi(tk)|∞) + ν, (25)

for all t ∈ [tk + T, tk+1), and for all ε ∈ (0, ε∗), θ, θ̂i ∈ Θ,

|x(0)|∞ ≤ ∆̃x, |exi(0)|∞ ≤ ∆̃ex , ||u||∞ ≤ ∆̃u. 2

We are now ready to present the main result of this note.

Theorem 10. Consider the nonlinear system (1), the dy-
namic sampling policy, and the error systems (7). Let As-

sumptions 1 - 6 hold. Then, for any given ∆̂x > 0, ∆̂ex > 0,

∆̂u > 0, ν̂eθ > 0, ν̂ex > 0, zooming factors a ∈ (0, 1)
and b > 1, a constant c ∈ (0,min

{
ν̂eθ , γ

−1
L (ν̂ex)

}
/2b
√
m),

where γL ∈ K∞ comes from Lemma 7 and m > 0 is the
dimension of Θ, δ0 ∈

(
0, χ ((1− ϑ)c)

)
, for ϑ ∈ (0, 1), and

δ1 ∈ (0, δ0), there exists K̂eθ > 0, K̂ex > 0, sufficiently
large T ∗ > 0 and N∗ ∈ N such that for any Td ≥ T ∗

and N ≥ N∗ there exists ε∗ > 0, constructed according to
Algorithm 1 below, such that the following holds

|eθσ(t)(t)|∞ ≤ K̂eθ , (26)

|exσ(t)(t)|∞ ≤ K̂ex , (27)

lim sup
t→∞

|eθσ(t)(t)|∞ ≤ ν̂eθ , (28)

lim sup
t→∞

|exσ(t)(t)|∞ ≤ ν̂ex , (29)

for all ε ∈ (0, ε∗), |x(0)|∞ ≤ ∆̂x, |exi(0)|∞ ≤ ∆̂ex for

i ∈ {1, . . . , N}, ||u||∞ ≤ ∆̂u, and t ≥ 0. 2

Theorem 10 states that the parameter and state estimation
errors are bounded for all time. Moreover, this result

ensures that the estimated parameter θ̂(t) and state x̂(t),
are respectively guaranteed to converge to their true values
within some selected margins ν̂eθ and ν̂ex . Furthermore,
it provides information on how to select and determine
the parameters of the algorithm in Section 3.3. We next
provide the algorithm for the construction of T ∗ > 0,
N∗ ∈ N, N ≥ N∗, Td > 0, and ε∗ > 0.

Algorithm 1. Let ∆̂x > 0, ∆̂ex > 0, ∆̂u > 0, ν̂eθ > 0, ν̂ex >
0, a ∈ (0, 1), b > 1, c ∈ (0,min

{
ν̂eθ , γ

−1
L (ν̂ex)

}
/2b
√
m),

δ0 ∈
(
0, χ ((1− ϑ)c)

)
, for ϑ ∈ (0, 1), and δ1 ∈ (0, δ0) be

given. Consider γL(·) ∈ K∞ and ε̃∗ > 0 generated by
Lemma 7, χ(·), χ(·) ∈ K∞, kLM > 0 and ε∗ > 0 generated
by Lemma 9 and π(·, ·) ∈ KL satisfying (4). Then, we have
the following.

(1) Define η̂ > 0 as η̂ := min
{
ν̂eθ , γ

−1
L (ν̂ex)

}
.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

4277



(2) Select ∆0 > 0 as stated in Section 3.3, ∆2 ∈ (0,∆0)
and ∆1 ∈ (∆2,∆0) such that ∆2 = c and ∆1 =
2bc
√
m.

(3) Select T ∗ > 0, N∗ ∈ N sufficiently large and Td ≥ T ∗
such that Lemma 9 holds with ν > 0 sufficiently small
such that

χ−1(χ(π(s,N∗)) + 2ν) ≤ as, (30)

for all s ∈ [∆2,∆0].
(4) Select N > 0 sufficiently large such that N ≥ N∗,

χ(π(∆0, N)) + ν ≤ δ0, (31)

and

χ(π(∆1, N)) + ν < δ1. (32)

(5) Define ε∗ > 0 as follows

ε∗ := min {ε∗1, ε∗2, ε∗3, ε∗4, ε∗5, ε∗6} . (33)

where ε∗1 = ε̃∗, ε∗2 = ε∗, ε∗3 = π(∆2,N)
Td

, ε∗4 =
√

ν
kLM

,

ε∗5 =

√
χ((1−ϑ)∆2)−δ0

kLM
, ε∗6 = (b−1)∆2

2Td
.

Remark 11. It is always possible to ensure (30) since
χ(·), χ(·) ∈ K∞ and π(·, ·) ∈ KL. Furthermore, the choice
of δ0 and ∆2 ensures a positive numerator in the argument
of the square root of ε∗5. Observe that we can always choose
δ0 ∈

(
0, χ ((1− ϑ)c)

)
, for ϑ ∈ (0, 1), δ1 ∈ (0, δ0) and

N ≥ N∗ such that (31) and (32) hold due to the properties
of the functions χ(·) and π(·, ·) and because ∆0 > ∆1.

5. ILLUSTRATIVE EXAMPLE

Consider the neural mass model of Jansen and Rit (1995)
in the following form

ẋ = A(θ(t))x+G(θ(t))γ(Hx) +B(θ(t))σ(u, y), (34a)

y = C(θ(t))x, (34b)

where θ ∈ Θ ⊂ Rm, x ∈ Rn, y ∈ Rp, u ∈ Ru,
γ : Rm → Rs and σ : Rr × Rp → Rq. The system
matrices are defined as A = diag(Aa, Aa, Ab), G(θ(t)) =[
0 0 0 θ1(t)ac2 0 0
0 0 0 0 0 θ2(t)bc4

]T
, H =

[
c1 01×5

c3 01×5

]
, B(θ(t)) =[

0 θ1(t)a 0 0 0 0
0 0 0 θ1(t)a 0 0

]T
, C = [0 0 1 0 −1 0], where Aa =[

0 1
−a2 −2a

]
and Ab =

[
0 1
−b2 −2b

]
, where a, b, c1, c2, c3 and

c4 are assumed to be known. The nonlinear terms in (34)
are γ = (S, S) and σ(u, y) = (S(y), u) where the function
S denotes the sigmoid function S(v) := 2e0

1+exp[r(v0,v)] for

v ∈ R with known constants e0, v0 and r ∈ R≥0. The states
x1, x3 and x5 are the membrane potential contributions of
the pyramidal neurons, the excitatory and the inhibitory
inter-neurons respectively, and x2, x4 and x6 are their
respective time derivatives. The unknown parameters θ1

and θ2 represent the synaptic gains of excitatory and
inhibitory neuronal populations.

We assume the unknown parameter vector is slowly time-
varying and that it belongs to Θ := [4, 8] × [22, 28].
Importantly, we consider that

θ1(t) =

{
6.5 + 0.01t if θ1 ∈ (4, 8),
8 otherwise,

(35a)

θ2(t) =

{
25.5 + 0.015t if θ2 ∈ (22, 28),
28 otherwise,

(35b)

so that |θ̇(t)| ≤ ε where ε = 0.015. Let us consider the state
observer introduced in Chong et al. (2012) to construct the
following multi-observer

˙̂xi = A(θ̂i)x̂i +G(θ̂i)γ(Hx̂i +K(θ̂i)(C(θ̂i)x̂i − y))

+B(θ̂i)σ(u, y) + L(θ̂i)(C(θ̂i)x̂i − y), (36a)

ŷi = C(θ̂i)x̂i, (36b)

for i ∈ {1, . . . , N}, where K(θ̂i) and L(θ̂i) are the observer
gain matrices which are computed as described in the
following. Suppose there exist real matrices Pi = PTi > 0,
Mi = diag(mi1, . . . ,min) > 0 and scalars νi, µi such that
the following holdsA(Pi, L(θ̂i), νi) B(Pi,Mi,K(θ̂i)) Pi

? E(Mi) 0
? ? −νiI

 ≤ 0, (37)

where the elements are

A(Pi, L(θ̂i), νi) = Pi(A(θ̂i) + L(θ̂i)C(θ̂i)) + νi, I
+ (A(θ̂i) + L(θ̂i)C(θ̂i))

TPi

B(Pi,Mi,K(θ̂i)) = PiG(θ̂i) + (H +K(θ̂i)C(θ̂i))
TMi,

E(Mi) = −2Midiag

(
1

bγ1
, · · · , 1

bγn

)
,

where I is the identity matrix and bγk ∈ Rn\0 is such that
∂γk(vk)
∂vk

≤ bγk <∞ for all vk ∈ R where γ = (γ1, . . . , γn).

We have checked that Assumptions 1 - 5 hold and assumed
that the PE condition stated in Assumption 6 is satisfied.
To perform simulations, we consider the following values:
a = 100, b = 50, c1 = 135, c2 = 108, c3 = 33.75,
c4 = 33.75, e0 = 2.5, v0 = 6, r = 0.56. Table 1
summarises simulation results for our dynamic sampling
policy as well as for the dynamic policy from Chong et al.
(2015). It validates the good performance of our proposed
dynamic sampling policy. Moreover, it demonstrates the
inability of the dynamic policy from Chong et al. (2015)
to deal with slowly varying parameters as the parameter
estimation error cannot be made arbitrarily small. Note
that the policy from Chong et al. (2015) eventually loses
the parameter even for a large number of observers.

Table 1. Simulation Results (tf = 200s).

N = 100 N = 256 N = 400

Dynamic Policy: |eθσ(tf )
(tf )| 0.003 0.001 0.001

Chong et al. (2015) results:
|eθσ(tf )

(tf )| 1.79 1.74 1.45

We provide snapshots of the sampled set for N = 100
and t ∈ [0, 200)s at each updating time tk, for k ∈
{1, 2, 9, 10, 11, 12, 13, 19}, in Fig. 1. For t ∈ [80, 90)s, the
system parameter is not longer in the sampled set. This is
expected as we are using a zoom-in procedure and the pa-
rameter is changing. Although the parameter is no longer
in the sampled set at t = 90s (iteration 9), the zoom-out
procedure is executed until t = 100s (iteration 10). This is
a natural behaviour produced by the hysteresis switching
law (16) and the parameter tuning of the algorithm in
Section 3.3, which may not immediately identify when the
parameter has left the sampled set. The parameter esti-
mation error becomes arbitrarily small after a sufficiently
large time.
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Fig. 1. The dynamic sampling of the parameter set for the
updating times tk, for k ∈ {1, 2, 9, 10, 11, 12, 13, 19},
for N = 100. Legends: Yellow - real parameter, Blue -
Parameter sample points, Red - Parameter estimate,
Black - Boundaries of the compact set Θ.

6. CONCLUSIONS

We generalised the multi-observer approach under the
supervisory framework for nonlinear systems to handle
slowly varying unknown parameters. We delivered conver-
gence results for the multi-observer approach when using
a novel static sampling policy. Furthermore, we proposed
a novel dynamic sampling policy that uses zoom-in and
zoom-out procedures to guarantee the same accuracy as
the static sampling policy with a reduced number of
observers. We stated convergence results that guarantee
that our proposed technique produces parameter and state
estimation errors that can be made as small as desired if
the slowly time-varying parameter moves sufficiently slow
and if the observer is carefully tuned.
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